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Light-scattering spectrum of supercooled liquids
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Two versions of extended mode-coupling theory are compared in the long-wavelength limit. The
results are relevant for the light-scattering spectrum of supercooled liquids. It is shown that both
versions predict the existence of a central Mountain peak whose width is independent of the wave
vector at small k.
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I. INTR, ODU CTION

The light-scattering spectrum [1] of simple liquids con-
sists of three Lorentzian lines: a Rayleigh line at fre-
quency u = 0 and a pair of Brillouin lines located at
w = +ck. Here k is the wave vector, k = ~k~, and c is
the speed of sound. This spectrum is determined by the
long-wavelength hydrodynamic modes [2]: the Rayleigh
line is due to the heat mode, and the Brillouin lines are
caused by the sound modes. It is well known that the
line-widths are proportional to k, the proportionality co-
eKcients being the thermal diffusivity Dz and the sound
damping coeKcient I'„respectively.

This simple picture no longer applies for supercooled
liquids. The reason is that nonhydrodynamic modes as-
sociated with structural relaxation processes on short
(molecular) length scales become so slow that they fall
into the GHz window probed by light scattering. As the
glass transition is approached, the slowing down of struc-
tural relaxation becomes, in fact, dramatic with an in-
crease of characteristic times by more than 10 orders of
magnitude in a temperature range of only about 100 K
(for a review on the dynamic aspects of the glass tran-
sition, see Ref. [3]). Hence there must be a tempera-
ture range where structural relaxation is slow enough to
stand out against the background of the spectrum, but
not yet so slow as to vanish within experimental resolu-
tion. Here the Rayleigh-Brillouin spectrum is expected
to differ from that of a normal liquid.

Nonhydrodynamic modes also play a role in the case of
molecular liquids. Mountain [4] has calculated the scat-
tering spectrum for a Quid with a frequency dependent
bulk viscosity, which serves as a model to describe the
internal degrees of freedom. He considered, in particu-
lar, a Maxwell model with a single relaxation time 7M
and found [4,5] that the positions and widths of the Bril-
louin lines are modified, and that a new component to
the Rayleigh line appears. Moreover, the width of this
new "Mountain peak" (given by 1/r~) stays finite in the
limit k ~ 0 [6], which is in contrast to the behavior of
the hydrodynamic peaks. As a consequence, for wave

vectors k ( (D7 rM) ~, the width of the Rayleigh line
becomes independent of k. For undercooled simple liq-
uids, where the slow nonhydrodynamic modes are due to
structural relaxation, the k independence of the width of
the Rayleigh line has been established in recent experi-
ments [7]. This very general property of the scattering
spectrum can thus be used as a qualitative test for any
theory of structural relaxation.

The most important theory of structural relaxation is
the mode-coupling theory (MCT, for reviews, see Refs.
[8—10]), which determines a set of nonlinear equations
for the density-density correlation function 4(k, t), the
quantity measured in light-scattering experiments. A
self-consistent treatment of these equations at G.nite wave
numbers leads to the so-called o. peak, which describes
the slowest mode of structural relaxation. Due to the
interplay between the structural and the hydrodynamic
modes [11,12], the calculation of the light-scattering spec-
trum is rather subtle [13,14]. But it turns out that the
width of the Mountain line is essentially given by the
width of this o. peak.

In its original form [11], the MCT predicts a sharp
transition from ergodic behavior [limt~ 4(k, t)
0] at temperatures T ) T, to nonergodic behavior
[limt~ 4(k, t) ) 0] at temperatures T ( T, . Here T,
is a well-defined critical temperature associated with a
glass-transition singularity. In this idealized MCT the o.
peak exists only above T, (since, below T, there is no
ultimate relaxation). For simple systems, the equations
of o. relaxation can be solved numerically for all wave
vectors [15], and the width of the n peak is found to be
only weakly wave vector dependent with a B.nite value at
I =0.

There is experimental evidence [16], however, indicat-
ing that there are very slow relaxation processes besides
those treated in the idealized MCT, which prevent the
system from complete structural arrest. To include such
ergodicity-restoring processes, several generalizations of
the original MCT have been proposed. They are referred
to as extended MCTs. Common to these theories is that
not only density-density couplings are taken into account,
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as in the idealized theory, but also density-current and
current-current couplings. However, there is no agree-
ment on the detailed form of the equations and the cou-
pling vertices. One class of such theories is based on non-
linear hydrodynamics [17] and its generalization to finite
wave numbers [18,19], while the other [20,21] is based on
a renormalized kinetic approach [22].

The extended MCTs replace the sharp glass transition
by a soft one, in the sense that 4(k, t) ultimately decays
to zero for all temperatures, although, at sufFiciently low
T, there is a broad time window within which 4(k, t)
appears to be &ozen. As a consequence, the a peak no
longer ceases to exist below some T, . Concerning the
predictions of the extended MCTs on the Mountain peak,
it was noted [13] that the kinetic version leads to a k
independent width, while for the hydrodynamic version
a width proportional to k was anticipated. It is the
purpose of this paper to demonstrate that this is not
the case: the hydrodynamic theory also leads to a k-
independent width.

where cL, and vL, are the bare sound velocity and the
bare sound damping coefFicient, respectively, and (2) is
reduced to

4(k, z) =
z+

z + vr, kz + m(z) cL, 2k2

(5)

The contribution from the heat mode is neglected in this
expression. The interplay of the glass singularity and the
heat mode gives rise to frequency dependent thermody-
namic derivatives [12], but does not qualitatively change
the conclusion of this paper. We shall come back to this
point in the Discussion.

The static structure factor, and hence the coupling ver-
tices are controlled by the temperature. A major result of
the idealized theory is the existence of a critical temper-
ature T, below which the vertices become strong enough
to cause a transition &om ergodic to nonergodic behav-
ior of 4(k, t) [11].This implies that, in the low-frequency
limit,

II. IDEALIZED MODE-COUPLING THEORY m(z) =-
z

(T & T.),

1
4(k, z) =

0'(k)z+
z+vL, (k)k'+n'(k) m(k, z)

(2)

where O(k) is the phonon frequency, vL, (k) is a "bare"
longitudinal viscosity (associated with dissipation on a
short "Enskog" time scale), and m(k, z) is a frequency de-
pendent relaxation function, which dominates the long-
time dynamics. This relaxation function is related back
to 4(k, t) via a nonlinear constitutive equation of the
form

m(k, t) = d q A(k, q) C (q, t) 4(~k —q~, t), (3)

with coupling vertices A(k, q) that are essentially deter-
mined by the static structure factor. It is important to
note that A(k, q) stays finite in the limit k -+ 0. Equa-
tions (2) and (3) provide a self-consistent theory for the
density-density correlation function 4'(k, t)

For small k, the density-density correlation function
can be probed in light-scattering experiments. In this
limit,

A(k) m cL,k, vL, (k) + vL„ m(k, t) + m(t),

(4)

Structural relaxation is described in terms of the nor-
malized density-density correlation function

(bn(k, t) 8n( —k, o))"' =
(S (k, o) Sn(-k, O))'

where bn(k, t) denotes a density Huctuation about the
mean value n and the averages ( ) are taken over an
equilibrium ensemble at temperature T. According
to idealized MCT, the Laplace transform, 4(k, z)
Jo dt e ' C'(k, t), satisfies a Dyson-type equation

where g is a form factor that is determined by the self-
consistent solution of (2) and (3) for all wave numbers.
It turns out [11] that the dominant part of (3) is due to
q values close to the main peak of the static structure
factor. The long-wavelength value g is thus determined
primarily by mode-coupling effects on molecular length
scales.

It is straightforward to determine the poles and
residues of Eq. (5), with m(z) given by (6). As we focus
on the small-k regime, satisfying

vL, k (g cL,

we can use first-order perturbation theory. Thus the
spectrum is found to consist of two Brillouin lines and
a Mountain line,

4(k, z) = 4gy (k, z) + OM (k, z), (8)

where

1 1 1
@ii(k, z) 2(1+ g) z+ z~+(k) z+ z~ (k)

+
g 1

1+g z+zM(k)'CM(k, z) =

and the modes are given by

z~~(k) = + i/1+ g cL,k+ —vL, k
1 2

2
zM(k) = 0.

(T&T)

(lo)

The last result implies that the Mountain line is degener-
ate to an elastic line of zero width, which is a signature of
an ideal glassy solid. Notice also that the Brillouin lines
are shifted by a factor gl + g, as compared to a normal
liquid. This is the well-known viscoelastic increase of the
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sound velocity (see, e.g. , [23] and references therein).
At temperatures above T, (but still in the supercooled

phase), the vicinity of the glass transition singularity is
signaled by a broad time window within which 4(k, t) ap-
pears to be frozen onto a plateau of finite height. Even-
tually, at still longer times, 4(k, t) decays to zero by n
relaxation [8—10]. The time scale of n relaxation pro-
vides m(z) with a low-frequency cutofF. Hence we write
in place of (6)

1
z~~(k) = + i/1+ g cL,k+ —vL, k

2

1
zM(k)

(T & T,).

leads to a finite lifetime of the elastic mode. Thus, from
(5) with m(z) given by (11),one finds that the spectrum
is again of the form (8) and 9, but with

g
()= (I l»g/ )

(I I
«g/ )

(T & T.). (11)

v.cL, k )) g. (12)

Here we have spezified only the high- and low-&equency
behavior of m(z). In the crossover regime, it has a com-
plicated structure that is not needed for the present pur-
pose. The relaxation time w is strongly temperature de-
pendent and goes to infinity as T approaches T, . There-
fore, at given k, there is a temperature range where

The Brillouin lines are unchanged, while the Mountain
line is broadened, its linewidth w being independent of
k.

III. EXTENDED MODE-COUPLING THEORY

In the extended MCTs, the Dyson equation (2) is re-
placed by a more complicated one, the form of which is
controversial among different versions of the theory.

Under the conditions given by (7) and (12), the
sound modes fall into the high-&equency regime (~z~ =
gl + g cl, k )) g/r), so that they have the same form
as below T . On the other hand, the relaxation time ~
becomes important for small frequencies (~z~ && g/7 ) and

A. Hydrodynamic versions

The hydrodynamic versions lead to a Dyson equation
of the form

4(k, z) = 1

0'(k) [1 —O(k) mg(k, z)]'
z+ vl, (k)k'+ n'(k) m2(k, z)

(14)

with three relaxation functions m (k, z) (a = 0, 1, 2).
The function m2(k, z) plays the same role as m(k, z)
in the idealized theory, and the constitutive expression
for m.q(k, t) is again of the form ( 8). The other func-
tions, mq(k, t) and mp(k, t), are of a similar form, but
involve couplings to the current (momentum density). It
is observed from (14) that m2(k, z) describes a renor-
malization of the bare viscosity, while mq(k, z) give rise
to a renormalization of the phonon frequency. Finally,
mp(k, z) leads to a low-frequency cutofF that suppresses
the 1/z singularity of 4(k, z) below T,.

A theory of this type was first advocated by Das and
Mazenko [17] on the basis of nonlinear fluctuating hy-
drodynamics. The short-wavelength structure, which is
a main ingredient of the idealized mode-coupling theory,
was initially not taken into account. But this was later
corrected by Das [18]. In the Das-Mazenko theory (for a
review, see [9]) it is argued that the Galilean invariance
of fluctuating hydrodynamics is responsible for the exis-
tence of the cutoff. Another theory by Schmitz, Dufty,
and De [19],also based on the short-wavelength general-
ized hydrodynamics, pursues the detailed-balance sym-
metry as the source of the cutoff. This also leads to a
Dyson equation of the form (14). It should be empha-

b
mp(z) m

CL, m
(15)

independently of z. Here, k is the wave vector at the
peak of the structure factor. The kequency scale b is the
natural scale for hopping processes as discussed in the
kinetic MCT [8,20]. There it was understood that the
most important contributions to mp(k, z) come &om the
peak of the structure factor. Then the Dyson equation
(14) is reduced to

4(k, z) =
k2 2k2

z+b
k 2 z+ vl, k'+ m, (z) c~'k'

(16)

sized, however, that the two theories are not equivalent,
since the constitutive equations, relating the relaxation
functions back to 4(k, t), difFer &om each other. But for
the present purpose this is of no concern.

For small k, the formulas (4) apply now with three
relaxation functions that all stay finite. Moreover, since
mp(z) and mq(z) involve couplings to the currents, one
can argue that they are less &equency dependent than
m2(z). For simplicity we therefore assume that



53 LIGHT-SCATTERING SPECTRUM OF SUPERCOOLED LIQUIDS 2627

Notice that there is. no contribution &om mi(z), since we
have only kept terms up to second order in k.

Although the sharp glass singularity is removed in ex-
tended MCT, it is still reminiscent at high &equencies.
Thus we write

g
m2 z — z

7

(I.l»g/ )

(I I «gi )

b k

cl k k

but now, in contrast to (ll), for all temperatures (in the
supercooled regime). Again, the values g and r are dom-
inated by mode-coupling effects at wave numbers q close
to the main peak of the static structure factor. For low
temperatues (below the T, of idealized MCT), it is the
cutoff term mo(k, z) in (14) that causes n relaxation of
4(q, t). This behavior is then transmitted via Eq. (3) to
m2(z), giving rise to a finite value of w, which in turn in-
fluences via self-consistency the value of mo(k, z). For the
mode-coupling scenario to be consistent, the frequency b
must be well separated from the microscopic frequencies
[24]. In the hydrodynamic context we have to supplement
the two conditions (7) and (12) by a third one, namely,

The above assumptions on g, w, and b still need, of course,
support &om a fully self-consistent solution of the ex-
tended mode-coupling equations.

Using (7), (12), and (18), the poles and residues of
(16) and (17) can be evaluated as before by a small k
expansion. The resulting spectrum is again of the form
(8) and (9), while the modes are given by

zing~(k) = + i/i+ g cl,k+ —
~

vt. +
~

k2,
2 g

k' 1+gy
1 b

zM(k) = —+, k'.
k

(i9)

Observe that the b terms only contribute in order k2 to
the linewidths. It is also important to note that the am-
plitude of the Mountain line (which is determined by the
n process) is again g/(1+ g) as in the idealized theory.
This is in contrast to the amplitude 1 found in the liter-
ature [9,17].

B. Kinetic version

The kinetic version of extended MCT leads to a Dyson
equation of a somewhat difI'erent form. Employing the
notation of the preceding paragraph, it reads

C(k, z) = 1

02(k)
vL, (k)k2+ 02(k) m2(k, z)

1+mo(k, z) [vr(k)k2+02(k) m2(k, z)]

(20)

1( b g'
zgy~(k) = + i/i + g cl, k+ —

~
vL, +

~
k,

2 q
k2 I+g)

1 b
zM(k) = —+ k2,

k2 (21)

Again the b terms provide only k corrections to the
linewidths. The expressions (19) and (21) differ only with
respect to the broadening of the Brillouin lines.

IV. DISCUSSION

We conclude with a number of discussion remarks.
(1) To leading order in the wave number, the width of

Again m2(k, z) plays the same role as m(k, z) in the
idealized theory, while mo(k, z) describes the cutoff. The
expression (20) has been derived by Gotze and Sjogren
[20,21] in a renormalized kinetic appoach [22]. The the-
ory in this form was successfully used to describe the so-
called P-relaxation regime in depolarized light-scattering
and neutron-scattering experiments [25,16].

Making the same assumptions as in the hydrodynamic
version, one obtains a spectrum of the same form, but
with somewhat diferent modes, namely,

the Mountain line is independent of k. This is predicted
by all versions of extended MCT.

(2) As mentioned above, we have ignored the heat
mode. Its inclusion leads to an additional dift'usive peak
that is superimposed to the Mountain line [4,5]. But for
small enough wave numbers, k & (DT w) i~2, the heat
mode becomes so narrow that the Mountain line can be
resolved alone. Notice, however, that the heat mode will
also afI'ect the bare sound velocity and the bare sound
damping, as in the case of normal liquids. Addition-
ally the slowing down of structural relaxations leads to
frequency-dependent renormalizations of thermodynamic
derivatives [12].

(3) Several authors [26] have considered vacancy diffu-
sion below T as an alternative mechanism for ergodicity
restauration. This implies an additional dift'usion line
in the spectrum, which is superimposed to the Moun-
tain line. Nevertheless the mechanism described in the
present paper leads also in this case to a k-independent
width of the Mountain line. The difI'erence will only show
up in order k with a model-dependent coefFicient. For
small enough wave numbers, k & (Dv w) ~, the vac-
cancy difFusion mode is covered by the Mountain line.

(4) In this paper we have only discussed the conse-
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quences of the distinct Dyson equations being employed
in the diferent versions of extended MCT. To actually
calculate the parameters (g, r, b), a self-consistent solu-
tion of the full set of equations (Dyson equation plus con-
stitutive expressions for the relaxation functions) has to
be undertaken. In a numerical study of the kinetic MCT
for a Lennard-Jones liquid [27] the values of I/(wow) and
b/coo were found to be of the order 10 7 and 10 io, re-
spectively, where wo is a microscopic frequency defined
in Ref. [27]. This means that a clear separation of the
microscopic scale, the o. scale, and the scale of activated
hopping processes has been obtained. Moreover, the con-
dition h/uo (( 1 makes the so-called P relaxation scaling

regime stand out against the microscopic background [24]
in agreement with the experimental findings [16]. Up un-
til now, the numerical solutions of the generalized non-
linear hydrodynamic equations in the vicinity of the glass
transition [18,28] were not reliable enough to draw con-
clusions about the values of (g, r, h).
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