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Determination of the efFective splay-bend elastic constant
of a lyotropic nematic liquid crystal
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The effective splay-bend elastic constant kzz is studied by means of an optical technique for a
lyotropic nematic liquid crystal. The ratio between k&3 and the usual Frank elastic constant found
in this experiment is positive and of the order of 1. This result agrees with the one obtained recently
for thermotropic liquid crystals.

PACS number(s): 61.30.Cz, 61.30.Gd

I. INTRODU CTION

The temperature-induced surface alignment transition
in nematic liquid crystals (NLC s) is one of the most in-
teresting subjects of research nowadays. Many theoreti-
cal [1,2] and experimental [3,4] works have been done to
investigate the behavior of the surface anchoring energy
of a liquid crystal limited by a solid substrate.

To describe the surface contribution to the elastic free
energy, Nehring and Saupe [5] introduced the splay-bend
elastic constant (kqs). In the usual experiments where
the bulk contribution is dominant, the surface terms may
be neglected and the continuum elastic theory with the
three Frank elastic constants [6] works well. However,
there are situations where the surface contribution is
dominant, and the behavior of some physical parameters
(such as the optical birefringence) gives access to the kqs
elastic constant.

The temperature surface transition [7,8] is a kind of
surface instability induced by the temperature in NLC's
near to the nematic (K)—isotropic (I) phase transition.
An elastic model has been recently proposed [1,3] to in-
terpret the temperature surface transition. This model
allows one to interpret the experiments concerning this
kind of surface instability, in which the temperature de-
pendence of the NLC average orientation is analyzed [4].
In [3,4] the ratio between the effective splay-bend elastic
constant (kqs) and the usual Frank constant (k) has been
measured by means of optical measurements. This ratio
has been found positive and of the order of 1. From this
result it is possible to conclude that the dispersion forces
are not the most important for the usual thermotropic
NLC's. To our knowledge, there are no experimental
results of kqs/k for lyotropic NLC's available in the liter-
ature. Such results would be very interesting to compare
with the thermotropic ones since in lyotropics the steric
forces are expected to be very important.

In this paper we report on measurements of the optical
birefringence for a lyotropic uniaxial NLC as a function
of the temperature, near the IV-I transition temperature.
The results are analyzed on the basis of the elastic model

described in [1,3] and extended in this paper.
The main points of the elastic model are stressed in

Sec. II. An extension of the elastic model is given in
Sec. III, where it is shown that a delocalized intrinsic
anchoring energy may be responsible for subsurface de-
formations. The experimental setup is described in Sec.
IV. Our results are reported in Sec. V and discussed in
Sec. VI.

II. THEORY

In this section we briefly discuss the most relevant as-
pects of the model [1,3] used to describe the experimental
results.

The uniaxial NLC is supposed to be semi-infinite, lim-
ited by the surface placed at z = 0 and occupying the
z ) 0 half space. The problem is supposed to be one-
dimensional, i.e., all the physical quantities are only z
dependent. The NLC director n lies in the (x, z) plane.
The tilt angle made by n with the z axis is denoted by
&(z).

The total free energy per unit surface is given by [3]

E =
~

kP' + O'P" —
~

dz-
p (2 2 )
1 2 1+—m sin (Pp —P~) + —kys sin(2gp) P' .
2 2 0

Here a prime means a derivative with respect to z, Pp ——

P(p), P' = P'(0), m is the anchoring energy strength,
A: is the usual Frank elastic constant, k* is the second
order elastic constant [9,10], kqs is the splay-bend elastic
constant [5], and P is the easy direction characterizing
the NLC-substrate interface [11].

The minimization of F with respect to P(z) gives

1
Pg =- Pp ——Kgs sin(2$p)

2

with

1063-651X/96/53(3)/2454(7)/$10. 00 53 2454 1996 The American Physical Society



53 DETERMINATION OF THE EFFECTIVE SPLAY-BEND. . . 2455

sin[2(gp —P, )] L
sin(4$p) 26

(3)
III. EXTENSION OF THE ELASTIC MODEL

where Pg denotes the equilibrium bulk tilt angle, 6
(k*/k)i~2 is a mesoscopic length, L = k/ip is the ex-
trapolation length [ll], and Kis ——kis/k is the reduced
splay-bend elastic constant.

In the limit of infinite anchoring energy (L (( 6),
= P, and the temperature (T) dependence of Pg is

an eKect of the variation of' Kj3 with T. The splay-bend
elastic constant ki3 and the usual Frank elastic constant
k can be expressed in terms of the scalar order parameter
S [12,13]:

kg3 ——ciS+ c2S and k = k2S

where ci, c2, and k2 are temperature-independent param-
eters [12,13]. The temperature dependence of the scalar
order parameter is of the kind [6]

(5)

where b is a constant and T a temperature a little higher
than the K Itransiti-on temperature (T~i). By means
of Eqs. (4) and (5), Eq. (2) can be rewritten as [3]

Equation (1) has been written considering the
anisotropic surface energy (1/2)ip sin (Pp —P, ) as related
to localized interactions between the NLC and the sub-
strate. Of course, this is not always true, because the
range of the interactions NLC-substrate may be of the
same order as the NLC-NLC intermolecular interaction.
This means that the anisotropic surface energy is ob-
tained by integrating a bulk free. energy density, which
has an intrinsic and an extrinsic part [16]. Now we shall
show that a delocalized anisotropic surface energy gives
rise to terms renormalizing the effective k~3 elastic con-
stant. Hence, even in this case, the analysis reported
above remains valid if the e8'ective splay-bend elastic con-
stant is properly defined and the anchoring energy can
be considered strong.

With this aim, let g(n, n', r) be the intermolecular
interaction energy responsible for the NLC phase, be-
tween the molecule at R, whose orientation is n = n(R),
and the molecule at R' = K+ r, whose orientation is
n' = n(R'). As is well known [17], the elastic energy is
obtained by expanding g in a power series of bn = n' —n
in the following manner:

g(n, n'; r) = g(n, n; r) + A, 8n; + —&;~&n;&n~ + &(&n ).
1 A

P&(T) = P —— + B sin(2$, ),
2 T. —T

where A = (~T,/b)(ci/k2) and B = c2/k2. Finally, %is
can be calculated as

(8)

Bg

O(bn;)

t9 g
O(Sn;) O(8n, )

In Eq. (8), g(n, n; r) is the uniform part of the inter-
action energy, and

A
Kis —— + B

T. —T

According to the theory proposed in [1,3], the presence
of the elastic term connected to the splay-bend elas-
tic constant is responsible for a subsurface deformation
Pg —Pp = —(Kis/2) sin(2gp), vanishing for Pp ——0 and

Pp ——n/2. This result is a consequence of an extended
elastic theory. According to this theory, surface contri-
butions depending on P' are taken into account including
also terms in P" in the bulk elastic energy density. Of
course, if a finite deformation Pp —Pb takes place over
a microscopic layer of thickness 6, the elastic description
may be questionable. In this case, in fact, the free en-

ergy density expressed in series of P', gV, ..., P", P"2, ...
could converge very slowly. Moreover, the meaning of
the elastic constants is no longer very clear. A recent mi-
croscopic analysis [14,15] concerning the orientation of
a NLC near an interface has completely confirmed the
predictions of the extended elastic theory. In particular,
it has been shown in [14,15] that intermolecular interac-
tions depending on the orientation of the molecules with
respect to their relative position give rise to subsurface
deformation on a molecular scale.

Expansion (8) represents a good approximation for
g(n, n', r) only if ~bn;~ (( 1. This means that the aver-
age NLC orientation has to change slowly over the range
of the intermolecular forces responsible for the nematic
phase.

In order to obtain the elastic energy density, it is nec-
essary to expand bn, in power series of x, , the Cartesian
components of r:

1 38n, = n;, x, + n, , i, x, zi, + O(z—), (10)

g(n, n'; r) = g(n, n; r) + L;~ n; ~

1+ [L,,an', ,a + L,,~in, ,
—,nl„i],

where n, ~
= On, /OX~ and n, zi, = O2n, /OX~OXi„ in

which X, are the Cartesian components of R.. In the
elastic limit ~n; ~ ~

(( 1/pp, where pp is of the order of the
range of the intermolecular forces giving rise to the NLC
phase. In this case Eq. (10) represents well bn, (R'; R) =
n, (R') —n, (R). Introducing Eq. (10) into Eq. (8), simple
calculations give
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where

L,~
= A, xj, L,ji, = A, xjxg, L,~i, ( = A,jxkx( . (12)

g(n, n'; r)dr, (13)

where the integration is performed over the interaction
volume 7; i. By means of Eqs. (11) and (12), f can
be rewritten in terms of the spatial derivatives of n as
follows:

1f = fp + K,~ n, ~ + .—(K;~ i,n, ~ I + KzjklAt jAa (). (14)

In Eq. (14) fp is the uniform part of f and K;j,K;jk,
and K,.~I,~ the elements of the elastic tensors. As follows
from Eq. (13) they are defined by

g(n, n; r)dr

In the mean G.eld approximation the free energy density
is given by

1 d . I 1f = fp(z, P(z)) ——kis —[sin(2$)P'] + kP'—,
2 dz 2

(17)

where fp(z, P(z)) = Pp(z) + Pi(z) cos2 P(z)
+P2(z) cos P(z). In the case of strong anchoring, in
which the surface tilt angle Pp is fixed by the surface
treatment, the total free energy per unit surface of the
NLC is obtained by integrating Eq. (17) over the thick-
ness of the sample. If the NLC occupies the half space
z ) 0, the total free energy per unit surface is given by

OO

f dz = —kis sin(2$o)(g
2

—kP' + fp(z, P(z)) dz.
2

because in the bulk fp has to be independent of the n
orientation. This means that Pi(z) and P2(z) are difFer-
ent from zero only in a surface layer whose thickness is of
the order of the range of the intermolecular forces [19].

In the simple planar and one-dimensional case under
consideration Eq. (14), by taking into account Eq. (15),
can be written as [3]

1
K,~

=—
2

1
L~ d7. , K~k ———

2int
L;~kd~,

Supposing that Pg is not very diff'erent from Po, we
have P(z) = Pp + goz [22]. Consequently, the uniform
term of the free energy density can be written as

1

2
L', I I,d~.

fo(' &(z)) = fo(z &p) + I d l
4oz

)dfo&

) p(z)=@p

which is equivalent to

(19)

The elastic tensors have to be decomposed in terms of
the symmetry elements characterizing the phase under
consideration [17,18]. In the bulk the symmetry elements
of a NLC reduce to n. In this case, fp is a constant
independent of n, K,~ are identically zero, and K,~k and
K,~k~ give rise to the usual elastic constants k] $ k22 k33,
k24, and kg3.

Close to a surface the symmetry elements of the inter-
face NLC —isotropic solid substrate are n and the geomet-
rical normal to the interface k. In this situation [17—20]
fp and the elastic tensors depend on the distance of the
considered point from the solid substrate z and on the
angle P(z) between n and k. As discussed elsewhere [21],
to second order in (n . k), fp may be expanded in the
following way:

f.( &(.)) = f.(. &.) —[P.(.)+2P.( )-"4.]
x sin(2$p)goz (20)

F = Fp + —kis sin(2$p)go +
2

OO

—kP' dz,
2

where

Fo(go) = fp(z, Po)dz,

if Eq. (15) is taken into account.
By introducing Eq. (19) into Eq. (18), after simple cal-

culations one obtains

fo = Po(z) + Pi(z)(n k)' + P2(z)(n . k)'
kis = kis —p(Po), (23)

with the hypothesis that n is equivalent to —n even at the
surface. Expansion (15) for fp follows from the symmetry
of the NLC phase. The functions P, (z), i = 1, 2, 3, de-
pend on the intermolecular interaction energy g(n, n'; r)
and on the interaction energy between the NLC and the
isotropic solid substrate. Pp(z) gives rise to the isotropic
part of the surface tension, whereas Pi and P2 are con-
nected with the anisotropic part of the surface tension.
For the discussion reported above we have

lim Pi(z) = lim P2(z) = 0, and lim Pp g 0, (16)

with

z[p, (z) + 2p2(z) cos po]dz.

Hence p(Pp), connected with the "uniform" part of f,
renormalizes the eKective splay-bend elastic constant.

Supposing that Po
——(Pg —Pp)/6 and that P'(z) g 0

only for 0 & z & b, we obtain from Eq. (21)
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F = I' (P ) + —k' sin(2/0) + k

(25)

By minimizing (25) with respect to Pg —Po, we obtain

I eff

Pg —Po —— ' sin(2$p),
2k (26)

coincident with our fundamental Eq. (2). Equation (26)
is valid when fo is given by Eq. (15). As stressed above,
this follows from the symmetry of the NLC phase; it is
not a consequence of simple mean-Beld operations. To
discuss this point in more detail, we have just to remem-
ber that a NLC is described by a symmetric traceless
tensor of rank 2. This tensor is defined by [6]Q;~.
—S(n, n~ —sb,~), where S is the scalar order parameter.
According to the Landau theory, the uniform free energy
density of the NLC is an analytical function of Q;~. By
expanding fo in power series of Q,z, near the surface, at
the second order in S [21], we obtain Eq. (15).

The result obtained above and summarized in Eq. (23)
tells us simply that the sources of the subsurface defor-
mation are the elastic terms connected to ki3 and the
uniform part of the delocalized anisotropic anchoring en-
ergy. Actually, this result is not surprising. In fact, it
has been shown [17] that g(n, n', r) can be expanded in
the form

g(n, n';r) = —) J, , (r)(n n) (n u) (n' u)',
f1)C) C I

(27)

IV. EXPERIMENT

where u = r/r. According to the result reported in [17],
the elastic constants of spontaneous splay, of splay-bend,
and of the anisotropic contribution of the uniform part
of the free energy density are different from zero only if
the exponents c and c' are not identically zero. Hence the
subsurface deformation depends on the functional depen-
dence of g on n. u and n' u and. not only on the ki3
elastic constant. This conclusion has also been confirmed
by the microscopical calculation reported in [14,15].

coated with oleic acid, Ferrofluid Inc. ), 1 pl/cm, is added
to the lyotropic mixture. The typical size of the mag-
netic grains is 100 A. , their concentration being about
10 2 grains/cm . This concentration is larger than the
minimum ferroOuid concentration required to produce a
collective behavior of the NLC sample in the presence of
small magnetic fields [23,24]. At this small concentration,
we observed that the temperature transitions are not af-
fected by the presence of ferroHuid doping. This result
was already observed in x-ray and optical experiments
with lyotropics [25]. In the KD phase, as the anisotropy
of the diamagnetic susceptibility is negative [26], n ori-
ents perpendicular to H.

The sample is prepared with the lyotropic mixture
placed in a glass microslide (4 mmx10 mm), 400p, m
thick. The filling process to obtain a homeotropic align-
ment is the following: initially the microslide's tempera-
ture is maintained at about 20'C; the lyotropic mixture
is heated to 30'C (ND phase) and is introduced in the
microslide only to wet the inner glass surfaces; after that,
the sample is introduced in the microslide by means of a
strong fIow and the ends are closed with Parafilm. The
sample is left at rest for about 30 min at 30 C and a per-
fect homeotropic alignment is obtained. The microslide
is then placed in a temperature controlled device allow-
ing a magnetic field of 400 G (permanent magnets) to be
applied, with the geometry sketched in Fig. 1.

The angles between 8 and the x axis were 10 and
30 in two ind. ependent experiments. The device is
then placed in an 1NSTEC (HS1-i) hot stage which al-
lows an accuracy in the temperature measurements of
2 x 10 'C. The measurements of the optical bire&in-
gence were made by means of a Leitz microscope with a
Berek tilt compensator. Initially, without H, the cono-
scopic figure observed in the microscope is the classical
uniaxial cross with n parallel to the light propagation di-
rection. After the application of H and when the steady
state has been reached, hyperbolas appear and the op-
tical path difI'erence can be measured as a function of
T.

To minimize the errors in the determination of the op-
tical path difI'erence, a series of five independent mea-
surements were made at each temperature, and a mean
value was calculated.

The studied lyotropic mixture has the following con-
centration (in weight percent):

Decylammonium chloride (DaC1) 41.54%,
NH4C1 4.23%, H20 54 23%.

The phase sequence as a function of T ( determined by
x-ray diffraction and optical observation of the textures)
is

)

I

I

I

I

I

I

I

I

N ~ i I
23 C 44 3 C

where I and ND are lamellar and discotic nematic, re-
spectively.

A small quantity of a water base ferrofluid (Fes04

FIG. 1. Sketch of the experiment: S is the sample of thick-
ness d, H is the magnetic field, I is the direction of the light
propagation, and 0 is the angle between H and the x direc-
tion.
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V. R.ESUITS AND DISCUSSIQN

It can be shown [27] that when the monochromatic
light beam reaches a uniaxial NLC slab of thickness d
with an angle P between n and the light propagation
direction, the optical path difference 4, in the limit of
small birefringence, is given by

0.95

0.9

0.85

0.8

0.75

0.7

~ = -dn.
I
I ——.

I

sin' y,
2 ( n2) (28)

0.65

0.6

where n and n, are the ordinary and extraordinary re-
fractive indices.

The tilt angle in the bulk [Pb(T)] can be calculated
using the measured A(T), n (T), and n (T) by means of
the equation

0.55

0.5 I I 1 I I I I l

36 37 38 39 40 4't 42 43 44 45

T( C)

2A
Pb(T) = arcsin

dvno
(29)

FIG. 3. Temperature behavior of the ratio Kqs = kxs/k,
evaluated by means of the parameters of the best fit of Pig. 2
and using Eq. (7). 0 = 30'.

where v = I —(n /n, ) . We measured Z(T) using the
setup described in the previous section and the values of
n (T) and n, (T) were taken &om the literature [28].

Figure 2 shows the experimental results of Pb calcu-
lated using Eq. (29), as a function of the temperature T.
The error in Pb is of the order of 5%%uo. In this experiment,
8 = 30, as discussed in Sec. IV. As previously observed
in thermotropic NI.C's [3], Pb increases as T approaches
T.

To be sure that the ferrofluid doping does not alter
the measurement of Pb(T), we did the same experiment
with a ferrofluid concentration two times greater. The
values of Pb(T) obtained exhibited the same behavior,
and a variation smaller than 5%%uo in. the absolute values
has been shown. The same Fig. 2 shows also a reasonable
fit of Eq. (6) to the experimental values. In this fit we
use T, = 45 C and P, = 0 = 30'. The parameters

0.'t

0.09

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01 ] [ ] ]

36 37 38 39 40 41

T (C)

]

42 43 44 45

0.3
0.95

0.25—
0.85

C3
C3

0.2—
0.8

0.75

0.7

0.15— 0.65

0.6

Qg I [

36 37 38 39 40 4'[ 42 43 44 45

T(C)
FIG. 2. Experimental results of Pb as a function of temper-

ature for a lyotropic NLC. The full line is the best fit obtained
by means of Eq. (0).

0.55

o.5 I

36 37 38 39 40 41

T(C)
43 44 45

FIG. 4. (a) Pb as a function of T 0= 10'. (b) Kqs as. a
function of T. 0 = 10



53 DETERMINATION OF THE EFFECTIVE SPLAY-BEND. . . 2459

of the best fit were ci/kz ———6.5x 10 and c2/k2
1.1. Using these parameters Kis ——kis/k is calculated
through Eq. (7). The value of b was obtained from the
literature [28], evaluating S at T = 296 K, and we found
b = 0.858

Figure 3 shows the values of Kq3 as a function of the
temperature T. As observed in thermotropic NLC's [3],
ci/kz ( 0, cz/kz 1, and Itis 1 and positive.

The same experiment was done with 0 = 10 . The
corresponding results for Pg and Kis versus T are shown
in Fig. 4. The results for 0 = 10 and 0 = 30 are very
similar, indicating that the experimental values of K]3
are independent of 0 in the range from 10' to 30'.

For a nearly homeotropic NLC sample, theoretical
models [29,30] based on the induced dipole —induced
dipole interaction predict K&3 ———1.2. The lyotropic
NLC is constituted by micelles, i.e. , anisotropic aggre-
gates of amphiphilic molecules. X-ray scattering experi-
ments [31]performed with the lyotropic mixture of potas-
sium laurate, decanol, and water showed that the dis-
tance between the micellar surfaces in the direction per-
pendicular to the amphiphilic bilayers is about 23 A, the
repeating distance is 48.8 A. , and the bilayer is about 26

thick. Due to the presence of ions and of a counterion
layer at the micellar surfaces, water molecules may be
attracted to this nonrigid structure. In this picture, we
expect that the steric forces are very important to stabi-
lize the NLC phase. This fact could be one of the reasons
behind the difference between the experimental results of
K&3 and the theoretical prediction, based only on the dis-
persion forces. On the other hand, as lyotropic systems
are very complex, it is not possible to conclude from this
experiment that dispersion interactions are insignificant,
compared to steric interactions. Experiments of the kind
described above may give information only about the ef-
fective splay-bend elastic constant appearing in Eq. (26).
Our technique does not allow us to separate p(Po) from
k] 3 ~ This is evident from the fact that by means of our
optical method only Ps can be detected, whereas Po is
known from the anchoring treatment. However, accord-
ing to our point of view, it is not necessary to separate
kis in p(Po) and kis for the following reasons. As has

been shown in Sec. III, the uniform parts of f and of the
A:~3 elastic term are responsible for the subsurface distor-
tion. Such a distortion is localized over a surface layer
whose thickness is of the order of po, and the range of the
intermolecular forces responsible for the NLC phase. It
follows that in this surface layer an elastic description is
no longer valid. Consequently, from a phenomenological
point of view, it is enough to characterize the distorting
efFect connected with the presence of the surface with a
new parameter, which is k&3 . This is just the parame-
ter determined in our experiment. We underline that to
separate p from k~3 is meaningless, because this implies
that an elastic description is valid also in the boundary
layer. But we know that this is not the case, because in
that region a finite deformation over a mesoscopic length
occurs.

VI. CON CLU SION

We have extended the elastic model proposed to inter-
pret the temperature surface transitions in NLC's. From
the theoretical point of view, it has been shown that the
uniform part of the anisotropic contribution to the free
energy density introduces a subsurface "discontinuity. "
This can be interpreted as a renormalization of the effec-
tive splay-bend elastic constant. From the experimental
point of view, the temperature dependence of the efFec-
tive splay-bend elastic constant for a lyotropic NI C has
been determined by means of optical methods. The order
of magnitude and the sign of this ratio for the lyotropic
NLC used in our investigation are in agreement with the
ones found in some thermotropic NLC's.
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