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Anchoring of nematic liquid crystals at a solid substrate
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A nematic liquid crystal in contact with a solid substrate is studied by means of the Landau —de
Gennes formalism. The free-energy functional is expanded around the bulk nematic order parameter up
to the second-order terms. This approximation is used to obtain an explicit condition for the anchoring
direction in terms of the surface and bulk coupling constants, in a serru-infinite system. Then a finite sys-
tem is studied and the equilibrium free energy is found as a function of the angular deviation from the
anchoring direction and the sample thickness. A geometrical measure of the anchoring strength, resem-
bling the de Gennes extrapolation length, is obtained from the asymptotic behavior of the free energy for
large sample thicknesses.

PACS number(s): 61.30.Gd, 68.35.Md

I. INTRODUCTION

Nematic liquid crystals are uniaxial media [1],and the
orientation of the symmetry axis (nematic director) is ar-
bitrary in the absence of external fields or limiting sur-
faces. Various limiting surfaces such as: the free nematic
surface, the nematic-isotropic interface, or the solid sub-
strate surface, fix the orientation of the nematic director.
This phenomenon is called the anchoring of the nematic
liquid crystal at the interface [2—7]. The anchoring of
liquid crystals at solid substrates attracts particularly
much attention. First, it is interesting as a fundamental
problem in the statistical mechanics of nonuniform, or-
dered fluids. Second, it is important for the technology of
liquid-crystal display devices. Three regions can be dis-
tinguished in the nematic liquid crystal in contact with
the substrate [8]. Close to the surface, liquid-crystal mol-
ecules interact directly with the substrate, and this direct
interaction determines the microscopic anchoring condi-
tion. Next, there is an interfacial region in which the or-
der parameters and the nematic director change. Finally,
far from the substrate, there is the bulk phase with the
director orientation fixed by the surface. This bulk orien-
tation is called the anchoring direction or the easy axis; it
corresponds to the minimum of the interfacial tension y
between the nematic phase and the substrate. The struc-
ture of the interfacial region determines the macroscopic
anchoring condition.

The energetic manifestation of the anchoring is re-
ferred to as the anchoring energy or the anchoring
strength. In anchoring energy measurements, the direc-
tor field in the nematic phase has to be distorted. Various
experimental techniques are discussed in detail by
Yokoyama [3], who also gives a thermodynamic
definition of y as a function of the director orientation.
In order to define y, a hypothetical dividing surface is in-
troduced. Above the dividing surface the nematic phase
is assumed to have a bulklike behavior, and distortions of
the director field are described by the Frank elastic
theory [9]. Then y is defined as a function of the director
orientation at the dividing surface. Yokoyama contrasts

this thermodynamic definition with phenomenological
formalisms, e.g. , the Rapini-Papoular formalism [10], in
which one simply postulates a particular form of y. He
also emphasizes a fundamental conceptual diff'erence be-
tween the definitions of the anchoring direction and the
anchoring energy. The anchoring direction has an unam-
biguous physical meaning, independent of a model of the
interface. It refers to the director in the bulk nematic
phase in the absence of deformations. The anchoring en-

ergy, on the other hand, is an interfacial parameter acces-
sible only through an appropriate theoretical framework.
It is defined as the second derivative of y with respect to
the director orientation calculated at the anchoring direc-
tion [2]. Therefore, it depends on the choice of the divid-
ing surface. It is worth mentioning that some phenome-
nological formalisms assume that y depends not only on
the director orientation at the interface but also on its
gradients. The surface elastic terms are usually referred
to as the K24 and K,3 terms, where K24 and K» are the
surface elastic constants [11—13]. Consequences of the
presence of the surface elastic terms in y have been stud-
ied by many authors [4,14—21]. As we do not discuss
them in this paper, we only note that the K» term leads
to some mathematical problems, the solution of which
has been proposed recently by Pergamenshchik [17].

A long time ago de Gennes [1] introduced a geometri-
cal measure of the anchoring strength. He considered
only the simplest case of the twist deformation. In that
case, the director orientation is specified by the azimuthal
angle y, measured with respect to the easy axis parallel to
the substrate. It results from the solution of the Euler-
Lagrange equation that far from the substrate y is a
linear function of the distance z, y(z) =const X(z+b),
where b is called the extrapolation length. The anchoring
strength can be characterized by the relation between b
and the molecular dimensions. The anchoring is strong if
they are comparable, and it is weak if b is Inuch larger
than the molecular diInensions. In the case of short-
range forces, the anchoring energy is equal to Kalb,
where K2 denotes the twist elastic constant. Dubois-
Violette and de Csennes [22] also studied the case of
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long-range van der Waals forces, and found that b can be
positive or negative. Yokoyama [3) has generalized the
definition of the extrapolation length to other types of de-
formation.

In this paper, we use the Landau —de Gennes formal-
ism to describe the nematic-substrate interface. It is as-
sumed that the only relevant variable is the tensor nemat-
ic order parameter and density changes are neglected.
The interaction of liquid-crystal molecules with the sub-
strate and the modification of the liquid-liquid interac-
tions by the substrate are taken into account in a similar
way as in the case of simpler systems described by a sca-
lar order parameter, i.e., the surface contribution to the
free energy is approximated by a second-order polynomi-
al of the surface order parameter. For instance, this form
is suitable for studying wetting phenomena [23]. In the
case of nematic liquid crystals, the only complication is
due to the tensor nature of the order parameter [24,25].

We consider a nematic liquid crystal in contact with a
solid substrate, sufficiently far from any bulk phase tran-
sitions. Although the Landau —de Gennes formalism has
been applied by many authors in specific situations, a
general method to predict the anchoring direction has
not been formulated. Either the minimization of the sur-
face part of the free-energy functional has been used to
find the anchoring direction, or specific cases have been
studied by means of numerical analysis. Although the
first route may lead to reasonable results, in general,
it oversimplifies the problem as it does not take into ac-
count any bulk properties of the nematic phase. In this
paper, we go beyond this simple approximation and pro-
pose another approximate scheme to obtain an explicit
condition for the anchoring direction. Our method is
based upon thy assumption that the modification of the
nematic structure by the substrate, compared to the bulk,
is relatively weak. Therefore, we can expand the
Landau —de Gennes free energy around the bulk order
parameter up to the second-order terms. This approxi-
mation will fail, however, when a disordered isotropic
structure is preferred close to the substrate. Then, of
course, it is necessary to consider the Landau —de Gennes
free energy in the form capable of describing the
nematic-isotropic interface.

Finally, we note that a more detailed characterization
of the interfacial region would require a microscopic
description of the system. The one-particle distribution
function gives information both about the local density of
the nematic phase and the local distribution of molecular
orientations. For instance, microscopic theories have
been used to study anchoring at the free nematic surface
[26—28] and at surfaces of pure nematic liquid crystals
and their mixtures [29]. In contrast with microscopic
theories, the Landau —de Gennes formalism ignores den-
sity variations. It also neglects higher moments of the
orientational distribution, which can be a good approxi-
mation only for weakly, orientationally ordered systems.
Thus calculations based upon the Landau —de Gennes
formalism may exhibit some variance from actual experi-
ments. Nevertheless, we expect to gain some insight into
the structure of the interfacial region and the mechanism
of the anchoring transitions.

Our paper is arranged as follows. In Sec. II we study a
semi-infinite sample and derive an explicit condition for
the anchoring direction in terms of the surface coupling
constants and the bulk elastic constants. We also derive
an expression for the equilibrium free energy. Then, in
Sec. III, we consider a finite nematic sample with an
idealized, infinitely strong anchoring at the second limit-
ing surface. The equilibrium free energy of the system is
found as a function of the angular deviation from the an-
choring direction and the distance between the limiting
surfaces. An explicit expression for a geometrical mea-
sure of the anchoring strength, similar to the extrapola-
tion length, is also found. Finally, Sec. IV is devoted to a
discussion. Some mathematical details are presented in
the Appendix.

II. ANCHORING DIRECTION

In this section, we consider a semi-infinite sample of a
nematic liquid crystal in contact with a fIat, structureless
substrate (wall). The distance from the wall is measured
along the z axis. Close to the wall, the nematic order may
dieter from the bulk one, and the local biaxiality may be
important. Therefore, the description of the interfacial
region in terms of the nematic director alone is, in gen-
eral, insufIicient. We apply the Landau —de Gennes for-
malism [l], in which the nematic phase is described in
terms of the nematic order parameter Q. Q is a traceless,
symmetric tensor, and the director n is the eigenvector
corresponding to the largest eigenvalue of Q, called the
scalar order parameter Q. It is assumed that the free-
energy density f is a local function of Q and its gradients.
If the fluctuations are neglected Q depends only on z and
f =fI (Q)+fG(Q), where Q=dQldz. The following
forms of fL and fG are usually assumed:

fL, (Q) = A TrQ —8 TrQ +C(TrQ2)2,

fa(Q)= ~L,TrQ +—,'Lzk. Q k, (2)

where Qb =Q(z =+ ~ ) =Qb(nbnb —
—,'I), n& is the bulk

director, and I denotes the unit tensor. The surface con-
tribution to the total free energy, f„ is assumed to de-
pend only on the value of Q at the wall. In this paper, we
consider only the isotropic substrates, for which f, can
be expanded in Q up to the second-order terms, as fol-
lows:

f, (Q)=c,k Q k+c2TrQ +c3(k Q k) +c4k.Q .k,
(4)

where k is normal to the wall. The parameter A is as-
sumed to depend linearly on the temperature, whereas
B,C and the elastic constants I.„I.2 are considered tern-
perature independent.

The free-energy functional has the following form
[24,25]:
O'= J dz[fl {Q(z)) fl (Qb)+fG(Q(z))]+—f,{Q(0)),

0

(3)
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where c„.. . , c4 are constants. The minimization of V
with respect to Q leads to the set of Euler-Lagrange equa-
tions with the boundary conditions at z =0 and z = + ~,
and the latter is simply Q(+ ~ ) =0. The orientation of
nb is a combined effect of the elastic properties of the
nematic liquid crystal and the interaction of liquid-crystal
molecules with the substrate. The aim of the theory is to
determine nb as a function of the temperature and the
phenomenological parameters appearing in V. This is
not an easy task if one considers fi as a fourth-order po-
lynomial of Q, which leads to nonlinear Euler-Lagrange
equations. Then only numerical analysis of the problem
is possible. However, if Q(0) does not difFer significantly
from Qb the expansion of fI (Q) around Qb up to the
second order in (Q —

Qb ) should be a reasonable approxi-
mation. This approximation leads to a set of linear
second-order differential equations with linear boundary
conditions, which can be solved analytically. Then an ex-
plicit condition for the anchoring direction is obtained.
Below we present the general solution of the problem and
derive some useful relations, which can be directly ap-
plied to study anchoring transitions.

We exclude the twist deformation from our considera-
tions, and assume that the tensor Q(z) has only three in-
dependent components and the only nonvanishing o6'-

3q +p
—

—,'q —p 0

0 2

f~(q, p, v)= A[ —,'q-+2(p +v )]
—8(q+3p)[ —,'q(q —3p)+u ]

+C[—,'q +2(p +u )]

Because the z axis is along nb, the boundary conditions
at z=+&x are q(+~)=Qb, p(+~)=0, and
u(+ oo )=0. In the following we shall assume that q, p,
and u do not deviate too much from their bulk values.
Therefore, we can expand fI around the minimum at
q =Qb and p =u =0, and keep only the second-order
terms, i.e.,

diagonal components are Q, =Q, . For our present pur-
pose, it is convenient to work in the coordinate frame
x'y'z' obtained from xyz by the rotation about the y axis
by the angle p, where p is the tilt angle of nb with respect
to k. In the x'y'z' frame, Q is given by

f~(q&p&u) =f~(Qb, o, o)+—', (A —BQb+4CQb)(q —Qb) +2(2 +BQb+ ', CQb)p—
=fr. (Qb, 0,0)+-,'~ii(q —Qb)'+ —,'azzp' (7)

where Qb satisfies the equation 2A —BQb+ —,
'

CQb =0. Note that in Eq. (7) u does not appear; however, it would appear
in the third- and fourth-order terms. Then we express fG in terms of q, p, and u, taking into account thatk=( —sing, o, cosg) in the x'y'z' frame:

fG(q, p, u) , (L»q +Lzzp +—L—33u +2L,zqp+2L, 3qu+2Lz3pu)

where the symmetric matrix L =(L; )has the follo. wing components:

L„=—,'L, + ,'Lz+ —,'Lz(cos Q),—

Lzz=2L, +Lz(sin g) &

L, 33 =2L, ) +L2

L,z
= —

—,'Lz(sin it ),
L,3

= —
—,'Lz(sing)(cosg),

Lz3 =- —Lz(sing)(cosg) .

It is also convenient to rewrite f, in terms of Qb and the difference hQ=Q —
Qb as follows:

f.(Q)=fs(Qb) [+l c+2Qc3b( os ~ Y')
3 4Qb](

+2czQb(nb. hQ nb)+2c4Qb(cosset)(nb &Q k)+czTr(bQ) +c3(k dQ.k) +c4k. (AQ) .k, (10)

where

f~(Qb) 3ciQb+ 9Qb(6cz+c3+c4)

+ [c,Qb
—

—,
' Qb(2c3 —c4) ](cos g)

+c~Qb(cos f) .

For brevity we introduce matrix notation and define the
(3 &C 1 ) matrix P', with its transposition (P') T

=(q —
Qb, p, u). Now f can be written in a compact form

f (0', 0') =f, (Q„0,0)+ ,'(P') aP'+ z(P') LP, -
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where a is a diagonal matrix defined in Eq. (7) (a33 0).
Similarly, we express f, as

f, (p') =f, (Qb )
—(h') p' —

—,'(p') g'p', (13)

where h' and g' are (3X1) and (3X3) matrices, respec-
tively. From Eq. (10) we find that

boundary condition P(+ Oo ) =0:

P, (0)exp( —z/g, )

P(z) = $2(0)exp( —z/g2) (19)

0 0

S =S)S2S3=
1

0

Li3

0 0
1 0

1

1

0

cosa sinn 0
X —sinn cosn 0

0 0 1

where the last transformation is orthogonal. The free-
energy density in the field variables, defined by the rela-
tion P'=Sf, has the following simple form:

f (4 0)=f1.(Q»0 0)+-,'(01+6')+
where

(17)

0 0

A=S LS= 0 g2 0

0 0 I 33

For f„we obtain

f,(0)=f,(Qb) —h'0 ,'0 g0——
where h =S h' and g =S g'S. The Euler-Lagrange
equations, obtained from the minimization of V with
respect to P, have the following solution satisfying the

h', =
—,'c, ——,'Qb(6c2+c3+c4)
—[c,——', Qb(2c3 —c4)]cos g —2c, Qb(cos g),

h 2
= —[c,+—', Qb(2c3 —c4) ](sin g)+2c3Qb(sin g), (14)

A3 [c,——,'Qb(2c3 —c4)+2c3Qb(cos 1t )](sin2$)

gii — 9(6c2+c3+c4)+ 3(2c3 c4)(cos Q)

—2c3(cos f),
g22= —2[2c2+c4(sin f)+c3(sin f)]
g33 —2[2c2+c4+c3(sin 2g)]

g', 2= ——', (2c3 —C4)(sin g)+2C3(sin P),

g13 [ —
—,'(2c3 —c4)+2c3(cos P)](sin2$)

g23 = [c4+2c3(sin g) ](sin2$),

where g' is a symmetric matrix.
The next step involves simultaneous diagonalization of

the quadratic forms in Eq. (12). This can be achieved by
the following three transformations:

Because of the relation $3(z) =$3(z) + (L13$1(z)
+L 23ljfl2(z) ]/L 33 and the boundary condition
p'(+ ~ ) =0, it must be $3(0)=p3(+ ~ ) =0. This must
be compatible with the boundary condition at z =0:
AP(0) = —h —gg(0), which can be expressed as

(g —g)P(0)+h =0, (20)

g I2 g22 k2 ~2 (21)

Since g, g, and h depend on g, Eq. (21) must be satisfied
by the equilibrium tilt angle. It will be shown below that
Eq. (21) always has at least two solutions: /=0 and
g= rr/2. It is possible, however, that there are also other
solutions if the parameters are suitably chosen. In such a
case, the surface free energies corresponding to difFerent
solutions have to be compared.

The calculation of the equilibrium surface free energy
is very simple and gives

&,q= —
—,'[p(0)] &p(0)+f, (p(0))=f, (Qb) —

—,'& p(0),

where $(0) satisfies Eq. (20). Finally, we express V, in
terms of g, g', and h as follows:

&.q =f, (Qb )

+ 1(g22 42) 2 1~2g12+~2(gll kl )

2[(g 1 1
—

kl )(g 22
—k2) —g 12]

(23)

To obtain the stability conditions, we assume that the
Euler-Lagrange equations together with the boundary
condition at z =+ ~ are satisfied, and consider V as a
function of P(0), which gives

&= —,
' [kidi(o)+RA'(o) ]+f,(4(o)) (24)

The minimization of V with respect to P(0) gives Eq. (20)
and 8 V/B[P(0)] =g' —g. Thus, g

—g must be a positive
definite matrix for a stable system. Then the denomina-
tor in Eq. (23) is also positive.

It is convenient to express the condition for the equilib-
rium P in terms of the original prime variables. To do
this, we first define the matrix g' as S g'S =g. The expli-
cit expression for g' in terms of the matrices a and L is
presented in the Appendix. The condition $3(0)=0
transforms into

after the substitution of P(0), calculated from Eq. (19).
is a diagonal (3 X 3) matrix with the components g» =g„

and f33 0. The solution of Eq. (20), together
with the condition 1I13(0)=0, leads to the following rela-
tion between g, g', and h:

2 h,
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L 13ljkl(0) +L23$2(0) +L 33 $3(D) —0

where P'(0) satisfies

(g' —g')P'(0)+h'=0 .

(2&)

(26)

whereas the remaining components of L, g', and h', and
also the components of g' (see the Appendix) are even
functions of g or g m—/2. ; hence R ( —g) = —R (P) and
R (n/2. i—tl) = —R (g —

m /2).

Finally, from Eqs. (25) and (26), we obtain the following
condition for the equilibrium g:

R (g)=

g 11 kl I g 12 412

glz —
klz &22

—42

ga3

=0

P,q= f, (Qb )
—

—,'(&') (g' —g') (28)

where (g' —g') is also positive definite. Using Eqs. (27)
and (28) one can determine the anchoring direction and
the equilibrium surface free energy in a semi-infinite
nematic sample. One verifies that Eq. (27) is satisfied by
/=0 and f=~/2. Indeed, components (13) and (23) of L
and g', and also h3, are odd functions of g or p —~/2,

L23 L33 0

Because (h') P'(0)=h P(0), we find from Eqs. (22) and
(26) that

P', (1)=q ( I )
—

Qb = —
—,
'

Qb sin ( 8, —P),
Pz( l) =p (1)= —,

'
Qb sin (0& —g),

$3(l) = U (l) =
—,'Qbsin2(0& —p) .

(29)

Again we express V in terms of P, and solve the Euler-
Lagrange equations, which gives

III. GEOMETRICAL MEASURE
OF THE A.NCHORING STRENGTH

In this section, we consider a nematic sample of thick-
ness l in contact with the substrate at z =0. At z =I the
orientation of the nematic director n(I) is defined by the
tilt angle 0I, measured with respect to k. We want to cal-
culate the free energy associated with the deviation of
n(l) from the anchoring direction n&. We assume that
I ))g„gz, and that Q(l)=Qb[n(I)n(l) —

—,'I]. Working as
before in the x'y'z' frame, we have

P;(z)= [P,.(0)sinh[(l —z)/g, ]+/;(l)sinh(z/g;)I/sinh(l/g;) for i =1,2,
03«) =43(0)+ [43(l)—43(0) )&/~ .

The equilibrium surface free energy is given by

V,q= f, (P(0))+—,'[P(I)] &P(&)——,'[$(0)] &P(0) .

(30)

If we neglect the exponential corrections then P; (0)= —P, (0) /g;, P;(1)=P; (l )/g;, for i = 1 and 2, and

$3(0)=$3(l) =[$3(l)—$3(0)]/I. This approximation, justified as long as / is large compared to the correlation lengths,
leads to the following equation for P(0):

0

[g —=(l)]P(0)+h = 0
—L33$3(I)/l

(32)

where =(I) is diagonal and:-»(l) =g„:-zz(l)=$2, and:-33(l) =L33//. It follows from Eqs. (31) and (32) that

&.q=f. «b)+ 'kl[4 1(~)]'+4—2[42(~)]'—h '4(0) —43(1) h3+ Xg 34;(0)

The solution of Eq. (32) gives corrections —1/l to the solution P (0) for a semi-infinite system:

$1(0)=[a(I)] ' D(~)gl"(0)—L33I '
$3(&)

8'22 z &z3 hz gzz
—4

gii —ki &13

y,(0)=[D(~)]—' D(~)yz" (0)+L33I '
p3(&) +

gZ3

gll kl h 1

si2 h2
(34)

P (0)= —L P (l)[lD (l) ]
gzZ

—4
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where D (l)=det[g —=(l)]. Substitution of Eqs. (34) into
Eq. (33) gives

where h i =(h2, —h1, 0). Substituting (g —g)
=S (g' —g')S into Eq. (39), we find from Eqs. (28) and
(37) that

P,q= V,q+ —g, [(5,(l)] +$2[$2(l)]

D ( oo )L33
[43(1)]' (35)

L33(hi ) (g' —g')hi
d«(k' —g')(h') (g —g )-'h

where h&=Shz/detS. Then we express h~ in terms of
h'=(S ) 'h as follows:

where V, denotes the equilibrium surface free energy of
a semi-infinite system, and is given by Eq. (28).

We assume that (0& —P) is small, and consider only the
second-order contribution to V, which is consistent with
our approximation for fL,' note that p, (l) and $2(l) are
-(0&—g) . Then V,q~9'," when l ~ ~, for any 0&, and
we expect that this result will hold when higher-order
terms are included in fr . Indeed, rotations of the direc-
tor infinitely far from the wall should not affect the free
energy of the system, because the elastic forces vanish in
the limit l —+ ~. Neglecting the fourth-order terms, we
rewrite Eq. (35) in the following simple form:

P,q
=V,"q+ —,'K l+b (36)

b= L33

det(g —g)

g11 kl g12

It is positive, because of the stability conditions derived
in Sec. II.

Formally, the same expression as Eq. (36) is obtained
when the free energy is considered as a functional of the
director field alone. Neglecting the twist deformation
and assuming E, =K3 =X, we find [1]

V=const+ —,
' f K dz+ —,'w(00 —g), (38)

where Oo denotes the director orientation at the wall, and
the coefBcient w is the anchoring energy. The boundary
condition 0(l)=01 corresponds to the strong anchoring
limit. 9' is minimal for 0(z)=00+(0&—0O)z/l, where 0O

is determined from the boundary condition at z =0:
Kd0/dz =w(0O —g). The extrapolation length satisfies
0(z = —b) =P and is given by b =IC/w, hence
%=const+ ,'IC(0& —g) /(l+—b). The comparison of the
above result with Eq. (36) shows that b plays a similar
role to the extrapolation length, i.e., it can also be treated
as a geometrical measure of the anchoring strength. We
return to this point in Sec. IV.

Again, it is convenient to express b in terms of the
prime variables, as it was done in Sec. II in the case of
V,q. First, using Eq. (23), we express the determinant ap-
pearing in Eq. (37) as follows:

g12 hi (g —g')hi

2[&e"q—f, (Q )]1
(39)

where IC =QbL33 is the splay/bend Frank elastic con-
stant. The parameter b has the dimension of length and
is given by

h2

h~= —h', +
0

0
h' +3

—h'
2

J

IV. DISCUSSION

We have proposed an approximate scheme, which is
based upon the Landau —de Gennes formalism, to derive
an explicit condition for the anchoring direction. This
condition involves not only the surface coupling con-
stants, as in the case of the bare surface free-energy
minimization, but also the bulk elastic constants and the
temperature. We think that our method could be useful
in studies of the temperature-driven anchoring transi-
tions. It has the advantage that its self-consistency can
always be checked a posteriori. To estimate how strongly
Q(z) deviates from Qb, one simply determines Q(0) from
Eq. (26). If the difFerence Q(0) —

Qb is large compared to
Qb, one can suspect a disordering e8'ect of the substrate
on liquid-crystal molecules. In such a case, the expansion
of the free energy around Qb should not be truncated
after the second-order terms. This means that some in-
teresting phenomena involving the nematic-isotropic in-
terface, such as wetting [29—32], are beyond the scope of
our method. They can be studied, for instance, by solv-
ing the full Landau —de Gennes model or by using the in-
terface Hamiltonian approach [33].

We note that our expression for the equilibrium free
energy [see Eq. (36)] can be treated as a generalization of
the result obtained in a simplified manner by Teixeira,
Sluckin, and Sullivan [30] in the case of the homeotropic
anchoring. It follows from Eq. (36) that information
about the anchoring strength can be extracted from the
asymptotic analysis of the free energy for l ~~. This
approach has the advantage that to define the geometri-
cal measure of the anchoring strength b it is not neces-
sary to refer to any dividing surface. In principle, the
definition of the anchoring strength, which is based upon
the asymptotic form of the free energy for large l and for
infinitesimal deviations from the anchoring direction,
could be applied without a reference to any particular
model of the interface. However, at present we are not
certain whether the asymptotic form given by Eq. (36) is
generic. Therefore, it would be interesting to study this
problem using both the Landau —de rennes formalism,
without any additional approximations, and a microscop-
ic description of the liquid crystal.
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dimensional subspace, Si has the same eff'ect on g as the
identity transformation. Using the definitions of S and A
[see Eqs. (16) and (17)],we find that

APPENDIX

We want to find g'=(S ') (S '=S2 'S3(S3S2 ',
where g' is diagonal and $33=0. Since g acts in a two-

M 0
T 2S3 () () S3

where the (2 X 2) matrix M is given by

(Al)

11 L 13 ~L33)~+11 (L12 L13L23 ~L33 )~+a lln22

(L12 L,3L—23 lL33 ) I+ci i, a22 (L22 L23 /—L33 )/a222 (A2)

To find S3$S3, we calculate the square root of M, which is a symmetric and positive definite matrix, and find that

M11++detM M12
VM =(TrM+2&detM )

M12 M22+ &detM

where detM =(detL) l(a iia22L33 ) and detL = ', L 1(2L1 +L—2)(3L1+2L2). Finally,

0
g'=S2' 0 0 S2',

(A3)

(A4)

which gives

L)32 +
L33

1/2
a» detL

(A5)

L 2
1 L 23

522 ~ 22

1 L)3L23
12 ~ 12

where

1/2
a22detL

a ]$L33
(A6)

(A7)

L 11 L13 33 22
—

23
2 2

+ +2
a 22

1/2
detL

a
& & a22L33

(A8)

and the remaining components of g' are equal to zero.

[1]P. G. de Gennes and J. Prost, The Physics of Liquid Crys
tais (Clarendon, Oxford, 1993).

[2] B.Jerome, Rep. Prog. Phys. 54, 391 (1991).
[3] H. Yokoyama, Mol. Cryst. Liq. Cryst. 165, 265 (1988).
[4] P. I. C. Teixeira, Ph. D. thesis, University of Southampton,

1993 (unpublished) ~

[5] W. J. A. Goossens, Mol. Cryst. Liq. Cryst. 124, 305 (1985).
[6] L. M. Blinov, A. Y. Kabayenkov, and A. A. Sonin, Liq.

Cryst. 5, 645 (1989).
[7] S. Faetti, Mol. Cryst. Liq. Cryst. 179, 217 (1990).
[8] B.Jerome, Mol. Cryst. Liq. Cryst. 251, 219 (1994).
[9] F. C. Frank, Discuss. Faraday Soc. 25, 19 (1958).

[10]A. Rapini and M. Papoular, J. Phys. (Paris) Colloq. 30,
C4-54 (1969).

[11]J. Nehring and A. Saupe, J. Chem. Phys. 56, 5527 (1972).

[12] G. Barbero, Mol. Cryst. Liq. Cryst. 195, 199 (1991).
[13]P. I. C. Teixeira, V. M. Pergamenshchik, and T. J. Sluc-

kin, Mol. Phys. 80, 1339 (1993).
[14]G. Barbero and C. Oldano, Mol. Cryst. Liq. Cryst. 168, 1

(1989).
[15]G. Barbero, A. Sparavigna, and A. Strigazzi, Nuovo

Cimento 12, 1259 (1990).
[16]H. P. Hinov, Mol. Cryst. Liq. Cryst. 209, 339 (1991).
[17]V. M. Pergamenshchik, Phys. Rev. E 48, 1254 (1993).
[18]V. M. Pergamenshchik, P. I.C. Teixeira, and T. J. Sluckin,

Phys. Rev. E 48, 1265 (1993).
[19]G. Barbero and G. Durand, Phys. Rev. E 48, 1942 (1993).
[20] A. Sparavigna, O. D. Lavrentovich, and A. Strigazzi,

Phys. Rev. E 49, 1344 (1994).
[21]R. D. Polak, G. P. Crawford, B.C. Kostival, J. W. Doane,



53 ANCHORING OF NEMATIC LIQUID CRYSTALS AT A SOLID. . . 2443

and S. Zumer, Phys. Rev. E 49, R978 (1994).
[22] E. Dubois-Violette and P. G. de Gennes, J. Colloid Inter.

Sci. 57, 403 (1976).
[23] S. Dietrich, in Phase Transitions and Critical Phenomena,

edited by C. Domb and J. L. Lebowitz (Academic, Lon-
don, 1988), Vol. 12.

[24] T. J. Sluckin and A. Poniewierski, in Fluid Interfacial Phe
nomena, edited by C.A. Croxton (Wiley, Chichester,
1986).

[25] A. K. Sen and D. E. Sullivan, Phys. Rev. A 35, 1391
(1987).

[26] M. M. Telo da Gama, Mol. Phys. 52, 585 (1984).
[27] J. H.Thurtell, M. M. Telo da Gama, and K. E. Gubbins,

Mol. Phys. 54, 321 (1985).
[28] F. N. Braun, T. J. Sluckin, E. Velasco, and L. Mederos,

Phys. Rev. E 53, 706 (1996).
[29] P. I. C. Teixeira and T. J. Sluckin, J. Chem. Phys. 97, 1498

(1992);97, 1510 (1992).
[30] P. I. C. Teixeira, T. J. Sluckin, and D. E. Sullivan, Liq.

Cryst. 14, 1243 (1993).
[31]T. J. Sluckin and A. Poniewierski, Mol. Cryst. Liq. Cryst.

179, 349 (1990).
[32] F. N. Braun, T. J. Sluckin, and E. Velasco J. Phys. C (UK)

(to be published).
[33] D. E. Sullivan and R. Lipowsky, Can. J. Chem. 66, 553

(1988).


