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Finite-size effects in molecular dynamics simulations: Static structure factor and compressibility.
I. Theoretical method
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A method is presented for determining the static structure factor S(Q) of a uniform bulk fluid, for all
wave-vector magnitudes Q, from computer simulation data for a finite (iV-particle) system Th. e method
is based on the usual Fourier transform relation between S(Q) and the radial distribution function g (r)
and on the theory of explicit finite-size efIects, in particular a Taylor-series expansion, in powers of 1/X,
for g&(r), the X-particle counterpart of g (r). A time-dependent generalization of the method to the in-
termediate scattering function I(Q, t) is also presented. Implicit finite-size eff'ects are also considered,
but are found to be negligible for systems to which we have applied the method.

PACS number(s): 61.20.Gy, 61.20.Ja, 02.70.Ns, 05.70.Ce

I. INTRODUCTION

Finite-size effects arise inevitably in any computer
simulation and must be carefully accounted for before
simulation data may be directly compared with experi-
ment or theory. In addition to the usual random statisti-
cal errors associated with averaging over limited numbers
of particles, systematic errors may also occur due to the
finite size of the model system. In this paper we propose
a method of correcting for size effects in the calculation
of the static structure factor of a dense Auid by computer
simulation. In the following paper [1] (paper II) we
proceed to test and demonstrate the utility of the method
by applying it to molecular dynamics (MD) simulation
data for a model krypton Quid.

Two general types of size effect have been identified.
One is the well-known explicit (or ensemble) size effect
[2,3] that results from fixing the number of particles and
is commonly encountered in canonical and microcanoni-
cal ensemble simulations. The other, and more subtle, is
the implicit (or anomalous) size effect [3—5], whose origin
may be traced to the (usually periodic) boundary condi-
tions. Both types of size effect can directly inAuence the
microscopic structure of the system, as characterized by
the pair- and higher-order correlation functions, and con-
sequently any derived thermodynamic or structural prop-
erties.

Of especially fundamental interest for a uniform, iso-
tropic system is the radial distribution function g(r),
defined for a bulk fIuid of density p such that the quantity
(4rrr dr)pg(r) is equal to the number of particles in a
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spherical shell of thickness dr at radial distance r from a
central particle [6,7]. Of more practical concern, since
they are experimentally measurable (e.g. , by neutron
diffraction), are (i) the static structure factor S (Q), which
is directly related to g(r) by Fourier transformation, ac-
cording to

S(Q)= I+4srp I dr r [g(r) —1], (la)
0 I"

and (ii) the isothermal compressibility AT, which from
thermodynamic fiuctuation theory is related to the Q=O
limit of S(Q) according to

=S(0)=1+4rrp I dr r [g (r) —1],
KT 0

(lb)

where ~T denotes the ideal-gas limit of ~T.
The extraction of S(Q) from a computer simulation is

a longstanding problem. In principle, given g(r) from a
simulation, S(Q) can be obtained from Eq. (1). In prac-
tice, however, for a cubic simulation cell of length L, g (r)
can be determined only over the limited range r &L/2.
Furthermore, the finite-size effects mentioned above pro-
duce errors in g (r) that are especially significant at long
range in compressible systems. For Q sufficiently large,
the integrand in Eq. (la) damps to zero rapidly enough
with increasing r as to render the limited range and er-
rors in g (r) negligible. As Q tends to zero, however, any
inaccuracies in g (r) become increasingly relevant and, for
Q sufficiently small, may produce significant error in

S(Q). Thus the low-Q region can be particularly trouble-
some.

A variety of methods has been proposed and employed
to determine the low-Q behavior of S(Q). For example,
Verlet [g] has analytically extended a simulated g (r) into
the range r ~1./2 by use of the approximate Percus-
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Yevick closure relation between g (r) and the direct
correlation function c(r). Foiles, Ashcroft, and Reatto
[9] and Reatto and Tau [10]have calculated g (r) for arbi-
trarily large r by means of the very accurate modified hy-
pernetted chain integral equation formalism. More re-
cently, Rovere, Heermann, and Binder [11] have em-
ployed Monte Carlo simulation to compute the variance
of the number of particles contained within subsystems of
the simulation cell. By extrapolation to progressively
larger subsystems, the compressibility, and hence [from
Eq. (lb)] S(0), of an infinite system can be deduced. Re-
cently Stevenson et ai. [12] have considered finite-size
corrections in MD simulations of polymer blends.

The purpose of this paper is to propose an approach to
calculating the static structure factor S(Q) of a bulk fiuid
for arbitrarily small Q, including the Q=O limit, from
MD simulations of relatively small systems. The MD
method is chosen because we wish to extend this work to
time-dependent phenomena. Our approach is based on
the defining connection between S(Q) and g (r) in Eq. (1),
together with an analytic relation between the infinite- (or
bulk-) system function g (r) and its finite-system (X-
particle) counterpart g~(r), which in the asymptotic
(large-r) limit takes the well-known form [13]

However, for Q (2m/L, L being the edge length of the
simulation cube, there is no unique way of selecting a
representative set of Q vectors, a fact that modestly com-
plicates this type of presentation. In addition, calculating
Sz(Q, R) by Eq. (3b) is equivalent to averaging (integrat-
ing) over all Q, with ~Q~ =Q, and thus is more general
than methods based upon averaging over a representative
set of Q vectors. Hence, in order to clarify the descrip-
tion of our method, presented in this paper, and to sim-

plify the calculation technique presented in paper II, we
have elected to use an r-space presentation.

The remainder of this paper is organized as follows. In
Sec. II we review the theory of explicit size effects and
formulate more explicitly our method of computing
S(Q). We also develop the time-dependent generaliza-
tion of the method for the purpose of future applications
to the intermediate scattering function I(Q, t). In Sec.
III we discuss the approximations on which our method
depends and practical restrictions on the size of system to
which it may be applied. We also examine the relative
magnitude of implicit size effects, presenting MD simula-
tion data to support the neglect of these effects. Finally,
in Sec. IV we summarize our results.

g~(r) = 1—S(0)
for large r . (2)

II. THEORETICAL METHOD

A. Static structure factor and compressibility
Equation (2) would appear to permit an estimation of
S(0) directly from the asymptotic behavior of gz(r). Un-
fortunately, the long-range statistical uncertainties in
gz(r) tend to be comparable in magnitude to [g~(r) —1]
itself, rendering this simple approach impractical. Con-
sequently, we take another route and begin by defining
two distribution functions

S(Q,R)=1+4mp f dr r [g(r) —1]
o Qr

and

S~(Q,R)= (i'�(Q,R) ) —X(Q,R),
where

(4a)

(6'(Q, R) ) —= I+4vrp f dr r g&(r) (4b)
0 Qr

As mentioned in the Introduction, our method of com-
puting the static structure factor S(Q) involves first com-
puting the distribution function S~(Q, R), defined by Eq.
(3b). For practical purposes, we find it convenient to
rewrite this equation in the form

S&(Q,R)=1+4'f dr r [g&(r) —1], (3b)
o Qr

where S(Q,R)—+S(Q) as R ~co. In essence, we then
proceed by first computing the finite-system function
S&(Q, R ) via simulation, next calculating the infinite-
system function S(Q,R) by analytically correcting for ex-
plicit finite-size effects, and finally obtaining the desired
S(Q) in the limit of large R. We first write down general
formulas and then truncate them in a way we show in pa-
per II to work for the states discussed there. A useful
property of a MD calculation is that the appropriate ap-
proximations may be tested at intermediate stages en
route to the final results.

As noted, we base our work upon the asymptotic
behavior of g&(r) for large r, an approach that leads itself
to an "r-space presentation" characterized by Eqs. (3a)
and (3b). An alternate presentation of our method is ob-
tained by defining S&(Q) in terms of ( ~gi exp(iQ ri) ~ )
and defining S&(Q) as the average of S&(Q) over a
representative set of Q vectors with magnitude ~Q~ =Q.

and

X(Q,R)=4vrpf dr r — = vrpR u(QR)—,
sin( r) 4

o Qr 3

(4c)

with

=3 3.
u (x)—= (sinx —x cosx) =—j,(x),

X X
(4d)

(%(R))—:1+4vrp f dr r g&(r)
0

(Sb)

may be physically interpreted as the average number of
particles contained within a sphere of radius R centered

ji(x) being the first spherical Bessel function. The choice
of notation in Eq. (4a) is suggested by the Q=O limit, in
which that relation reduces to

S~(O, R) = (X(R)) Ã(R ), —

where
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on a particle and
RN(R)= 4—vrp I dr r =4wpR (&c)

is the average number of particles within a sphere of ra-
dius R, irrespective of the location of the sphere's center.
Thus, given MD simulation data for the coordinates of
the particles, the function S&(O,R) may be calculated by
the simple procedure of counting particles within spheres
of radius R, each sphere centered on a particle. Similar-
ly, S&(Q,R ) may be calculated by the same counting pro-
cedure, but with each count weighted by the factor
[sin(Qr)/Qr], r being the radial distance from the center
of the sphere of the particle being counted. Explicit for-
mulas for implementing this procedure are given in paper
II.

An equation relating the infinite-system function
S(Q,R) [Eq. (3a)] to its N-particle counterpart S~(Q,R)
[Eq. (3b)] may be derived from a corresponding relation

between g (r) and g&(r). Such a relation may be derived,
following Lebowitz and Percus [2] by means of a Taylor-
series expansion in powers of 1/N. Here we extend the
derivation to the coefficient of the 0 (1/N ) term. In the
grand canonical ensemble, the pair distribution function
(or two-particle density) may be expressed as

p' '(r~, rz)= g P(N)p' '(r, , rz', N),
N=0

where P (N) is the probability that in equilibrium the sys-
tem contains N particles and p' '(r„rz, N) is the pair dis-
tribution function for a system of N particles. Expanding
p' '(r„rz,'N) about the average number of particles

N= g P(N)N,

we have

p' '(r„rz)= g P(N) p' '(r„rz, N)+(N —N) p' '(r„rz, N)
N=O BX

a2 1 — 03+—(N —N) p' '(r„rz;N)+ —(N —N) p' '(r„rz;N)+
2 a%2 1 2 6 BN3 1 2

Using the normalization condition compressibility via fIuctuation theory, as follows. From
the defIInition of the grand partition function

g P(N)=l
N=O

and the identity

PpN

N( N
N=O

(13)

g P(N)(N —N)=0,
N=O

Eq. (8) may be written in the form

p"'(r„r, ) =p'"(r„r„.N )

a2+ —(N —N) p' '(r„rz, N)
BX

1 —
3

3

+ (N —N) p—' '(r„rz, N)+ .
ax'

(10)
where P—= I/kzi T, /z is the chemical Potential, and Z~ is
the canonical partition function for an X-particle system,
the X-particle probability may be expressed as

e PpN
P(N)=:- ' Z~ .

4

(14)

N=:- ' g e~l"~Z~= ln=,
0 N! 8(/3p)

The average number of particles, and the mean-squared
and mean-cubed deviations in the number of particles are
given by

Now, in the uniform limit [p(r) ~p =N / V], where-
p' '(r„rz) —+p g(r) and p' '(r„rz;N) +p g~(r), Eq. (11)—
reduces to

1 (N —N) 8g(r)=g~(r)+, [p'g~(v)]

+
z [p g~(r)]+ . . (12)p (N —N) 8

6X X Bp

The coefficients in Eq. (12) may be related to the

(N N) = =N—S(0),BX
a(p/. )

BX
(N N) = =N—S(0) +

8(/3/z )' &(Pp )

(16)

g (r) =g~(r)+ + +O(1/N ),
N ~2

Finally, substituting Eqs. (16) and (17) into Eq. (12) and
for simplicity relabeling N with N, we obtain the desired
relation
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where the coefficients c, and c2 are given by

c =,[p'g(r)1s(o) a'
2 Qp

and

c2=+ S(0) + [p g(r)]as(o) a'
6 a(/3p ) ap3

(19a)

S(0)=
S~ (Q, R) —S~ (Q, R)

4 3 1—mph
3

1
u (QR)

two particle numbers, say, X] and Az, the X-independent
quantity S ( Q, R ) may be eliminated to yield the
"difference formula"

p S(0)
2 [p g(r)] - . (19b)

Note that in the asymptotic limit (r ~ ~ ), where
g (r)~1, Eq. (18) correctly reduces to the asymptotic Eq.
(2) to 0 (1/N) and c2 simplifies to

c2= -

2 [p S(0)] .s(o) a'
2 ap2

(19c)

Now substituting Eq. (18) into Eq. (3) and using the
identity

a' = a'
, [p'g(r)]=2+, [p'[g(r) —1]I, (20)

ap' ap'

we obtain the general result

S(Q,R) =S~(Q,R)+p —mR u (QR)
S(0) 4

3

1+— [pS (Q, R ) ] [+0 (1/N ) .
Bp (21)

Now for a sufficiently large system, R may be taken large
enough that to a good approximation S(Q,R) =S(Q) (see
paper II). When this approximation is valid at Q=o, Eq.
(22) may be solved explicitly for S(0), yielding the large-
R approximation

S~(O, R)
S(0) -=

1 ———~pE.
1 4
X 3

(23)

Equation (23) provides a practical means of predicting
the infinite-system quantity S(0) from MD data for the
N-particle function S~(O, R), as we demonstrate in paper
II. The resulting S(0) may subsequently be substituted
into Eq. (22) to determine S(Q,R), and hence S(Q) for
large R, from MD data for S~(Q,R).

We also briefly mention an alternative means by which
S(0) may, in principle, be obtained from MD data com-
puted for two difFerent system sizes. Writing Eq. (22) for

Clearly, because of the density derivative term, a precise
solution of Eq. (21) by MD simulation is possible only
through simulations at several densities. As demonstrat-
ed in paper II, however, the latter term is relatively small
for the Quid states of interest, the more so as R increases.
Thus, neglecting terms of 0(1/N ) and higher, an ap-
proximation for S(Q,R), which improves in accuracy
with increasing R, is

S(Q,R) =S~(Q,R)+ vrpR u (QR) —.S(0) 4
X 3

B. Intermediate scattering function

The method described above for determining the static
structure factor S(Q) may easily be generalized to the
time-dependent intermediate scattering function [17]
I(g, t) The latte. r is defined for a uniform, bulk system
by

I(g, t):4~f dr—r [G(r, t) p], —
0 r

(25)

where

(p(r, t)p(0, 0)&

p
(26)

is the van Hove space-time distribution function
[7,13,18], which has the physical interpretation that
G(r, t)dr is proportional to the probability of finding a
particle within a volume element dr at position r and
time t, given that there was an arbitrary reference parti-
cle at r=o and t=o. Note that I(g, o)=S(Q), which
follows from Eqs. (1a) and (25), since G (r, o) =5(r )

+pg (r).
A related distribution function I ( Q, t, R ) may be

defined by limiting the integral in Eq. (25) to a sphere of
radius R, such that

I(g, t, R):4' f dr r —" [G(r, t) —p] .
o Qr

The corresponding 2V-particle distribution function is
then defined as

which should give a reasonable Q-independent approxi-
mation for S(0) at sufficiently large R. In practice of
course, X, and X2 should be sufficiently diff'erent to mini-
mize errors associated with the subtraction of two com-
parable numbers. Furthermore, Eq. (24) should be valid,
for a given R, only for Q smaller than the first zero of
u (QR) because of our neglect of the density-derivative
term in Eq. (21).

It should be noted that, in principle, the above method
of correcting for finite-size effects applies only to simula-
tion data collected in the canonical ensemble. This is
clear from our derivation of the 0(1/N) correction for
g&(r) [Eqs. (8)—(12)], in which we consider only particle
number Auctuations. Corrections for other ensembles
would require considering fluctuations of other extensive
variables, e.g. , total energy for the microcanonical ensem-
ble, or both total energy and linear momentum for the
molecular dynamics ensemble [13—16]. In practice, how-
ever, as we demonstrate in the Appendix, fIuctuations in
these other variables are of 0(1/N ) and thus usually
can be ignored.
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I&(Q, t, R) =—4' f dr r [6&(r, t) —p],
o Qr

Itv(Q, t, R) = (N (Q, t, R) ) —N(Q, R),
where

(28a)

(27b)

where G&(r, t) is the finite-system (N-particle) counter-
part of 6(r, t). Note that I~(Q, O, R)=S~(Q, R), which
follows from Eqs. (3b) and (27). By analogy with Eq. (4),
we may write

(N(Q, t,R))—:4m J dr r 6~(r, t) (28b)
o Qr

is the time-dependent generalization of (N(Q, R)), with
(N(Q, O, R)) =(N(Q, R)).

As in the static case, a formula relating the infinite-
system function I ( Q, t) and the N-particle function
I~(Q, t) may be obtained by first establishing a connec-
tion between G(r, t) and Gz(r, t). To this end, the previ-
ous derivation [Eqs. (6)—(18)] leading to Eq. (18) may be
generalized simply by replacing the pair distribution
function p' '(r„r2) by its time-dependent analog
p' '(r„r2, t). Thus Eq. (8) becomes

oo
1 — BI2

p' '(r„r2;t)= $ P(N) p' '(r„rz,'t;N)+(N N) —p' '(r„r2;t;N)+ (N —N—) p' '(r„r2', t;N)+
N=O BX BX

(29)

which leads, by the same sequence of steps, to the result

6 (r, t) =G~(r, t)+ — p [pG (r, t) ]+0(1/N ) .
1 S(0) 8

2V 2 gp2

Note that in the asymptotic limits of large r, where
6(r, t) +p, Eq. (30—) reduces to

6~(r, t) =p 1—S(0)
for large r, (31)

which prescribes the same size correction as in the static
case [cf. Eq. (2)].

Now substituting Eq. (30) into Eqs. (27) and using the
identity

ever, contain the time dependence of the correction.
Thus, for suKciently large R and assuming weak time-
dependent corrections, we can neglect this term and ap-
proximate I (Q, t, R ) to 0 (1/N) by

I(Q, t, R)=-I~(Q, t, R)+ ~pR u(QR) .
S(0) 4

N 3
(34)

III. DISCUSSION

Given simulation data for I~(Q, t, R ), Eq. (34) dictates the
size correction required to obtain I ( Q, t, R ) and hence the
intermediate scattering function I(Q, t) at large R. It is
expected to be satisfactory for the states discussed in pa-
per II. However, care should be taken over the time-
dependent corrections when calculating time Fourier
transforms.

a' a'
[pG(r, t)]=2+ Ip[6(r, t) —p]],

Bp Bp

we obtain the desired relation

(32)

A. Approximations and limitations of the method

I(Q t R)=I (Q t R)+p — —~R u(QR)S(0) 4

Q2+ — [pI(Q, t, R)] .
2 ()p

+0(1/N ), (33)

which may be compared with Eq. (21) (to which it
reduces at t =0). As in the static case, a precise solution
of Eq. (33) is complicated by the presence of the density
derivative term. Although we have not numerically
determined the magnitude of this term, we expect it to be
even smaller than the corresponding term in Eq. (21)
since I(Q, t, R) is usually a decreasing function of time,
such that I(Q, t, R)(I(Q, O, R)=S(Q,R). It does, how-

The main results of this paper are expressed by Eqs.
(22), (23), and (34), which prescribe analytic corrections
for explicit size eAects to simulation data for the static
structure factor S(Q) and for the intermediate scattering
function I(Q, t) In deriving t.hese results, we have made
three main approximations. The first is the truncation of
the Taylor-series expansion for g(r), in which terms of
0(1/N ) and higher were dropped. For systems with N
of order 100 or more we expect this to be an excellent ap-
proximation as long as the coeKcients of the higher-order
terms remain of order unity or smaller. A more careful
test would require explicit evaluation of at least the
second-order coeKcient c2. Although even c2 is a rather
complicated function [Eq. (19b)], its asymptotic form
[Eq. (19c)] does suggest that the neglect of higher-order
terms is valid as long as the magnitude of S(0) and the
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curvature (with respect to p) of p S(0) are not unusually
large, which should be true of states away from the criti-
cal point. In practice, the approximation can be tested
by applying the method at two distinct values of 1V and
e'~suring that the results are independent of X.

Our second approximation is the neglect of the density
derivative terms in Eqs. (21) and (33). Evidently, this
should be reasonable at large R as long as the curvature
(with respect to p ) of pS ( Q, R ) or pI ( Q, t, R ) remains
su%ciently small, which again precludes states near the
critical point. In paper II [1] we describe a numerical
test that supports this approximation. Our third approxi-
mation is the neglect of implicit size effects, whose rela-
tive importance we next discuss.

B. Implicit size e8'ects

As noted in the Introduction, implicit size effects,
linked directly to periodic boundary conditions, can
inhuence pair correlations, especially for very small sys-
tems [3] (e.g., N~8). As a result, the pair distribution
function is in principle anisotropic and must therefore de-
pend not only on radial distance r but also on angular
variables, i.e., g~(r)=gz(r, 9,$), where 0 and P are the
usual polar and azimuthal angles in spherical coordi-
nates.

To test for isotropy in our MD simulations (described
in paper II), we have analyzed our data to explicitly com-
pute the angular variation of gz(r). As Fig. 1 illustrates,
the partially averaged functions

gNr12 g(~12) /g( rl r2' (36)

f I f
I

1
~ ~

1.0 i—

Il 4a
4 ~

where r,2—=r, —r2, r, 2
——~r, z ~, and the product index runs

over all periodic images of particle 2. Since the neglected
graphs are more highly connected than those included,
the approximation is expected to be accurate for
sufficiently large system sizes, low densities, and short-
ranged interactions.

We have tested the accuracy of Pratt and Haan's
theory by using Eq. (36) to numerically study the predict-
ed N dependence of the angular variation of g1v(r) and
comparing it with MD data for relatively small systems
(N = 100) and high densities (near the triple point), where
implicit size effects are expected to be strongest and
perhaps comparable to explicit size effects. In general,
we find the theoretical predictions to compare quantita-
tively well with corresponding MD data, inspiring

(35a)

g~(r, P) =—f d 8 sin(0)g~(r, 8,P)2 0
(35b)

I I I 1 I i I I I I I I I

0.5
0 {radi~~~)

I I I
l

l 1 I )
I 1 I

l
I I I

show no significant angular variation compared with ran-
dom statistical errors of about 1%. We expect that when
Eq. (35a) is averaged over 0, or Eq. (35b) over P, to pro-
duce gz(r), the statistical errors will fall to -0.1% of
g~(1').

The question remains, however, whether the periodic
boundary conditions might still systematically alter the
magnitude of gz(r). This issue can be addressed within
the framework of a theory of implicit size effects pro-
posed by Pratt and Haan [5]. Their theory is based on
the observation that an infinite ensemble of periodically
replicated simulation cells is equivalent to an infinite sys-
tem of "supermolecules, " each of which comprises a sin-
gle physical atom from the primary cell together with all
of its periodic images. Starting from this insight and
working in the grand canonical ensemble to avoid explicit
size effects, these authors develop a formally exact cluster
expansion for 1ng~(r), expressed in terms of spring bond
graphs. By summing exactly a certain class of "un-
bridged" graphs, which depend on only the infinite-
system function g ( r ), but neglecting entirely another
class of "bridged" graphs, they derive an approximate re-
lation between g&(r) and g(r), which may be written in
the concise form

- (b)

0.995—
~ ~

0.2 0.4 0.6

g (z'a+ans)

FIG. 1. MD simulation data showing the variation of the
partially averaged pair distribution function [Eq. (35)] with
respect to (a) polar angle 0 and (b) azimuthal angle It. The
simulation was performed for a model Aziz potential krypton
Quid of %=706 atoms at a thermodynamic state defined by re-
duced density p*=0.4 and reduced temperature T*=1.51 (see
paper II for details). The data shown are for a radial distance
r=5 in units of o. , where o. is the distance of the Aziz pair
potential minimum.
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confidence in the accuracy of the theory. Details of this
study will be presented in a future presentation I19].

For the present purposes, however, it su%ces to consid-
er the infiuence of implicit size effects on S(Q) as deter-
mined by the approach described in Sec. II. To this end,
we first emphasize that our approach is in practice re-
stricted to system sizes (N) and thermodynamic states for
which g~(r) has essentially reached its asymptotic limit

by r =L/2. This ensures that S(O,R) has "saturated"
(i.e., reached its asymptotic limit with increasing R) by
R =L/2, thus permitting an accurate estimate of S(0)
[by Eq. (23)] and hence of S(Q) [by Eq. (22)]. As shown
in paper II, this condition is satisfied by our simulated
systems. In general, however, the nearer the state to the
critical point, the longer the range of pair correlations
and hence the larger the system that must be simulated.

Now, if we consider any two particles in the primary
simulation cell separated by a distance r,2-—L/2, then
the shovtest distance between one of the particles and any
periodic image of the other can be no less than L/2, i.e.,
minI ri —rz; ~ ]

)L /2. Therefore, in the product over im-

ages in Eq. (36) the function g ( ~r, —r2, ~
) is evaluated al-

ways at a distance that lies within the asymptotic tail of
the function. If g(r) decays sufficiently rapidly with in-
creasing r that g(~r, —rz;~)-=1, then Eq. (36) reduces to
the statement that g~(r, 2)=g(r, 2), which would justify
the neglect of implicit size effects in the application of
our method. For continuous potentials, however, the
asymptotic tail of g (r) is known to be proportional to the
pair potential [20]. Thus, for a Lennard-Jones or similar-
ly short-ranged pair potential we would expect
g~(r, 2)—=g(r, z) to a very good approximation in our
simulated systems.

IV. SUMMARY

Although in infinite systems the radial distribution
function g (r)~1 as r~ ~, in finite systems (e.g. , those
modeled by computer simulation) finite-size effects may
produce significant relative errors in the asymptotic re-
gion of the N-particle function g&(r) These in tu. rn lead
to errors in the Fourier transform Ii.e., the N-particle
static structure factor S~(Q)], which grow as Q ~0.

In this paper we have presented a general method of
correcting for explicit size effects to compute the bulk
static structure factor S(Q) for all Q (including Q=O)

from simulation data for a fixed number of particles. The
practical form of the method is summarized by Eqs. (22),
(23), and (34). In practice, the method relies on three
main approximations: (i) truncation to first order of a
Taylor-series expansion (in powers of 1/N) of g&(r) or,
equivalently, S&(Q); (ii) an approximation for the
coefficient of the first-order (1/N) term in this series; and
(iii) neglect of implicit size effects due to periodic bound-
ary conditions. The first two approximations are expect-
ed to be valid for thermodynamic states away from the
critical point and for system sizes typical of commonly
simulated atomic systems (usually several hundred or
more particles). As for implicit size effects, we have con-
sidered their role and concluded that for the systems con-
sidered in the following paper they may be safely ignored.

For future applications we have also presented the
time-dependent generalization of the method to the inter-
mediate scattering function I(Q, t). In the following pa-
per, however, we confine ourselves to the static case and
proceed to test and demonstrate the method by applying
it to a calculation of S(Q) from extensive MD simulation
data for a model krypton fIIuid.
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APPENDIX: OTHER ENSEMBLE CORRECTIONS

Here we demonstrate that the finite-size (or ensemble)
correction associated with fixing the total energy E (as in
the microcanonical ensemble), or additionally the total
linear momentum (as in the molecular dynamics ensem-
ble), affects the radial distribution function only to
0 (1/N ) and that, for sufficiently large N, this correction
therefore may be ignored relative to the 0 (1/N) correc-
tion arising from fixing the particle number X.

Consider first the connection between the pair distribu-
tion function in the canonical ensemble (fixed N)
pIv'(ri, r2) and the corresponding function in the micro-
canonical ensemble (fixed N and E) pg'(r„r, ;E). By
analogy with Eq. (6), we can expand the former in a Tay-
lor series about the mean energy E:

2

pg'(ri, r2)= I dE n(E)P&(E) p&'(ri, r2,'E)+(E E) pIv (ri, r2, E)+—(E E) pIv (ri, r—2,E)—+
0

where n (E) is the density of states and dE n (E)Pz(E) is
the probability of the system having N particles in an en-
ergy range between E and E +dE. Now, since

we may write

E = J dE n (E)P~(E)E,
0

(A2)

—
2 a 2

2

+ (E E) — p' '(r—, r;—E)+
2 N 1~ 2~

(A3)
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But since N is here fixed, then

Px ("i r2) Ptv (rl r2(2) (2)

c,kT+-
N 2

2

ptv (r „r2,E ) +
BE'

(A4)

we have

1
gtv (r) =g&(r;E)

N2

c,kT2 B2
S(0)+

where e—=E/N is the mean energy per particle and we
have used the fluctuation-dissipation relation

(E =E) =Nc, kT (A5)

c,kT
g~(r) =gtt(r;E)+-

N 2 Bg2 gtv (r)+

In the crucial asymptotic regime, however, where

(A6)

c, being the specific heat.
In the limit of a uniform system, the canonical-

ensemble radial distribution function is then related to its
microcanonical counterpart according to

Thus the leading-order finite-size correction to the radial
distribution function associated with fixing the total ener-
gy is only of 0(1/N ). Furthermore, by a completely
analogous derivation, it is easily shown that fixing the to-
tal linear momentum also results in a leading-order
correction of 0(1/N ). These corrections are, however,
0 (1/N) smaller than the 0 (1/N) correction arising
from fixing the particle number N (Sec. II A). We con-
clude, therefore, that the correction required to convert
simulation data from the molecular dynamics ensemble
to the canonical ensemble is, in practice, negligible (for
sufficiently large N) compared with the correction in-
volved in converting further from the canonical to the
grand-canonical ensemble.
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