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Gas-kinetic derivation of Navier-Stokes-like trafIic equations
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Macroscopic traffic models have recently been severely criticized as based on lax analogies only
and having a number of deficiencies. Therefore, this paper shows how to construct a logically
consistent Quid-dynamic traffic model from basic laws for the acceleration and interaction of vehicles.
These considerations lead to the gas-kinetic traffic equation of Paveri-Fontana. Its stationary and
spatially homogeneous solution implies equilibrium relations for the "fundamental diagram, " the
variance-density relation, and other quantities that are partly difficult to determine empirically.
Paveri-Fontana s traffic equation allows the derivation of macroscopic moment equations that build
a system of nonclosed equations. This system can be closed by the well proved method of Chapman
and Enskog, which leads to Euler-like traffic equations in zeroth-order approximation and to Navier-
Stokes-like traffic equations in first-order approximation. The latter are finally corrected for the finite
space requirements of vehicles. It is shown that the resulting model is able to withstand the above
mentioned criticism.

PACS number(s): 51.10.+y, 89.40.+k, 47.90.+a, 34.90.+q

I. INTRODUCTION

Because of analogies with gas theory [1—4] and ffuid
dynamics [5—9,3,10] modeling and simulating traffic
Bow increasingly attracts the attention of physicists
[1,5,8,9,11—14]. However, due to the great iinportance
of eKcient traKc for modern industrialized countries.
the investigation of traKc flow has already a long tra-
dition. In the 1950s Lighthill and Whitham [10] as well
as Richards [15] proposed a first ffuid-dynamic (macro
scopic) traffic model. During the 1960s traffic research
focused on microscopic follow the leader m-od-els [16—23].
Mesoscopic models of a gas-kinetic (BoLtzmann Like) type-
came up in the 1970s [24,25,4,3,2,26]. Since the 1980s
simulation models [27,28] play the most important role
due to the availability of cheap, fast, and powerful com-
puters. We can distinguish macroscopic traKc simulation
models [29—32], microscopic simulation models [33—36]
which include ceLLular automaton modeLs [37—39,11—14],
and mixtures of both [40].

In high-fidelity microscopic traffic models each car is
described by its own equation(s) of motion. Conse-
quently, computer time and memory requirements of cor-
responding trafFic simulations grow proportionally to the
number N of simulated cars. Therefore, this kind of
model is mainly suitable for ofF-line traffic simulations,
detailed studies (for example, of on ramps or lane merg-
ings), or the numerical evaluation of collective quantities
[33] like the density-dependent velocity distribution, the
distribution of headway distances, etc. , and other quan-
tities that are difBcult to determine empirically.

For this reason, fast Low fidelity microsimulati-on mod-
els that allow bit handling have been developed for the
simulation of large freeways or freeway networks [37,38].
However, although they reproduce the main effects of
trafBc flow, they are not very suitable for detailed pre-
dictions because of their coarse-grained prescription.

Therefore, some authors prefer macroscopic trafBc
models [10,41—43,30,44,5—9]. These are based on equa-
tions for collective quantities like the average spatial den-
sity p(r, t) per lane (at place r and time t), the aver
age velocity V(r, t), and maybe also the velocity vari
ance O(r, t). Here, simulation time and memory re-
quirements mainly depend on the discretization Ar and
Lt of space r and time t, but not on the number N
of cars. Therefore, macroscopic trafEc models are suit-
able for real-time traKc simulations. The quality and
reliability of the simulation results mainly depend on
the correctness of the applied macroscopic equations and
the choice of a suitable numerical integration method.
The rather old and still continuing controversy on
these problems [41,45,46,42,43,47,30,44,48—50,8,9,5,1,51]
shows that they are not at all trivial.

Some of the most important points of this controversy
will be outlined in Sec. II. It will be shown that even
the most advanced models still have some serious short-
comings. The main reason for this is that the proposed
macroscopic traKc equations were founded on heuristic
arguments or based on analogies with the equations for
ordinary fluids. In contrast to these approaches, this
paper will present a mathematical derivation of macro-
scopic traftic equations starting &om the gas-kinetic traf-
fic equation of Paveri-Fontana [2] which is very reason-
able and seems to be superior to the one of Prigogine
and co-workers [24,25,4]. The applied method is analo-
gous to the derivation of the Navier-Stokes equations for
ordinary fluids from the Boltzmann equation [52—55]. It
is based on a Chapman-Enskog expansion [56,57] which
is known from kinetic gas theory and leads to idealized,
Euler-like equations in zeroth-order approximation and
to Navier-Stokes-like equations in first-order approxima-
tion [58,55]. In this respect, the paper puts into efFect
the method suggested by Nelson [1]. A similar method
was already applied to the derivation of fluid-dynamic
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equations for the motion of pedestrian crowds [59], but
it assumed some unsatisfactory approximations.

The further procedure of this paper is as follows. Sec-
tion II presents a short history of macroscopic traf-
fic models and discusses the abilities and weaknesses
of the diferent approaches. Section III introduces the
Boltzmann-like model of Prigogine [4] and compares it
with the one of Paveri-Fontana [2]. From their gas-
kinetic equations macroscopic ("Huid-dynamic" ) traffic
equations will be derived in Sec. IV. Unfortunately, they
turn out to build a hierarchy of nonclosed equations, i.e.,
the density equation depends on average velocity V and
the velocity equation on velocity variance 0, etc. There-
fore, a suitable approximation must be found to obtain
a set of closed equations. It will be shown that some of
the traffic models introduced in Sec. II correspond to
zeroth-order approximations of diferent kinds. These,
however, are not very well justified. A similar situa-
tion holds for the Euler-hke traffic equations which, apart
from a complementary covariance equation, contain ad-
ditional terms compared with the Euler equations of or-
dinary Huids [58]. These stem, on the one hand, from a
relaxation term which describes the drivers' acceleration
towards their desired velocities. On the other hand, they
originate from interactions which are connected with de-
celeration processes since these do not satisfy momentum
and energy conservation in contrast to atomic collisions.

A very realistic, first-order approximation which is, in
a certain sense, self-consistent can be found by solving
the reduced Paveri-Fontana equation which is obtained
from the original one by integration with respect to the
desired velocity. We will utilize the fact that, accord-
ing to empirical traffic data [60,61,3,62,33], the equilib-
rium velocity distribution has a Gaussian form. This
allows the derivation of mathematical expressions for the
equilibrium velocity-density relation, the "fundamental
diagram" of traffic flow, and the equilibrium variance-
density relation (cf. Sec. IV C). Afterwards an approxi-
mate time-dependent solution of Paveri-Fontana's equa-
tion will be calculated by use of the Euler-like equations.
Due to the additional terms in Paveri-Fontana s equation
compared with the Boltzmann equation the correspond-
ing mathematical procedure is more complicated than
the Chapman-Enskog expansion for ordinary gases (cf.
Sec. V).

Nevertheless, it is still possible to derive correction
terms of the Euler-like macroscopic traffic equations (cf.
Sec. VI). These have the meaning of transport terms
(like, e.g. , the Hux density of velocity variance) and are
related to the finite skewness p of the velocity distribu-
tion in nonequilibrium situations. The resulting equa-
tions are Navier-Stokes-like traffic equations which, in
comparison with the ordinary Navier-Stokes equations
[58], contain additional terms arising from the accelera-
tion and interaction of vehicles. Additionally, they are
complemented by a covariance equation which takes into
account the tendency of drivers to adapt to their desired
velocities.

Because of the one-dimensionality of the Navier-
Stokes-like traffic equations no shear viscosity term oc-
curs. However, in Sec. VII it is indicated how transitions

between diferent driving modes can cause a bulk viscos-
ity term. Furthermore, corrections due to finite space
requirements of each vehicle (vehicle length plus safe dis-
tance) are introduced.

The resulting model overcomes the shortcomings of the
former macroscopic traffic models (that are mentioned in
Sec. II). Section VIII summarizes the results of the paper
and gives a short outlook.

II. SHORT HISTORY OF MACROSCOPIC
TRAFFIC MODELS

In 1955 Lighthill and Whitham [10] proposed the first
macroscopic (Huid-dynamic) traffic model. This is based
on the continuity equation

Op 0(pV)
Ot' O.

which reflects conservation of the number of vehicles. For
the average velocity V, Lighthill and Whitham assumed
a static velocity-density relation:

V (r, t):= V.[p(r, t)] . (2)

Inserting (2) into (1) we obtain

Op OV OpV+p =0. (3)

Op Op OV Op O p—+V —= —p —+D
Ot Or Op Or Or2

For the case of a linear velocity-density relation [65]

(4)

V.(p):= V--
I

1—
pmsx ) (5)

it can be transformed into the Burgers equation [66]

Og Og O g—+g—=D
Ot Or Or~ (6)

which is analytically solvable [63]. Here, we have intro-
duced the function

g[p(, t)]:=V--
I

1—( 2p(r, t) )
pmax )

The most important restriction of models (1) and (2)
as well as (4) and (2) is relation (2) which assumes that

Equation (3) describes the propagation of nonlinear
"kinematic waves" with velocity c(p) = V, (p) + pOV, /Bp
[10,63]. In the course of time the waves develop a shock
structure, i.e., their back becomes steeper and steeper
until it becomes perpendicular, leading to discontinuous
wave profiles [10,15,63].

In reality, density changes are not so extreme. There-
fore, it was suggested to add a diffusion term D82p/Br2
which smooths out the shock structures somewhat
[63,64]. The resulting equation reads
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the average speed V(r, t) is always in equilibrium with
density p(r, t). Therefore, these models are not suitable
for the description of nonequilibrium situations occurring
at on ramps, changes of the number of lanes, or stop-and-
go traffic.

Consequently, it was suggested to replace relation (2)
by a dynamic equation for the average velocity V. In
1971, Payne [41] introduced the velocity equation

with

OV OV C(p) Op 1

Ot Or p Or 7. (8a)

1 OV, 1 OV,
C p 2r Op 27 Op

(8b)

( )
OP~

(9)

with the equilibrium "traffic pressure"

P, (p):= pO, (p) . (10)

The modified velocity equation reads

OV OV 1 O P, 1['
Ot Or p Or

(»a)

and can be derived Rom the gas-kinetic (Boltzmann-like)
traffic models [4,3,2] (cf. Sec. IV). For O, (p), Phillips
[3,71] suggested a relation of the form

O (p):=Op~ 1—
pmax )

(lib)

In contrast, Kiihne [72] as well as Kerner and Konhauser

which he motivated by a heuristic derivation &om a mi-
croscopic follow-the-leader model [67]. Here, VOV/Or
is called the "convection term" and describes velocity
changes at a place r that are caused by average vehi-
cle motion. The "anticipation terxn" (C/p) O—p/Or was
intended to account for the drivers' awareness of the
traffic conditions ahead. Finally, the "relaxation term"
[V,(p) —V]/r delineates an (exponential) adaptation of
average velocity V to the equilibrium velocity V, (p) with
a relaxation time 7.

Unfortunately, for bottlenecks the corresponding com-
puter simulation program FREFLO suggested by Payne
[29] produces output that "does not seem to re-
Hect what really happens even in a qualitative man-
ner" [46]. As a consequence, several authors have
suggested a considerable number of modifications of
Payne's numerical integration method or of his equa-
tions [68,42,43,47,30,44,48,49,69]. A more serious weak-
ness of Payne's equations is that their stationary and
homogeneous solution is stable with respect to Huctua-
tions over the whole density range as can be shown by
a linear stability analysis [68,45,41]. Therefore, Payne's
model (1) and (8) does not describe the well known self-
organization of stop-and-go waves above a critical density
[43,70]. This problem is removed [45] by substituting re-
lation (8b) by

[8,9] assumed, as a first approach, 8, to be a positive
constant:

O, (p):= Hp. (12)

Unfortunately, Eqs. (1) and (lla) predict the formation
of shock waves as Lighthill and Whitham's equation does
[43,5]. For this reason, Kiihne [43,70] suggested adding
a small viscosity term vO V/Or which smooths out sud-
den density and velocity changes somewhat. Then the
velocity equation

OV
p,

' ) /Op(l + rvk ),
Op

where k denotes the wave number of the perturbation
[73,5]. This condition is fulfilled if the equilibrium density

p corresponding to the stationary and spatially homoge-
neous solution exceeds a critical density p, that depends
on the concrete form of V, (p).

For reasons of compatibility with the Navier-Stokes
equations for ordinary fluids Kerner and Konhauser re-
placed Kuhne's constant v by the density-dependent re-
lation

(15)

with the constant viscosity coefficient vp. Computer sim-

ulations of their equations (1), (13), and (15) show the
development of density clusters [8,9] if the critical den-

sity p„given by (14) and (15) is exceeded. On the basis
of a very comprehensive study of cluster-formation phe-
nomena, Kerner and Konhauser [9] presented a detailed
interpretation of stop-and-go traffic.

Despite the considerable variety of proposed macro-
scopic traffic models, even the most advanced of them
have still some shortcomings. For example, for a cer-
tain set of parameters the mentioned models predict traf-
6c densities that exceed the maximum admissible den-

sity ps' = 1/lp which is the bumper-to-bumper density

(lp ——average vehicle length) [5]. Furthermore, in cer-
tain situations even negative velocities may occur [51].
To illustrate this, imagine a queue of vehicles of constant
density pp. Assume that, e.g. , due to an accident that
blocks the road, this queue has come to rest (i.e. , V = 0)
and that it ends at r = rp which will imply p(r, t) = 0
for r & rp Then Op/Or d. iverges at a place rp (or is at
least very large) and Eqs. (8), (ll), and (13) all predict
OV(rp, t)/Ot & 0 if 0 g 0.

Of course, we wish to have a model that is valid not
only in standard situations, but also in extreme ones.
Moreover, the model should provide reasonable results
not only for certain parameter values. This is particu-
larly important for the reason that technical measures

OV OV OpOp O V 1
+V = — —+~, + —IV. (p) —V] (»)

Ot Or p Or Or 2

results. A linear stability analysis of Kuhne s equa-
tions (1) and (13) shows that these predict the self-
organization of stop-and-go waves or of so-called "phan-
tom trafric jams" (i.e. , unstable traffic) on the condition
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like automatic distance control may change some pa-
rameter values considerably. Nobody knows if the ex-
isting phenomenological models are still applicable then.
Therefore we will derive the specific structure of the traf-
fic model from basic principles regarding the behavior of
the single driver-vehicle units and their interactions.

changes of phase-space density p due to a motion in
phase space 0 with velocity dx/dt, the term (Op/Ot)&,
delineates changes of p due to discontinuous transitions
between states.

A. Prigogine's model

III. GAS-KINETIC (BOLTZMANN-LIKE)
TRAFFIC MODELS

Let us assume that the motion of an individual vehicle
o. can be described by several variables like its place r (t),
its velocity v (t), and maybe other quantities which char-
acterize the vehicle type or driving style (the driver's per-
sonality). We can combine these quantities in a vector

In Prigogine's model the state x is given by the place r
and velocity v = dr/dt of a vehicle. The transition term
(Op/Ot)q, consists of a relaxation term (Op/Ot)„) and an
interaction term (Op/Ot);„& [24,25,4]. Therefore, Eq. (19)
assumes the explicit form

Op O(pv) O ( dv') Op) &Op)—+ + —ip —= + — . 20
Ot Or Ov i dt) Ot), , iOt),.„,

* ('):= (" (t) (t) . )

that denotes the state of vehicle a at a given time t. The
time-dependent phase-space density

p(x, t) = p(r, v, . . . , t)

The interaction term (Op/Ot);„~ is intended to describe
the deceleration of vehicles to the velocity of the next
car ahead in situations when this moves slower and can-
not be overtaken. Prigogine and co-workers [24,4] sug-
gest describing processes of this kind by the Boltzmann
equation

is then determined by the mean number An(r, v, . . . , t')
of vehicles that are at a place between r —Ar/2 and
r + Ar/2, driving with a velocity between v —Av/2 and
v + Av/2, . . . at a time t' E [t —At/2, t + At/2]:

(Op')

&Ot)
d~(1 p)lv —~—l)p(r v t)p(r ~ t)

(2la)

p(r, v, . . . , t) ArAv du) (1 —p) iu) —v
i p(r, u), t)p(r, v, t)

0

1
e Lt

t+At/2
dt' An(r, v, . . . , t') . (l8)

(21b)

= (1 —P)P[r, v, t) f dw (w —v) p(r, w, t),
For vehicles, the phase-space densitiy p is a very small
quantity. Therefore, in the limit Ar —+ 0, Lv ~ 0, . . .,
At M 0 it is only meaningful in the sense of the expected
value of an ensemble of macroscopically identical systems
[1]. The interpretation of p as a quantity which can de-
scribe single trafBc situations is only possible for "coarse-
grained averaging" where Ar, Av, . . ., and Lt must be
chosen "microscopically large but macroscopically small"
[1,59] or, more exactly, (1) smaller than the scale on
which variations of the corresponding macroscopic quan-
tities occur, and (2) so large that An(r, v, . . . , t) )) 1
which is not always compatible with the erst condition.
However, in any case a suitable gas-kinetic equation for
the phase-space density p allows the derivation of mean-
ingful equations for collective ("macroscopic" ) quantities
like the spatial density p(r, t) per lane, the average veloc-
ity V(r, t), and the velocity variance 8(r, t). To obtain
an equation of this kind, we will bring in the well known
fact that the temporal evolution of phase-space density
p is given by the continuity equation [74]

Op ( dxi fOp)
p dt) qOt), (19)

which again describes conservation of the number of
vehicles, but this time in the phase space 0
(all admissible states xj. Whereas V'- (pdx/dt) reflects

where p denotes the probability that a slower car can be
overtaken. Functional relations for

p—:p(p, V, O) (22)

are proposed in Refs. [4,3,75]. The term (21a) corre-
sponds to situations where a vehicle with speed m ) v
must decelerate to speed v, causing an increase of phase-
space density p(r, v, t). The rate of these situations is
proportional (1) to the probability (1 —p) that passing
is not possible (which corresponds to the scattering cross
section in kinetic gas theory), (2) to the relative velocity
~v

—u)~ of the interacting vehicles, (3) to the phase-space
density p(r, v, t) of vehicles which may hinder a vehicle
with velocity u) ) v, and (4) to the phase-space den-
sity p(r, u), t) of vehicles with velocity u) ) v that may
be affected by an interaction. The term (21b) describes
a decrease of phase-space density p(r, v, t) due to situa-
tions in which vehicles with velocity v must decelerate
to a velocity m & v. A more detailed discussion of the
interaction term (21) can be found in Refs. [4,2].

Note that the approach (21) assumes an instantaneous
adaptation of velocity which does not take any braking
time. Moreover, the deceleration process of the faster
vehicle is assumed to happen at the location r of the
slower vehicle, i.e. , vehicles are implicitly modeled as
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dv—:=0.
dt (24)

In detail, Prigogine starts &om the observation that free
traKc is characterized by a certain velocity distribution
Pp(v) which corresponds to the distribution Po(vo) of de-
sired velocities vp. Moreover, he assumes that the drivers'
intention to get ahead with their desired speeds causes
the phase-space density p(r, v, t) to approach the equilib-
rium phase-space density

po(T v t):= p(r t)Po(v) (25)

(exponentially) with a certain relaxation time r which
is given by the average duration of acceleration pro-
cesses. Therefore, Prigogine's relaxation term has the
form [24,25,4]

f Bj ) p(r, t)Po(v) —p(r, v, t)

4 ~t)
Despite the merits of Prigogine's stimulating model,

this approach has been severely criticized [2,51]. In a
clear and detailed paper [2] Paveri-Fontana showed that
Prigogine's model has a number of peculiar properties
which are not compatible with empirical findings. For
example, he demonstrates that the relaxation term (26)
corresponds to discontinnous velocity changes which take
place with a certain, time-dependent rate. Furthermore,

pointlike objects without any space requirements. The
first assumption is only justified for braking times that
are short compared to temporal changes of phase-space
density p, but modifications for 6nite braking times are
possible [75]. The second assumption is only acceptable
for very small densities at which the average headway
distance is much larger than the average vehicle length
plus safe distance. It will, therefore, be corrected in Sec.
VII. The corresponding modifications also implicitly take
into account the pair correlations of succeeding vehicles
[76]. These are neglected by the approach (21) due to its
assumption of vehicular chaos, according to which the ve-
locities of vehicles are not correlated until they interact
with each other [2,1].

Now, we come to the description of acceleration pro-
cesses by vehicles that do not move with their desired
speeds. In this connection, Prigogine suggests a collec-
tive relaxation of the actual velocity distribution

p(r, v, t)
P( t)

towards an equilibrium velocity distribution Po(v), in-
stead of an individual speed adjustment so that

Daganzo made the criticism that, according to (26), "the
desired speed distribution is a property of the road and
not the drivers" [51] which was already noted by Paveri-
Fontana [2]. In reality, however, one can distinguish dif-
ferent "personalities" of drivers: "aggressive" ones desire
to drive faster, "timid" ones slower. Therefore, Paveri-
Fontana [2] developed an improved gas-kinetic traffic
model which corrects the deficiencies of Prigogine s ap-
proach.

B. Paveri-Fontana's madel

Paveri-Fontana assumes that each driver has an indi-
vidual, characteristic desired velocity vp. Consequently,
the associated states x are given by place r, velocity v,
and desired velocity vp so that Prigogine's phase-space
density p(r, v, t) is replaced by p(r, v, vo, t). The corre-
sponding gas-kinetic equation (19) explicitly reads [77]

Bp B(pv) 0 ( dv) 0 ( dvoi (Opi
Bt Br Ov ( dt) Bvo ( dt ) (Bt)„+ + p—+ I p

(27a)

The term B(pdvo/dt)/Ovp can be neglected since the de-
sired velocity of each driver is normally time independent
during a trip, which implies

dvp

dt
(27b)

In contrast to Prigogine, Paveri-Fontana describes the
acceleration towards the desired velocity vp by

dv

dt
:= —(vo —v) (27c)

which means an individua/ instead of a collective relax-
ation. Relation (27c) can easily be replaced by other ac-
celeration laws dv/dh or density-dependent driving pro-
grams as suggested by Alberti and Belli [26]. Alterna-
tively, for acceleration processes an interaction approach
can be formulated which was recently proposed by Nel-
son [1]. However, the assumption (27c) of exponential re-
laxation is a relatively good approximation since drivers
gradually reduce the acceleration as they approach their
desired velocity vp.

Paveri-Fontana needs the transition term (Op/Ot)q,
only for the description of deceleration processes due to
vehicular interactions. For these he assumes the Boltz-
mann equation [2]

f Dpi := (1 —p)(~~) „ dmo lv —ml p(r, v, mo, t)p(r, zo, vo, t)

dt's du)0 lto —v
l p(r, uJ, zUp, t)p(r, v, vp, t) (27cl)
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which has an analogous interpretation to (21). (For de-
tails cf. Ref. [2].) Note that, according to (27d), "the
velocity of the slow car is unafFected by the interaction
or by the fact of being passed" [2] and that "no driver
changes his desired speed" [2] during interactions. There-
fore, the interaction term (27d) fulfills the requirements
called for by Daganzo [51]

(1) that "a car is an anisotropic particle that mostly re-
sponds to &ontal stimuli" [51] and that "a slow car should
be virtually unafFected by its interaction with faster cars
passing it (or queueing behind it)" [51];

(2) that "interactions do not change the 'personality'
(aggressive/timid) of any car" [51].

Finally, note that the proportion of vehicles jamming
behind slower cars cannot accelerate. This circumstance
can be taken into account by a density and maybe veloc-
ity or variance dependence of the relaxation time [4,3,75]:

o-( ')—:([ —V(" t)] ):= dv [v —V(r, t)]2
p r, t

(34)

we will now derive equations for the moments mk 0 with

, ("')—: (" t)( ( o) )

dv dvo v" (vo)'p(r, v, vo, t) .

O O—mk 0+ —mk+y 0+
Ot ' Or

„8 ( Vo(v) —v
(& v —pBv ( r j

By multiplying Paveri-Fontana's equation (29) with v"
and integrating with respect to v we obtain [2], via partial
integration,

r —= r(p, V, H).

In order to compare Paveri-Fontana's traffic equation
with Prigogine's we integrate Eq. (27) with respect to
vo and obtain the reduced Paveri-Fontana equation

Bp B(vp) 0 Vo(v r t) —v+ + —pr, v, t
Ot Br Ov j

k
mk, o + mk+1, 0 (mk —l, l mk, o)

Ot ' Or
(36a)

= (1 —p) dv p(r, v, t) dn) (tv" —v"+
)p(r, m, t)

0 „,~ Vo(v) —v)= —mk, o+ mk+l, o — dv kvk-1 p
0

Ot ' Or 7

= (1 —P)(mz omk o —mk+z omo o) . (36b)
= (1 —p) p(r, v, t) dm (vj —v) p(r, m, t) . (29)

Here, we have introduced the reduced phase-space density

Applying the analogous procedure to Prigogine's model
(20)—(26), for the moments

mk o(r, t) = p(r, t) (v"):= dv v"p(r, v, t)

p(r, v, t):= dvo p(r, v, vo, t)

and the quantity

p(r, v, vo, t)
Vo(v; r, t):= dvo vo

p r)v)t

(30)

(31)

one can derive the equations

O
mk 0 + mk+] 0

Ot ' Or

The only difference with respect to Prigogine's formula-
tion (20)—(26) is obviously the other relaxation term.

1
mo, k mk, o

+(1 —P)(mg omk o —mk+g omo o) (38)

(cf. [2]) where

IV. DERIVATION OF MACROSCOPIC TRAFFIC
EQUATIONS

p(r t):= dv p(r, v, t) (32)

per lane, the average velocity

V(r, t)—:(v):= p(r, v, t)
p(r, t)

and the velocity variance

Since we are mainly interested in the temporal evolu-
tion of collective (macroscopic) quantities like the spatial
density

mo k(r, t):= dvo (vo)"po(r, vo, t)

= p(r, t) dvo (vo) "Po(vo) .

A comparison of moment equations (36) with (38) shows
that Prigogine's and Paveri-Fontana's model lead to iden-
tical equations for spatial density p(r, t) = mo o(r, t) and
average velocity V(r, t) = mq o(r, t)/p(r, t), despite the
difFerent approaches for the relaxation term. However,
the equations for higher-order moments m. k o(r, t) with
k & 2 dier.

Obviously, Eqs. (36) as well as (38) represent a hierar-
chy of nonclosed equations since the equation for the kth
moment mk o depends on the (k + 1)st moment mk+q o.
As a consequence, the density equation
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Op 8(pV)
Ot Or

(40)
In addition, we have introduced the Pux density of veloc-
ity variance

OV OV

Ot Or
10(p8) +-(V. - V) -(1-p)p8
p Or 'T

1 OP 1+ —[V, (p, V, O) —V]pOr 7
(41)

depends on the average velocity V, the velocity equation
Q(r, t):= dv (v —V) P(r, v, t)

p r, t

x div (v —ur) p(r, zo, t)

dv v —V pr, v, t = p r, t I'r, t (49)

on variance 0, etc. Here, we have introduced the average
desired velocity (which corresponds to the "heat flow" in conventional

ffuid dynamics) and the equilibrium variance
p(r, v, vo, t)

Vo(r, t):=f t(v f dao Uo
p(r, t)

the so-called traffic pressure [25,3,71]

(42)
0, (p, V, O, C, J):=C — ' '

[1 —p(p, V, 8)]J.
7.(p, V, O)

(50)
1

P(r, t):= dv (v —V)p(r, v, t)
p(r, t)

X AU V —tD p r)Q)) t

dv v —V pr, v, t =pr, t Or, t, 43

and the equilibrium velocity

V, (p, V, 0):=Vo —r(p, V, 8) [1 —p(p, V, 8)]P (44)

(9mi o (9(pV) (9V Op

Ot Ot Ot Ot
(45)

The variance equation is obtained analogously. For the
traKc equation of Paveri-Fontana it reads

BO (98 BV 1 B(pl')
Ot+ O "O pO.

2
(C 8) (1 p) pl

7

2P (9V 1 oI+

p Or p Or
2+—[8,(p, V, 8, C, g) —0] (46)

and depends on the covariance

C(r t) = ((v —V)(vo —Vo))

p(r, v, vo, t)
dvo dv (v —V) (vo —Vo)

p(" t)
p(r, v, t)

dv (v —V) [Vo(v) —V(i]
' '

(p(r, t)

which is related to stationary and spatially homogeneous
trafBc How.

Equations (40) and (41) are easily derivable from the
moment equations (36) and (38), respectively, by use of
mo, o= p

A. Approximate closed macroscopic trafBc equations

We will now face the problem of closing the hierarchy
of moment equations by a suitable approximation. The
simplest approximations replace a macroscopic quantity
Q(r, t) (which would be determined by a dynamic equa-
tion) by its equilibrium value Q, which belongs to the
stationary and spatially homogeneous solution. Approx-
imations of this kind are zeroth-order approximations.
The simplest one is obtained by a substitution of V(r, t)
[which actually obeys Eq. (41)] by the equilibrium veloc-
ity

V, (p):= Vo —r(p)[1 —p(p)]p8 (p)

[cf. (44)]. Equations (40) and (51) obviously correspond
to the model (1) and (2) of I,ighthill and Whitham. Re-
lation (51) specifies the equilibrium velocity-density rela-
tion (2) in accordance with Paveri-Fontana's traffic equa-
tion. It could be interpreted as a theoretical result con-
cerning the dependence of V, (p) on the microscopic pro-
cesses of traffic ffow: According to (51), the equilibrium
velocity V, (p) is given by the average desired velocity Vo
diminished by a term arising from necessary deceleration
maneuvers due to interactions of vehicles.

However, according to Eq. (41), the approximation
V(r, t) = V, [p(r, t)] is only justified for r —+ 0 which is
not compatible with empirical data. Consequently, the
latter does not adequately describe nonequilibrium sit-
uations like on-ramp traffic or stop-and-go traKc where
the velocity is not uniquely given by the spatial density
p(r t).

Another zeroth-order approximation is found by leav-
ing Eq. (41) unchanged but replacing the dynamic vari-
ance 8(r, t) by the equilibrium variance

0 (p V) '= C (p V) [I &(p V)]pl (p V)
7.(p, V)

as well as the third central moment

I'(r, t):—((v —V) ):= dv (v —U)
' ' . (48)

p(r t)

(52)

[cf. (50)]. (Here, the subscript e again indicates the
equilibrium value or relation of a function. ) The result-
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ing model (40), (41), and (52) obviously corresponds to
the model (1) and (11) of Phillips, this time specifying
the equilibrium variance-density relation in accordance
with Paveri-Fontana's traKc model. A complete agree-
ment between (52) and (lib) results for C, (p, V) = C, (p),
1,(p, V) = 1,(p), and a special choice of the functional
relation r(p, V) [1 —p(p, V)] = 7 (p) [1 —p(p)].

However, it is not fully justified to assume that the
variance 8(r, t) is always in equilibrium O, (p, V), since
the corresponding relaxation time 2/7. is of the order of
the relaxation time 1/7 for the velocity V(r, t) Mo. reover,
the approximation 8(r, t) —8,[p(r, t), V(r, t)] does not
describe the empirically observed increase of variance 0
directly before a traffic jam develops [43,5]. Therefore
we also need the dynamic variance equation (46). The
remaining problem is how to obtain suitable relations for
1 (r, t) and C(r, t).

B. Euler-like trafBc equations

Before looking for dynamic relations for I'(r, t) and
C(r, t), it is plausible first to look for equilibrium rela-
tions which apply to stationary and spatially homoge-
neous traKc. For this purpose we require the equilib-
rium solution p, (v, vo) of Paveri-Fontana's traffic equa-
tion (27).

Unfortunately, it seems impossible to find an analytical
expression for p, (v, vo), but in order to derive equations
for the velocity moments (v") we are mainly interested
in, it is suKcient to find the stationary and spatially ho-
mogeneous solution P, (v) of the reduced Paveri-Fontana
equation (29). For this we need to know the relation

Vo(v) = ao + ai hv + a2 (hv) +.. . + a„(hv)"

with

bv:= v —V (54)

and arbitrary n. However, the equation that determines
Vo(v) depends on the unknown quantity

Op(v):= (55)

pe
(56)

(at least in the range of stable traffic without stop-
and-go waves) is approximately a Gaussian distribution
[60,61,3,62,33]:

P (v) = e &—v. )'/(20, ) (57)

Inserting (53) and (57) into the equation

a & Vo(v)-v~
p, = —(1 —p) p, p, hv

Ov
(58)

which corresponds to Eq. (29) in the stationary and spa-
tially homogeneous case, we find the condition

etc. , so that we are again confronted with a nonclosed
hierarchy of equations.

Luckily, from empirical data and microsimulations we
know that the equilibrium velocity distribution

a & V(v) —v&
pe

Dv T

Vp(v) —v Bp, p, ~ Bvo(v)
Bv 'r ( Bv

pe ao —v 'r

(ai —1) +
~

2a2 — '
~

hv +
~

3as —
~

(hv)
'1 8. ) E O. i

(59a)

—(1 —p)p, p, hv. (59b)

A comparison of the coefficients of (hv)" in (59a) and
(59b) leads to

Vo (v) = Vo + hv .

a g ——0, a2 ——0, a, = 1, (60)
~ith (57) and (62) we can now derive equilibrium re-

lations for C and I'. One obtains

=0

ao ——V, + r(1 —p) p, O, = Vo, (61) and

where we have utilized relation (44) with (43). Conse-
quently, for equilibrium situations the velocity distribu-
tion (57) implies

(64)

Next, we are looking for relations for nonequilibrium
cases. Assuming that the velocity distribution
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( )
p(r, v, t)
p(r, t)

(65)

P{v;r, t) = P(p) (v; r, t)
:=P.[V(r, t), 8(r, t)]

I —[v —v(v, t)] /I20(r, t)j
+2~e(~, t, )

locally approaches the equilibrium distribution
P, [V(r, t), 8(r, t)] very rapidly, we can apply the zeroth-
order approximation of local equilibrium:

8,(p, V„O ) = C, (p, V„8,)
0,= Op —2r(1 —p) p, 8,

'7t

Bp Bp OV—+V—= —pBt Br Br ' (74)

Inserting the above results into Eqs. (40), (41), and
(46), we obtain the following zeroth-order approxima-
tions of the density, velocity, and variance equations re-
spectively:

Furthermore, in order to fulfill the compatibility condi-
tion

C(r, t) = dv [v —V(r, t)][vo —Vo(v; r, t)]P(v; r, t) (67)

[cf. (47)], we must generalize relation (62) to

(75)

BV BV 1 c)(P8) 1+V + —(Vp —V) —(1 —p) po
Br p Or 7

1ÃP 1
[V(p V8) V]

p t9r 7

Vo(v;r, t) = Vp+ ' 8v
C(r, t)
0 r, t (68)

g(r, t) = Q(p) (p, V, 0) = PF(p) (p, V, 8) = 0,

whereas for the covariance the dynamic equation

(69)

V Vo= —C —8 + —{Oo —C)
ter Or 7

to-2(1 - p) PCy— (70)

can be derived from the Paveri-Fontana equation (27)
since

dvp Bv BvpP r, v, vp& t

which is fully consistent with (64). Relations (66) and
(68) yield zeroth-order relations for the spatiotemporal
variation of C(r, t) and Q(r, t). For the ffux density of
the velocity variance we find

c)8 c)8 c)V 2+V = —20 + —C —0
t9t Br Br r

2P c)V 2

p i9r 7

Equations (74), (75), and (76) are the Euler like equ-a-

tions of vehicular traffic [58]. In comparison with the
Euler equations for ordinary ffuids [52—55] they contain
additional terms.

(1) The terms (Vp —V)/r and 2(C —8)/7 arise from
the acceleration of vehicles towards the drivers' desired
velocities vp, i.e., they are a consequence of the fact that
driver-vehicle units are active systems.

(2) The term —(1 —p)p8 results &om the vehicles'
interactions. It would vanish if momentum were a col-
lisional invariant during vehicular interactions as is the
case for atomic collisions [74]. However, without this
term the "vehicular Huid" would speed up at bottlenecks
which is, of course, unrealistic.

Moreover, the covariance equation (70) is a comple-
mentary equation which arises from the drivers' tendency
to move with their desired velocities vp.

dv (8v) [Vp(v) —Vp]p(r, v, t)

3C C
dv (bv) p(r, v, t) = g —— (71)

(8vp ..——vp —Vp). (The somewhat lengthy but straight-
forward calculation is presented in Ref. [79].)

In the zeroth-order covariance equation (70) the quan-
tity

Op(r, t):= dv dvp [vp —Vp(r, t)]
' ' '

(72)2 p(r, v, vp, t)
p r~t

denotes the variance of desired velocities. The term
—8c)Vp/Br normally vanishes since the average desired
velocity Vp is approximately constant almost everywhere
(cf. [77]). Due to (64), the equilibrium variance related
to stationary and homogeneous traKc is obviously deter-
mined by the implicit relation

G. Eguilibriuxn relations and fundaxnental diagram

For vehicular tragic, the only dynamic quantity that
remains unchanged in a closed system (i.e. , a circular
road) is the average spatial density p (due to the conser-
vation of the number of vehicles). As a consequence, the
equilibrium traKc situation is uniquely determined by p
which obviously agrees with the equilibrium density p .
Equilibrium relations for the average velocity V (p, ) and
the velocity variance 0 (p ) in dependence on p, = p
can be obtained from Eqs. (44) and (73) if the relations

p(p, V, 8) and r(p, U, 8) are given (cf. [4,3]). A simple
procedure for ending a solution of these implicit equa-
tions is to numerically integrate the equations

dV = V. (p. V(u) 8(~)) —V(~)

= V. —r(P„V, 8)[1—p(P„V, 8)]~.8 —V,
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„„=0.(p. V(y) o-(y)) —0(y) v8 (p)= + [Vp —V, (p, )] + 0 ~

= 8.—2r(p. , V, O) [1 —u(p„V, O)]g.O —0 (82)

ge (pe ) ~ pe Ve (pe) (79)

can be directly compared with empirical data.
If, however, p(p, V, 0) or r(p, V, 0) is an unknown re-

lation, it is still possible to derive from the fundamental
diagram q, (p, ) the equilibrium variance-density relation
0,(p, ) for which an empirical relation seems to be miss-
ing. From (77) and (79) we get

(78)

until dV/dy = 0 and do/dy = 0. Here, we have replaced
p, by g, = g, (p„V) in accordance with Sec. VIIB in
order to take into account the space requirements of vehi-
cles. The theoretical results for the equilibrium velocity-
density relation V, (p, ) = lim„~ V(y), the equilibrium
variance-density relation 8,(p, ) = lim„~ 8(y), and the
fundamental diagram

V. APPROXIMATE SOLUTION OF
PAVERI-FONTANA'S TRAFFIC EQUATION

with

p(r, v, t) =: p(p) (r, v, t) + p(z) (r, v, t)

The trafFic equation of Paveri-Fontana was mathemat-
ically investigated in several papers dealing with the exis-
tence, uniqueness, and numerical determination of a solu-
tion which satisfies the nonlinear initial-value boundary
problem [80—82]. However, the approximate dynamic so-
lution of the reduced Paveri-Fontana equation (29) which
will be presented in this section has not been proposed
before to our knowledge.

As one would expect, in nonequilibrium situations the
zeroth-order approximation (66) does not solve the re-
duced Paveri-Fontana equation (29) exactly. Therefore,
we write

r(1 —p)g, 8,(p, ) = Vp —V, (p, ) = Vp — ' . (80)
Pe

Inserting this into (73) we find

p(p) (r v, t):= p(r, t) P(p) (v; r, t)

~
—

I.
—&( ~)j'/'I. 28( ~)]

/2ee(~, ~)
(84)

0,(p, ) = 8p —2r(1 —p)g, 8 (p, )
0.(p )

= 8p —2 [Vp —V, (p, ) ]
o-.(p. ) (81)

and try to derive a relation for the deviation p(z) (r, v, t).
Utilizing the fact that the correction term p(z) (r, v, t) will
usually be small compared to p(p) (r, v, t) we have

This results in a quadratic equation for the standard de-
viation /8, (p, ) of vehicle velocities which is solved by and we get

p(, ) (r, v, t) && p(p) (r, v, t) (85)

c)p c)p c) I Vp(v) —v l c)p(p) c)p(p)
at+"or+ av ' r =

at + ar

~(p) +,~(p)

c) i Vp(v) —v l
+ —P(o)c)v ( r

+ +Vo (v) v p(o) p(o) ~Vp (v)
r o)v 7 ( &v

(86)

(For a detailled discussion of this approximation cf.
[52,53,55].) Now, introducing the abbreviation

Relations for dp/dt, dV/dt, and dO/dt can be obtained
from the Euler-like equations (74), (75), and (76) via

we can write

d 8 i9

dt Bt Br

We find

|9 8—= —+V +bv
dt Bt Br Br (89)

P(o) P(o) d~(p)
dt

0p(p) dp t9p(p) dV p(p) d0
Bp dt BV dt 00 dt

p(o) dp p(o) dV
bv

p dt 0 dt

P(p) t'(bv)' i d8
0 ) dt

(88)

dp Bp BV
dt Or Br '

d8 c)8 BV 2

dt Br Br

(90a)

(90c)
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For the interaction term we apply a linear approximation
in p(i)(r, v, t) which is justified by relation (85). The
result is

of the order of the average interaction rate per vehicle
[53,52,54]

(1 —p) p(r, v, t) dv) (v) —v) p(r, v), t)

= (1 —p)l(.)(r v t)p(V —v)

de Lr(V, 'W; T, t)p(i) (T, lV, t) (O1a)

70

1 —p
dv diU! v) —v!p(r, v), t) p(r, v, t)

p r, t tu (e
= (I —y)p(v, t) f dv

x diU! v) —v!P(p) (v); r, t) P(p) (v; r, t)
m(~

= (1 —p)p(r t) (91c)
where we have introduced a linear operator L with the
components

I (v, v); r, t):= (1 —p) p(r, t) ([v —V (r, t)]b (v —v))

+P(o) (v; r, t) (v —u)) ) . (91b)

Here, b(v —v)) denotes Dirac's delta function. The lin-
ear operator L possesses an infinite number of eigenval-
ues I/T& (cf. [55,83—86]). The relevant eigenvalue is the
smallest one since it characterizes temporal changes that
take place on the time scale we are interested in. It is

p(1)( ) V) t)
diU Iv(V, BI; T, t)p(i) (t, tU) t)

Tp
(o1d)

Now, we calculate

The other eigenvalues are somewhat larger [55,83—86]
(i.e. , r~ ( rp for p g 0) and they describe fast fluctu-
ations which can be adiabatically eliminated [78]. As a
consequence, we can make the so-called relaxation time
approxi mati on [87]

Vo(v) —v Op(p) p(p) (OVo(v)+ —1 —(1 —p) p(o) p(V —v)

p(o) l p(o) ((-"= —
! Vo + —bv —v ! !

— 8'v
! + !

——1
! + (1 —p) p(p) p bv

p(o) ( (bv)((." —0)! 1 —
!
—(V, —V)bvT8 q 0

Inserting (86), (88), and (90)—(92) into the reduced Paveri-Fontana equation (29) we finally obtain

p(p)
(' Op OV i p(p) ( OV

P(i)(r~ v~ t) = —To ! bv ——P ! + — bv! bv
p i Or Or ) 8 ( Or

8 Op O8 1

p OT OT '7

p(p) ( (bv) 5 ( OO OV 2

O. O

p (p) C —0 ((bv)2
8 r ( 8

—li+ bv )
((bv)s

P(o)&o I 202
3bv) O8

!28) Or

&g =7p+& (o4)

Obviously, the correction term p(i)(r, v, t) is a conse-
quence of the finite interaction free time Tp which causes
a delayed adjustment of p(r, v, t) to the local equilibrium

p(p)(r, v, t). However, in order to take into account the
eKects of finite reaction time and braking time we must
add a time period 7' ) 0 to the interaction free time vp.
Hence, 'Tp must be replaced by the adaptation time

VI. NAVIER-STOKES-LIKE TRAFFIC
EQUATIONS

With the corrected phase-space density

p(r, v, t) = p(p) (r, v, t) + p(i) (r, v, t)
((bv)s= p(o)(r, v, t) 1 —r, !
g 28' (95)
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we can calculate corrected relations for the collective
(macroscopic) quantities C (p, V, O, C):= 8p —27(1 p)pC (107)

S')r ') —= (f(v)):= f ~v f(u)
p r, t

= E( p)(r, t) + E(,)(r, t) (96)

where

E~;)(r, t) = (f(v))(,) .= p(~) (r, v, t)'
dvf v

( )
(97)

We find

p(r, t) = p(p) (r, t),
8(r, t) = O(p)(r, t),

V(r, t) = V(p)(r, t),
P (r, t) = 'P(p) (r, t), (98)

and

C(r, t) = C(p)(r, t). (99)

However, for the fIux density of the velocity variance we
get

BH
P(r, t) = Q(z)(p, V, O) = pi'(jl(p, V, 8) = r. ,—(100)

where

K:= 3p7gO (101)

Op O(pV)
Ot Br (102)

is called a kinetic coeKcient. Therefore, the macroscopic
traKc equations (40), (41), and (46) assume the forms

(For a detailed derivation of (105)—(107) cf. Ref. [79].)
Equations (102), (103), and (104) are the Xavi er

Stokes like-traQc equations [58]. Compared with the
Navier-Stokes equations for ordinary Huids they possess
the additional terms (V, —V)/r and 2(0, —8)/r with
0, = C + (7/2)(1 —p)KO8/Or which are due to acceler-
ation and interaction processes. Because of the spatial
one-dimensionality of the considered traftic equations,
the velocity equation (103) does not include a shear vis
cosity term (1/p)O/Or(vpOV/Or). The variance equation
(104) is related to the equation of heat conduction. How-
ever, 0 does not have the interpretation of "heat" but
only of velocity variance here. Finally, the Navier-Stokes-
like traffic equations are complemented by the additional
covariance equation (105) arising from the tendency of
drivers to get ahead with a certain desired velocity vo.

We recognize that the first-order macroscopic traKc
equations (102), (103), (104), and (105) build a closed
system of equations. Moreover, according to (98), the
relations for the spatial density, average velocity, veloc-
ity variance, and traKc pressure did not change. In this
sense, the chosen Chapman-Enskog method for closing
the hierarchy of macroscopic equations is consistent with
its assumption, according to which only the expressions
for the Hux density of the velocity variance Q—:pI' and
the covariance C were to be improved by the nonequilib-
rium correction p(z) (r, v, t). However, note that another
relation for Vp(v) than (68) would have led to modifica-
tions of p, V, and/or 0.

We also recognize that the finite adaptation time w,

for approaching the equilibrium distribution (66) causes
a finite skewness

OV t9V 1 O'P 1
+ V = —— + —[V, (p, V, 8) —V],

Ot Br p Br (103) r z'Y:= 03/2 p83/2
OO 3r. OO

108p8'&' Or ~8 Or

and

00 00+V 2'POV 1 O ( OO)+ ——
p Or pOr ( Or )

2 00+—(C —0) + (1 —p)v
7 Br

of the nonequilibrium velocity distribution

(109)

This leads to the so-called transport terms

p(p) (r, v, t) + p(y) (r, v,t)'P v;r, t

(104)

Additionally, the corrected covariance equation becomes
and

OO

Or
(110)

OC OC OV OVp 1 O O8)
Ot Or Or Or p Or q Or p

The effect of these terms in Eqs. (104) and (105) is to
smooth out sudden changes of variance and covariance
via the second spatial derivatives of 8(r, t), namely,

+—[C,(p, V, 8, C) —C] +1 (1 —p) O8
7- 2 Br

(105)

O ( OO)
and

O ( OO)
Or ( Or)

with the kinetic coeKcient

Cg:= v —= 3pr, C0
and the equiLibrium covariance

(106)

VII. CORRECTIONS OF THE MODEL

A. Driver behavior and bulk viscosity

We remember that the term —(1/p)O'P/Or describes
an anticipation eKect. It refm. ects that drivers accelerate



2378 DIRK HELBING 53

when the traffic pressure 'P = pO lessens, i.e. , when the
density p or the variance 0 decreases. However, drivers
additionally react to a spatial change of average veloc-
ity. This e8'ect can be modeled by the modified pressure
relation

BU
'P(p, V, O):= pO —g

which gives velocity equation (103) a similar form to the
variance equation (104) and covariance equation (105).

In order to present reasons for relation (112) let us
assume that drivers switch between two driving modes
m 6 (1,2j depending on the traffic situation. Let m = 1
characterize a brisk and m, = 2 describe a careful driving
mode. Then we can split the density p(r, t) into partial
densities p (r, t) that delineate drivers who are in state
m:

Dp2 8V
Dt gr

p2 increases when the average velocity spatially decreases
(OV/Or ( 0) since this may indicate a critical traffic sit-
uation.

According to relations (114) and (118) incessant tran-
sitions between the two driving modes take place as
long as tra%c flow is spatially nonhomogeneous (i.e. ,
OV/Or g 0). This leads to corrections of the pressure
relation. Expanding P with respect to the variable B
which characterizes the disequilibrium between the two
driving modes we find [74]

BP BV
'P(p, 0, R) = 'P(p, e, 0) — pi + . . (120)

R=O

With the equilibrium relation 'P(p, 0, 0) = pO and

( t) + ( t) = ( t) .

Both densities are governed by a continuity equation, but
this time we have transitions between the two driving
modes with a rate R(pi, V) so that

t9P
p' oa R=O

we finally obtain the desired result

BV
P(p, O, R) =—P(p, V, O) = p8 —g Bp

(121)

(122)

t9pi

O,
= —O„(piV) —R(» V)

(p2V) + R(p —p2, V) .

(114a)

(114b)

A more detailed discussion can be found in Ref. [74].

B. Modifications due to 6nite space requirements

Adding both equations we see that the original continuity
equation (102) is still valid. Now, defining the substantial
time derivative

We will now introduce some corrections that are due to
the fact that vehicles are not pointlike objects but need,
on average, a space of

D

we can rewrite (114a) and obtain

(115)
s(V) = l + VT (123)

= —pi —R(pi, V) .

D/Dt describes temporal changes in a coordinate system
that moves with velocity V. Assuming that pz relaxes
rapidly we can apply the adiabatic approximation [78]

Dp]
Ds

(117)

which is valid on the slow time scale of the macroscopic
changes of traffic flow. This leads to

BV
R(pi, V) = —pi (118)

Relation (117) implies that the density pi of briskly be-
having drivers is approximately constant in the moving
coordinate system whereas the density p2 ——p —pq of
carefully behaving drivers varies with the traffic situa-
tion:

each. Here, l & lo is about the average vehicle length
whereas VT corresponds to the safe distance each driver
should keep to the next vehicle ahead. T is about the
reaction time. Consequently, if AN(r, t):= p(r, t) Ar
means the number of vehicles that are at a place between
r —Ar/2 and r + Er/2, the effective density is

AN(r, t) p(r, t)
g r, t

Ar —AN(r, t) s[V(r, t)] 1 —p(r, t) s[V(r, t)]

(124)

Since AN(r, t)s(V) is the space which is occupied by
AN(r, t) vehicles, the efFective density is the num-
ber AN(r, t) of vehicles per efFective free space Ar-
AN(r, t)s(V).

The reduction of available space by the vehicles leads
to an increase of their interaction rate. Therefore we have

d'tU dip ~v
—zU

~
g(r v tvp, t)P(r, iU vp, t)

dtU divp ~iU —v~ g(r, tu, ivp, t) p(r, v, vp, t) (125)
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with

p(r, v, v0, t)
g(r, v, vo, tj:=

1 —p(r, t) s[V(r, t)]
(126)

Consequently, we obtain the corrected relation

1—:=(1 —u)e (127),

In addition, we must replace 7 and J' by

1 —ps(U)
and

1 —ps(U)
' (128)

respectively [76]. For the kinetic coefficients rj, r, and (
we obtain the corrected relations

/ . 9
rl

1 —ps(V)
'

/ K
K —= 3@~,O,

1 —ps(V)

and
1 —ps(V)

(129)

The corrected formula

pO
I00 =

1 —ps(V)
(130)

for the equilibrium pressure corresponds to the pressure
relation of van der Waals for a "real gas. " According to
(130), the traffic pressure diverges for p -+ p „:=1/l
which causes a deceleration of vehicles.

The corrected kinetic coefficients rj'(p, V, 0),
K'(p, V, 0), and ('(p, V, 8, C) also diverge for p —+ p
[76]. We find, for example,

/ P~Prqax / 3P+
1 —ps(V)

(131)

VIII. SUMMARY AND OUTLOOK

This paper started with a discussion of the most
widespread macroscopic trafFic models. Each of them
is suitable for the description of certain trafIic situations
on freeways but fails for others. Therefore, an improved
Quid-dynamic model was derived from the gas-kinetic
traffic equation of Paveri-Fontana [2] which is very well
justified and does not show the peculiar properties of Pri-
gogine's Boltzmann-like approach [4].

For the derivation of the improved trafFic model, mo-

so that the divergence of r' is a consequence of the
finite reaction and braking time w'. This divergence
causes a homogenization of trafIic fIow since the second
spatial derivatives O/Or(rlOV/Or), O/Or(rOH/Or), and
O/Or((O8/Or) produce a spatial smoothing of the av-
erage velocity V, variance 0, and covariance C, respec-
tively.

It is the divergence of trafFic pressure and kinetic coef-
ficients for p m p that prevents the spatial density p
from exceeding the maximum density p „[5].

ment equations for collective (macroscopic) quantities
like the spatial density, average velocity, and velocity
variance had to be calculated. The system of macroscopic
equations turned out to be nonclosed so that a suit-
able approximation was necessary. Here, the well proved
Chapman-Enskog method was applied. In zeroth-order
approximation the velocity distribution is assumed to be
in local equilibrium. According to empirical data, the lat-
ter is characterized by a Gaussian velocity distribution.
Depending on the respective kind of zeroth-order approx-
imation one arrives at the I ighthill-Whitham model [10],
the model of Phillips [3,71], or the Euler-like traffic equa-
tions.

For the derivation of a first-order approximation, the
reduced Paveri-Fontana equation was linearized around
the local equilibrium solution and solved by application
of the Euler-like trafFic equations. The resulting correc-
tion term for the nonequilibrium velocity distribution al-
lowed the calculation of additional transport terms which
describe the fIux density of velocity variance and covari-
ance in spatially nonhomogeneous situations. They are
related to a finite skewness of the velocity distribution.
The shear-viscosity term vanishes because of the one-
dimensionality of the considered trafFic equations. Nev-
ertheless, a bulk-viscosity term results from transitions
between two difI'erent driving modes: a brisk and a care-
ful one.

The resulting Navier-Stokes-like trafIic equations were
finally corrected in order to take into account the finite
space requirements of vehicles. They overcome the defi-
ciencies of the former macroscopic trafIic models so that
the criticism by Daganzo [51] and others could be inval-
idated.

(1) The anticipation term which, in other models, is
responsible for the prediction of negative velocities van-
ishes in problematic situations like the one described at
the end of Sec. II since the variance becomes zero then.

(2) The density p(r, t) does not exceed the maximum
admissible density pgg (= bumper-to-bumper density) [5]
since the diverging viscosity term causes a homogeniza-
tion of traflic fIow and the diverging trafIic pressure sup-
presses an unrealistic growth of velocity which stops fur-
ther increase of trafIic density.

(3) The model takes into account different driving
styles by a distribution of desired velocities v0 which are
directly associated with the individual drivers. An exten-
sion of the Navier-Stokes-like trafIic equations to difI'erent
vehicle types (cars and trucks) is possible [88].

(4) The interaction between drivers is modeled
anisotropically since the slower vehicle is assumed not
to be afFected by a faster vehicle behind it or overtaking
it.

(5) According to the Navier-Stokes-like equations, dis-
turbances may propagate with a velocity c ) V since a
certain proportion of vehicles moves faster than the av-
erage velocity U due to the finite velocity variance O.
Therefore, in contrast to what was claimed by Baganzo
[51], it is admissible that macroscopic traffic models "ex-
hibit one characteristic speed. greater than the macro-
scopic fluid velocity" [51,89].
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Present investigations focus on the computer simula-
tion of the Navier-Stokes-like traKc equations. This work
has already been successfully started for a circular road
[5,90] and is now extended to complex freeway networks.

Moreover, the gas-kinetic and Navier-Stokes-like traKc
models can be generalized to models for multilane traKc
where overtaking and lane changing are explicitly taken

into account [88]. By this method, formulas for the rela-
tions 7 (p, V, 8) and p(p, V, 8) can be derived [91].
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