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Probability distribution of hard-disk and hard-sphere gases over finite subvolun1es
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The probability distribution of a gas consisting of Np hard disks (hard spheres) over finite
subvolumes is modeled by the hypergeometric distribution. The effects of mutual exclusion between
particles are incorporated by a density dependent effective volume per particle. This effective volume
is related to the fluctuation in particle number. The behavior of the computed efFective volume is
compared with analytical expressions calculated from well-known equations of state. Corrections
for this effective volume due to the considered finite-size effects are proposed.

PACS number(s): 61.20.Gy, 05.50.+q, 64.60.Kw

The problem of calculating the probability distribu-
tion of atoms or molecules over Rnite subvolumes can
be of interest for modeling a number of problems arising
in biology, chemistry, and physics. Applications include
phenomena associated with adsorption on solid surfaces,
configuration of fluid structures, condensation or coag-
ulation problems, or the distribution of guest molecules
over zeolite cavities.

For an ideal gas, composed of Np interactionless point
particles enclosed in a volume Vp, the probability of end-
ing N particles in a subvolume V is given by the binomial
distribution
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with p = V/Vp. However, real molecules have finite size
which leads to the fact that the probability of large values
of N is reduced. On the basis of the statistical problem
of sampling without replacement, Guemez and Velasco
[1,2] showed that the distribution of finite size particles
among mutually exclusive lattice sites (lattice gas model)
is given by the hypergeometric distribution
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where I and K are the number of lattice sites available
in Vp and V, respectively, being K/M = V/Vp.

Besides its intrinsic interest, an advantage of using the
hypergeometric distribution (2) is that it gives explicit
expressions for the mean particle number,
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and for the dispersion,

in terms of the parameters characterizing the problem. A
crucial point in order to apply the hypergeometric func-
tion to model specific systems is that dispersion (4) de-
pends on the number M of lattice sites available in the to-
tal volume Vp, for which an upper bound is corresponding
to close packing. In particular, with this choice, Rowl-
inson and Woods [3] have compared the hypergeometric
distribution with computer simulations of the distribu-
tion of methane molecules in NaY zeolite cavities, show-
ing that simulated distributions are narrower than hy-
pergeometric predictions. In general this is an expected
result since distribution (2) refers to a gas for which parti-
cles are not free to occupy any point in space, while in real
fluids the particles move continuously and they present a
less-accommodating configuration for placement in an ar-
bitrary subvolume than for the close-packing case. This
leads to an effective value of the number M lower than
that corresponding to close-packing and, in accordance
with Eq. (4), to a decrease in the dispersion of the hy-
pergeometric distribution.

The hypergeometric distribution has also been used by
Chrnelka et al. [4] to describe the experimental distribu-
tion of Xe atoms in NaA zeolite cavities. These authors
use the hypergeometric distribution with the mean oc-
cupancy number (N), and the quantities K and V/Vp
provided by the best fits to the data over the range of Xe
occupancies investigated by changing the Xe loading, but
with a Axed value of M for all the reported Rts. In the
cases examined by these authors, agreement is excellent
between the hypergeometric Gts and those obtained ex-
perimentally, except at the highest Xe loading, for which
the observed Xe distribution is also narrower than the
hypergeometric prediction.

The concrete application of the hypergeometric func-
tion to model the statistical distribution of particles in
zeolite cavities shows clearly the importance of exclusion
particle effects on the fluid behavior. In this work, we
propose to describe these exclusion effects by means of
a density (p) dependent excluded volume per particle,
v = v(p), so tha't M = Vp/v(p). Then, Eq. (4) allows
one to relate exclusion effects with fluctuations in parti-
cle number. Since, at least in the thermodynamic limit,
these fluctuations can be derived from the compressibility
factor, we have a simple way to connect exclusion effects
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with equilibrium properties of the fIuid.
We shall proceed as follows. First, we analyze the sta-

tistical distribution of hard D spheres (D = 2 and 3) over
finite subvolumes by means of Monte Carlo (MC) siinu-
lations. Second, the obtained distributions are described
by the hypergeometric function (2) with the same disper-
sion that the simulated distribution. Finally, an effective
(excluded) volume per particle, v = v(p), is computed
from Eq. (4) with M = Vp/v(p).

The simulations were done using standard MC tech-
niques for No hard particles in square or cubic boxes of
side Lp (Vp ——Lp ) with periodic boundary conditions.
The subvolume V (of side L) was located at the center of
the box with sides parallel to those of Vo. The number N
of particles into the subvolume V was calculated as the
number of hard D spheres whose center was located in
the subvolume. The number density is p = Np/Vp and rI

the corresponding packing fraction, which is defined by

(5)
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where F(x) = is the gamma function and R the real ra-
dius. Furthermore, since well-established hard-disk and
hard-sphere fluid-solid transitions occur to high enough
values of the packing fraction, we have done the MC
simulations for g & 0.65 for the hard-disk case and for

g ( 0.45 for the hard-sphere case, i.e. , below the fluid
coexistence density in both cases (rl 0.690 for D = 2,
il = 0.494 for D = 3). The simulations were done on
square boxes of sides L/R = 13 to 89, and on cubic boxes
of sides L/R = 11 to 37. The subvolurne size was taken
V = Vp/4.

Figures 1 and 2 show two typical distributions ob-
tained by computer simulation on a cubic box of side
L/R = 12.5 and Np ——64 (rI = 0.10) and a cubic box of
side L/R = 12.5 and Np ——144 (q = 0.31). For these
cases, the dispersions associated with the simulated dis-
tributions are A (N) = 5.554 and 4 (N) = 6.982, re-
spectively. These distributions are then modeled by the
binomial form (1), the hypergeometric form (2) with M
given by the number of lattice sites inside the box cor-
responding to a hexagonal close packing (HCP) lattice
(M = 345 in both cases), and the hypergeometric form
(2) with M obtained from Eq. (4) and by using the dis-
persions of the computed distributions (M = 117.98 and
M = 191.84, respectively). These theoretical distribu-
tions are also plotted in Figs. 1 and 2, where the difI'er-
ences between the observed distributions and the mod-
eled ones are also shown. It is clear that the observed dis-
tributions are much narrower than the binomial, consid-
erably narrower than the hypergeometric with M given
by the HCP lattice, and in excellent agreement with the
hypergeometric with the dispersion given by the simu-
lated distributions.

The efFective volume per particle is obtained from Eq.
(4) with v = Vp/M,
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FIG. 1. The distribution of hard spheres for Lo/R = 12.5
and No ——64 over a subvolume V = Vp/4 (Vp = Lp). The
left-hand column shows, from the top, the distribution ob-
served by MC simulation and the binomial, the hypergeo-
metric with a HCP lattice, and the hypergeometric with dis-
persion equal to the observed distribution. The right-hand
column shows the differences between the three model distri-
butions and the observed one.
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Flc. 2. Same caption as Fig. 1 but for Lp/R = 12.5 and
Np ——144.
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and with the dispersion b, (N; Lo) given by the com-
puted distribution. The variation of the effective volume
per particle versus the packing fraction for various boxes
sizes is shown in Fig. 3(a) for the hard-disk case and in
Fig. 3(b) for the hard-sphere case. These results confirm
our expectations: as the packing fraction (density) de-
creases, the effective volume per particle increases. More-
over, these results also show that for a fixed value of g
the effective volume per particle increases with the box
size, approaching a limiting value.

Furthermore, the dependence of the above results on
the subvolume size is also of interest. In Fig. 4 we have
plotted the effective volume per particle v versus the ratio
L/R for Lo/R = 45 and for two intermediate packing
fractions (q = 0.403 for D = 2 and q = 0.170 for D = 3).
We have found that v remains practically invariant in a
range of subvolume sizes such that 6 & L/R & 41 for D =
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FIG. 4. Dependence of the effective volume per particle v
with the ratio L/R for Lo ——45R and for g = 0.403 (D = 2)
and g = 0 170 (D = 3).

2, while this range is more reduced, 12 & L/R ( 39, for
D = 3. This behavior does not change appreciably with
the packing fraction. This fact means that the subvolume
size must be chosen large enough so that edge effects can
be neglected. Also one should avoid edge effects in the
remaining subvolurne (Vo —V), and restrict the maximum
subvolume size accordingly.

In the thermodynamic limit, Eq. (6) becomes

~ R 1 A (N)
r(1+ —,) n (N)

with the mean value (N) given by Eq. (3) and where
we have used the notation v(q) = v(g; oo) and A (N) =

(N; oo). On the other hand, from the compressibility
factor, Z(rI), we can derive the relative fluctuation as [5]

0 0.1 0.2 0.3 0.4 0.5 0.6
A (N) 0= kgyTpyT = [rIZ(rl)]
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where yT is the isothermal compressibility and T the
absolute temperature. From Eqs. (7) and (8) one gets

which provides the basis for deriving the excluded volume
v(rl) from the compressibility Z(rl).

For the hard-disk case (D = 2) the simplest equations
of state are of the type

0 0.1 0.2 0.3 0.4

Z(rI) = (10)

which contains the results of the scaled particle theory
(SPT) (b = 0) [6] and the Henderson (H) equation of
state (b = 0.125) [7]. Using Eqs. (9) and (10), one gets

FIG. 3. Behavior of the effective excluded volume per par-
ticle v versus the packing fraction rl for hard disks (D = 2)
and hard spheres (D = 3), and for different sizes of the box
side Lo. Symbols stand for v obtained from Eq. (6) with dis-
persion A (N; Lo) given by the computed distribution. Solid
lines stand for Eq. (11) with b = 0 (D = 2) and for Eq. (13)
with b = 0 (D = 3). Dashed lines correspond to v obtained
from Eqs. (21) and (22), and parameters (2 and (z given in
Flg. 7.

4 —3(1 —b)rl + (1 —b)rl'
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For the hard-sphere case (D = 3) the simplest expres-
sions for Z(rI) have the form [5]
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4, (4 —g) [2+ (1 —b)q']
v q = mB— '

3 1 + 4g + 4@2 —4bqs + bq4
(D = 3).

which contains the results of the Percus- Yevick compress-
ibility (PY-c) (b = 0) and the Percus- Yevick virial (PY-v)
(b = 3) equations, as well as the Carnahan-Starling (CS)
equation (b = 1). Using Eqs. (9) and (12), one gets

These equations are compared with aBc(q) given by Eq.
(16) in Fig. 5. We can see discrepancies smaller than a
0.5% between our results and BC results.

In the case of hard spheres (D = 3), using the PY-c
equation of state, Baus and Colot [9] have obtained

(13) aBC(g) = 2 + g

1+2' (D = 3). (19)
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Then, Eq. (9) leads to
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i.e., our hypergeometric model provides a simple expres-
sion for determining the scaling parameter a(g) in terms
of a prescribed equation of state. Baus and Colot (BC)
[8] have found a different equation for determining a(q) in
terms of Z(g) by imposing in the obtained DCF the same
degree of thermodynamic consistency as in the Percus-
Yevick DCF.

To test Eq. (15) (and thus the hypergeometric model)
we can compare with BC results. No analytical results
are known for hard disks (D = 2) in the BC approach.
In this case, by fitting numerical results, Baus and Colot
[9] give the expression

We note that the all reported analytical expressions for

v(q) verify the conditions v(0) = vr / (2R) /I'(1 + 2 )
and v(1) = vr /2BD/I'(1 + 2 ). Furthermore, we found
that v(g) shows very little sensitivity to Z(g). In partic-
ular, the efFective volume per particle v(g) given by Eq.
(ll) with b = 0 (SPT) for hard disks and by Eq. (13)
with b = 0 (PY-c) for hard spheres is plotted with solid
lines in Figs. 3(a) and 3(b), respectively.

On the other hand, some expressions for the direct cor-
relation function (DCF) of a hard-core fluid have been
recently proposed on a semiernpirical basis [8,9]. The
proposal is based on the geometrical concept of the over-
lap volume of two D spheres with an effective (rescaled)
radius B' = a B, the scaling ratio a being a density de-
pendent quantity, i.e. , a = a(g). In the present context
v(g) and a(g) are related by

From Eqs. (12) and (15) with b = 0 [or, equivalently,
from Eqs. (13) and (14)] one gets

(4 —n)(2 + n') '
(1+2„)

This equation is compared with aBc(q) given by Eq. (19)
in Fig. 6. We can also see discrepancies smaller than
0.6% between our results and BC results.

Finally, we analyze the problem of the inHuence of the
size of the system on the excluded volume. Figure 3
shows clearly the results for v(g; Lo) obtained by model-
ing the MC simulations with the hypergeometric distri-
bution approach to the limiting analytical results as Lo
increases. Since we have found that there are no signi-
Gcative differences between the results for the excluded
volume obtained from different equations of state, we
shall study finite size effects on only the SPT case for
hard disks and the PY-c case for hard spheres (recall
that PY-c coincides with SPT for D = 3). In order to
take into account these finite size effects we propose to
modify Eqs. (16) and (19) with b = 0 in the form

2-

1.6

aBc(g) = 2+ gn(q)
1+g + qn(q)

(D = 2) (16)

with n(g) = —0.2836+ 0.2733'.
In our framework, from Eqs. (10) and (15) [or, equiv-

alently, from Eqs. (11) and (14)] one gets
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FIG. 5. Behavior of the scaling parameter a versus the
packing fraction g for hard disks (D = 2): dotted line stands
for the BC result [Eq. (16)], solid line for the SPT result
[Eq. (17)], and dashed line for the H result [Eq. (18)]. The
inset shows the relative differences (asPT —GBc)/aBc (solid
line) and (aH —aBo)/aBo (dashed line) versus g.
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FIG. 6. Behavior of the scaling parameter a versus the
packing fraction q for hard spheres (D = 3): dotted line
stands for the BC result [Eq. (19)] and solid line for the
PY-c result [Eq. (20)]. The inset shows the relative differ-
ence (apv —aso)/aso versus q.

FIG. 7. Behavior of the parameters (q (o) and (s (A) [see
Eqs. (21) and (22)] versus the inverse of the box side R/Lo.
Solid lines stand for the corresponding least-squares fit.

(2 —~3) —(3 —2~2)U + &
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(D = 2), (21)
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2 —(2 + rjo. (rl)
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(D = 2) (23)
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aac(g, (3) = 1+ (2 —$3)rl

(D=3),

where the parameters (3 and (3 depend on the size of
the system and are determined from a nonlinear fit of
Eqs. (21) and (22) with v(rl; Lo) obtained from the MC
simulations data. These fits are shown in Figs. 3(a)
and 3(b) with dashed lines. The corresponding values
of (2 and (3 versus R/Io are plotted in Fig. 7 and we
see an excellent straight-line behavior in both cases. A
least-squares fit yields (3 = (3.88 + 0.13)R/Lo and (3 =
(3.10 6 0.17)R/Lo.

We have also analyzed the finite size effects on the BC
results for the scaling parameter a(rl). We propose to
modify Eqs. (16) and (19) in the form

without a microscopic basis. The reason for this proce-
dure is twofold: first, by analyzing the values taken by
the parameters (2 and (3 one can easily establish a fi-
nite size behavior in the MC data, and second, it is not
clear (if possible) how to obtain and approximate expres-
sion for v(rl) [or a(rl)] in a finite system because we lack
a well defined equation of state and, furthermore, the
expression (8) linking fluctuations with the equation of
state will certainly not hold.

To conclude, we have shown that the statistical dis-
tribution of hard disk and hard sphere fluids in finite
subvolurnes can be described by a hypergeometric dis-
tribution by incorporating a density dependent effective
(excluded) volume per particle v. From this idea, this
study connects the exclusion effect between particles with
the fluctuations in the particle number, and so with the
equation of state. The problem of the influence of the size
system on the excluded volume has been also addressed.

with the values (2 ——(3.86 + 0.18)R/Lo and (3 —(3.10 +
0.24)R/L,

At this point it must be noticed that Eqs. (21)—(24)
are simple modifications of the expressions in the thermo-
dynamic limit. These modifications have been proposed
heuristically in order to reproduce the MC results and

ACKNOWLEDC MENTS

This work was supported by the Direccion General de
Investigacion Cientifica y Tecnica (DGICYT) of Spain
under Grant No. PB 92-0279.



53 PROBABILITY DISTRIBUTION OF HARD-DISK AND HARD-. . . 2365

[2]

[3]

[4]

[5]

J. Giiemez and S. Velasco, Am. J. Phys. 55, 154 (1987).
J. Giiemez, S. Velasco, and A. C. Calvo Hernandez, Phys-
ica A 152, 226 (1988); A 152, 243 (1988).
J. S. Rowlinson and G. B. Woods, Physica A 164, 117
(1990).
B. F. Chmelka, A. V. McCormick, L. C. de Menorval, R.
D. Levine, and A. Pines, Phys. Rev. Lett. 66, 580 (1991).
See, for instance, J. P. Hansen and I. R. McDonald, The-

ory of Simple Liquids, 2nd ed. (Academic Press, London,
1986).

[6] H. Reiss, H. L. Frisch, and J. L. Lebowitz, J. Chem.
Phys. 31, 369 (1959); E. Helfand, H. L. Frisch, and J.
L. Lebowitz, ibid. 34, 1037 (1961).

[7 D. Henderson, Mol. Phys. 30, 971 (1975).
[8] M. Baus and J. L. Colot, Phys. Rev. A 86, 3912 (1987).
[9] M. Baus and J. L. Colot, J. Phys. C 19, L643 (1986).


