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We have developed an effective field theory based on the Singwi, Tosi, Land, and Sjolander
approximation for the density-density response function to investigate the properties of hard-sphere

fluids.

Simple analytical expressions are provided for the effective potential, the static structure

factor, the Fourier transform of the direct correlation function, and the isothermal compressibility.

From the hydrodynamic theory, we have also calculated the collective modes.

Our results are in

good agreement with those obtained from molecular dynamics simulations at intermediate densities.

PACS number(s): 51.10.+y, 52.35.Dm, 61.20.Gy

I. INTRODUCTION

The hard-core fluids play a fundamental role in the
theory of liquids as a reference system for various pertur-
bation theories. One well-known theory of hard-sphere
fluids is that of Percus and Yevick (PY), whose analytical
solution of the integral equation yields results of consider-
able success [1]. Another approximation is the hypernet-
ted chain approximation, which, to a much lesser extent,
gives useful results for the direct correlation function ¢(r)
[2]. Verlet has proposed a semiphenomenological equa-
tion for the radial correlation function g(r), which yields
results with great accuracy compared to “exact” numer-
ical results [3]. Based on a geometrical interpretation
of ¢(r), Baus and Colot construct a general expression
of ¢(r), which is consistent with previous results for any
dimensions [4].

The Singwi, Tosi, Land, and Sjélander (STLS) theory
[5] is one of the most successful approaches to the many-
body problem. First developed to study the electron cor-
relations of the electron gas at metallic densities, the the-
ory has been applied to several other many-particle quan-
tum and classical systems. Even though the majority of
the calculations of the STLS scheme have been devoted
to determining dielectric properties of systems with long-
range potential, there are some works dealing with short-
range interactions, in particular Bose and Fermi systems
[6-9] and classical liquids [10]. Recently it has been ap-
plied to the investigation of a charged system with a hard
core [11].

In this paper we developed a theory based on the
effective mean field obtained from the decoupling of
the two-particle correlation function in the Bogoliubov-
Born-Green-Kirkwood-Yuon hierarchy, as originally for-
mulated in the STLS approach, to the case of a classical
hard-sphere fluid. In contrast with previous theories that
give expressions for ¢(r), the STLS scheme provides di-
rectly an analytical expression for its Fourier transform
c(k), or the structure factor S(k). In Sec. II, we derive
the analytical expression for S(k) in the effective-field
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approximation and in Sec. III we present our numerical
results for the radial correlation function g(r), the com-
pressibility and the collective modes of the hard-sphere
fluid.

II. STRUCTURE FACTOR IN THE
EFFECTIVE-FIELD APPROXIMATION

In the STLS theory, the wave-vector- and frequency-

dependent density-density response function x( k ,w) is
written as

_)
?,w) = Xo( k,w) , 1
. 1—T(k) xo( & .

’w)

where ¥ (k) is effective local field potential and XO(?’ w)

is the density-density response function of the non-

interacting system, which in the classical case is given

by [12,13]

_—_)

Rexo( k ,w) = —pp[1 — 2yF(y)],
H

Imxo( k' ,w) = —pByv/myexp(—y?), (2)

where y = (mB3/2)/%w/k, 8 = 1/kpT, and F(y) is the
Dawson integral.

Within the STLS theory, the effective potential can
be related to the pair correlation function g(r) by the
following expression:

U(r) = —/ood'rg(r) %g, 3)

where V' (r) is the bare potential. In the present study,
we consider the bare potential as

Vi) — {X

where o is the hard-core diameter and V; is the strength

r<o
r>o, (4)
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of the potential at the diameter (a positive number). In
the hard-core limit V must be taken as infinite.

On the other hand, through the fluctuation-dissipation
theorem and the Kramers-Kronig relation, we can ex-
press the static density-density response function x(k) in
terms of the static structure factor S(k) as

x(k) = —pBS(k). (5)

By combining Egs. (1) and (5), and using from Eq. (2)
the result xo(k) = —p0 for the ideal system, we arrive at

1
W) = sty ©

where now ¥(k) is obtained by substituting Eq. (4) into
Eq. (3) and taking the Fourier transform of ¥(r). The
result for the hard-sphere system is [8]

j1(ko)
2, @

where ji(z) is the first-order spherical Bessel function
and g(o) is the radial correlation function at r = . The
radial correlation function and the static structure factor
are related through a Fourier transform:

1
4 Gy [ 5@ =17 P (®)
By introducing the dimensionless variable k = go, defin-
ing the packing fraction n, which is the expansion param-
eter in the virial series, by n = wpo3/6, and substituting
Eq. (7) into Eq. (6) we obtain the following expression of
the structure factor:

k
kT 2an F k)’ ®)

where f(n) = VpBg(c). In the usual STLS scheme,
Eq. (8) with » = o, and Eq. (9) are solved in a self-
consistent way in order to determine g(c). We expect
that in the limit ¥y — oo (hard-core limit) g(o~) goes
to zero [8]. However, for classical hard-core fluids such
an interactive procedure leads to computational difficul-
ties and furthermore to wrong results even in the regime
of low densities (n < 1) because of the highly repulsive
nature of the hard-core region. One can also use g(o)
as an adjustable parameter taken from experiments [6].
In this work we choose an alternative way by taking the
equation of state of a hard-sphere fluid which is given as

[1]

[%P =1+41f(n) (10)

U (k) = anVyo?g(o)

g(r) =

S(k) =

and the expression of Carnahan and Starling [14]

BP _1+n+n*—7n°
IR -

in order to obtain the value of the function f(n). It is
worth emphasizing that the original Carnahan-Starling
formula has an extraordinary accuracy as compared with
molecular-dynamics results over the whole fluid range. It
was used to construct a similarly accurate expression for
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the radial distribution function [15]. It was argued that
Eq. (12) can be derived from an unusual kind of mean-
field theory, where the motions of a particle in different
directions are uncorrelated [16]. Using Egs. (10) and (11)
into Eq. (9), the structure factor for the hard-sphere lig-
uid assumes a simple analytical expression

k
Stkom) = 1 [12n(2 —n)/(1 — n)3] 1 (k)’ (12)

and the direct correlation function, which are related to
the effective potential through

c(k) = —B¥ (k) (13)

can be written as

B 129(2 — n) j1(k)
(1-m)3 &

Equations (12) and (14) are the main results of this pa-
per. We must note that the PY integral equation, which
is the most successful of the first-order integral equations
as pointed out before, at least for short-ranged potentials,
gives ¢(r,n) [17] while the STLS approach gives directly
S(k,n) or c(k,n).

pc(k,m) = (14)

III. NUMERICAL RESULTS

In Fig. 1, we present the comparison of our analytical
expression of S(k) for two values of the packing fraction
n with the results, represented by points, from molecular-
dynamic simulations [18]. We see the well-defined struc-
ture of the peaks at higher density, which agrees reason-
ably well with the “exact” computer simulations results.
Figure 2 shows the direct correlation function of the hard-
sphere system, given by Eq. (14) for some values of . We
have observed that even Eq. (12) is valid for all values of
7, within the STLS scheme, the results come to present
considerable differences from the numerical simulations
for values of i above 0.3.

0.0 -
0.0 10.0 20.0

k
FIG. 1. Structure factor in the effective-field approxima-

tion, given by Eq. (12), for two values of the parameter 7.
The wave number % is in units of 0~ !. The points are results
taken from dynamic molecular simulations (Ref. [18]).
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FIG. 2. Fourier transform of the direct correlation func- FIG. 4. Ratio of the isothermal compressibility for the

tion, given by Eq. (14), for three values of 7. The wave number

k is in units of o1,

The radial correlation function g(r,7n), where r is in
units of o, given by Eq. (8), can be rewritten in terms of
the structure factor S(k,7n) as

glrym) =1+ [)w kdk[S(k,n) — 1] sin(kr),  (15)

127nr

The PY equation for g(r) was first solved by Wertheim
[19] and Thiele [20]. Even though there are explicit ana-
lytical expression for g(r) in the PY approximation in the
literature, they are given, for instance, in terms of expres-
sions involving complex variables and can be reproduced
only by actual numerical calculations [21]. In Fig. 3,
g(r) in the effective-field approximation is depicted for
three values of 7 and compared with the results of Monte
Carlo calculations by Barker and Henderson [22]. Al-
though the STLS scheme predicts values of g(r) near the
core, which are smaller than the MC values, it gives the
correct period of the oscillations of g(r). At higher 7, the
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FIG. 3. Pair distribution function for the some values of

7 .The distance r is in units of 0. The points are the results
of Monte Carlo calculations in Ref. [22]. Successive plots are
displaced by 0.2.

hard-sphere fluid as a function of 7. The points are results
taken from Ref. [18].

pair correlation function (not shown in Fig. 3) exhibits
clearly the oscillatory behavior, but the values are far
away from these data.

The direct correlation function ¢(r,n) can also be ob-
tained analytically. The Fourier transform of Eq. (14)
gives straightforwardly the result c(r,n)=-3n(2 — n)/
m(1 — n)® independent of the distance. This result is
in contrast to the PY solution in which ¢(r,n) has a
polynomial expression. So, we conclude that the STLS
theory reproduces the simple empty-core model for the
direct correlation function, which consists in approximat-
ing ¢(r,n) by a rectangular empty-core function of a con-
stant depth. This simple model shows the main thermo-
dynamic features due to the insensitivity of c(k,n) to the
short-range form of the direct correlation function [23].

The knowledge of S(k,n), given by Eq. (12), allows us
to determine the compressibility of the system since the
compressibility equation relates the value of S(0) to the

0.0

0.0 2.0 4.0 6.0 8.0
k

FIG. 5. Generalized adiabatic sound velocity as a function
of k in units of o~ ! for two values of 77. The points are results
taken from dynamic molecular simulations (Ref. [18]).
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FIG. 6. Dispersion relation of the collective modes for

two values of 7. The wave number k is in units of o~ !. The
points are results taken from dynamic molecular simulations

(Ref. [18]).

compressibility xr through

X2 = 5(0,m), (16)
XT

where x5 = 1/8p is the compressibility of the ideal sys-
tem. In Fig. 4 the ratio of compressibilities for the hard-
sphere system is plotted as a function of  and compared
with the two values available from the numerical simula-
tions [18].

As the theory is dynamic in nature, we can also de-
termine from the poles of the response density-density

function X(?, w), given by Eq. (1), the long-wavelength
collective modes of the system, which are sound waves
[24]. However, we prefer to introduce the simple ana-
lytical expression of S(k) in the hydrodynamic approach
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given in Ref. [18] to calculate the generalized adiabatic
sound speed and compare with the results arising from
computer experiments. We write the hard-core sound
dispersion as

w(k) = (k) k, (17)

where C,(k) defines the generalized adiabatic sound ve-
locity. Following the derivation in Ref. [18] in the limit
of short-time limit, whose behavior is correctly described
by the kinetic theory, we obtain

e i} o

where C? = 5/33m. Figure 5 shows our results for
the generalized sound velocity, which are compared with
those from numerical simulations. Again the agreement
is reasonably good. We also show in Fig. 6 the sound
dispersion relation w(k)/I' as a function of k, where
I' = 6y,/1/7Bmo? is the collision rate withy = BP/p—1.
As pointed out in Ref. [18], we note the striking resem-
blance of the curves with the phonon dispersion curves
in liquid helium.

In summary, we have calculated some thermodynam-
ical and transport properties of the hard-sphere system
from an effective-field potential that provides a very sim-
ple analytical expression for the structure factor. Our re-
sults are in good agreement with numerical results from
computer simulations for 1 below 0.3.
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