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We discuss the spanning percolation probability function for three diQerent spanning rules, in
general dimensions, with both free and periodic boundary conditions. Our discussion relies on
the renormalization group theory, which indicates that, apart from a few scale factors, the scaling
functions for the spanning probability are determined by the fixed point and therefore are universal
for every system with the same dimensionality, spanning rule, aspect ratio, and boundary conditions.
For square and rectangular systems, we combine this theory with simple relations between the
spanning rules and with duality arguments, and find strong relations among diBerent derivatives of
the spanning function with respect to the scaling variables, thus yielding several universal amplitude
ratios and allowing a systematic study of the corrections to scaling, both singular and analytic, in
the system size. The theoretical predictions are numerically confirmed with excellent accuracy.

PACS number(s): 64.60.Ak, 05.70.Jk

I. INTRODUCTION

The function B(p, L), giving the probability for a fi-

nite dilute system of size L to span (or percolate) at (site
or bond) occupancy p, arises naturally in the context of
the real-space renormalization group (RSRG) approach.
This approach is based on partitioning the underlying
lattice into cells of size 6 and replacing all b" sites by
a single supersite. Reynolds et aL [1] studied the one-
parameter approximation of the renormalization group
(RG) transformation, which declares the supersite oc-
cupied if there exists a percolating cluster spanning the
original cell. In this approximation, the renormalized cell
has occupancy p' = B(p, b). This approximation led to
good quantitative results concerning the numerical val-
ues of the percolation threshold and provided excellent
approximations to the critical exponents. However, this
approximate RSRG calculation yielded B(p„oo) = p,
and therefore this quantity was thought to be nonuniver-
sal.

The study concerning the universal aspects of the span-
ning probability function was initiated. by I anglands et
al. [2]. This work dealt with the spanning of rectangular
systems and showed. numerically that the spanning prob-
ability for the in6nite system at the critical threshold
is a universal function of the aspect ratio of the rectan-
gle. Inspired by these numerical results Cardy [3] de-
rived an analytical formula for this function using the
conformal invariance of the spanning probability in two-
dimensional (2D) percolation. This formula agreed with
numerical results for various 2D percolation problems in
Ref. [2]. The latter authors later generalized the analyti-
cal formula for other shapes (e.g. , parallelograms [4]) and
found good agreement betweeen the numerical evidence
and analytical predictions from the conformal invariance,

confirming, in particular, the universality of the spanning
probability as a function of the aspect ratio also for these
other shapes [4].

Working independently, Grassberger [5] found that for
the site problem on th~ square lattice, with spanning de-
fined according to the rule Ri of Ref. [1] (spanning in
one given direction, free boundaries in the other direc-
tion), the numerical evidence supports that R(p„oo) =
1/2 g p, . He also pointed out that this value is con-
sistent with the bond problem for which B(p„L) = 1/2
for every L [6], indicating universality. The spanning
probability for the site problem was subsequently stud-
ied with better numerical accuracy by Ziff [7], who re-
confirmed B(p„oo) = 1/2 and argued that while this
value is consistent with universality with the bond prob-
lem, the result contradicts the RG theory because the
approximate RG transformation of Ref. [1] would imply
that R(p„oo) = p, g 1/2. In the work accounting for
our early results [8], we pointed out that this apparent
nonuniversal R(p„oo) in the RG of Ref. [1] is an arti-
fact of the naive application of the one-parameter ap-
proximation of the RG transformation and showed that
a correct application of the RG theory implies not only
that B(p„oo) is generally universal, but also gives that
B(p„oo) = 1/2 exactly for rule %i on the square sys-
tems [9], in agreement with the results from the confor-
mal field theory [3,2,4]. Further discussion of the approx-
imate RSRG is given in Appendix A.

Having identified the universal spanning probability as
a characteristic of the fixed point of the RG transforma-
tion, one is well motivated to start asking questions about
the scaling behavior of this function, for finite p —p and
L. It is well understood [10] that near the critical point
the spanning probability depends on the scaling variable

(p —p, )L ~". Subsequently Ziff [7] made attempts to
study the scaling behavior of the function B(p„L) be-
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yond the one-parameter approximation by introducing
an analytical finite-size correction (proportional to 1/L)
to the spanning probability function. We criticized and
generalized this approach [8] by arguing that, in fact,
for p near p, one should expect R(p, I) also to depend
on the infinite number of the irrelevant variables (w;),
which give rise to nonanalytic corrections proportional
to (L 'J. In 2D percolation, the leading correction to
scaling has Oi 0.85 [11],which should generally domi-
nate the finite-size correction for large L.

Our application of the RG theory [8] also gave a num-
ber of predictions concerning universality and scaling in
percolation, containing, in particular, predictions con-
cerning several universal amplitude ratios. Those predic-
tions were checked for different 2D lattices against our
preliminary data in Ref. [8]. While these universal am-
plitude ratios are not restricted to two dimensions, this
inspired. several papers, which checked and verified our
predictions also in higher dimensions [12,13].

During this process Gropengiesser and Stauffer [13]
found out that diferent boundary conditions yield difer-
ent values for the spanning probability at criticality. Re-
cently, Hu [14] also studied the spanning probability for
free and periodic boundary conditions and noticed that
difFerent boundary conditions give diferent scaling func-
tions near the critical region. In fact, similar behavior is
known [15] to occur for the Ising model, which has differ-
ent scaling functions for free and periodic boundary con-
ditions, while the critical point and the critical exponents
remain unchanged. Very recently, Hu and Chen [16] have
also studied the bond problem on a honeycomb lattice of
rectangular shape and found that diferent aspect ratios
give diferent scaling functions.

In this paper we employ and study the machinery of
Ref. [8] in more detail. We present a theory for the
spanning probability, valid in general dimensions, which
treats systematically the corrections to scaling and ex-
plains, e.g. , the previous findings of Refs. [13,14,16]. Our
approach relies on the general result from the RG that
the scaling functions are universal [17,18,8], reflecting the
fact that close to p all the percolation problems look sim-
ilar. The scaling variables appear in the scaling functions
together with nonuniversal metric factors [19].

However, we find that these scaling functions do depend
on the physica/ question we pose, i.e., they depend on the
shape of the system, boundary conditions, and spanning
rules, but not on the lattice connectivity. This can indeed
be expected from the RG theory because all the scaling
functions are determined by the physical question one
asks at the RG fixed point. The fixed point, which lies in
the many-dimensional space of the coupling constants,
is the same for all the problems with the same dimen-
sionality but arbitrary finite-range connectivity. These
statements already explain the difFerent scaling functions
[giving also different values for R(p„oo) [13]]for various
boundary conditions [14] and aspect ratios [16].

In other words, the spanning rule, boundary condition,
and system shape each corresponds to an additional vari-
able. The spanning probability is ultimately a univer-
sal function of all these variables. Following Langlands
et al. [2,4] we are able to consider the universal depen-

dence of the spanning probability on the additional vari-
able representing the aspect ratio of the rectangular sys-
tem [9]. We also discuss the dependence on the spanning
rule and boundary conditions.

Although we present numerical results for 2D percola-
tion, our approach yields several predictions, which are
valid in general d dimensions: R(p„oo) is not necessarily
equal to p, but is a universal number; the universality of
the scaling function is manifested. through universal am-
plitude ratios. We also predict that with fixed occupancy
p and for the spanning rule Ri, the spanning probability
in d dimensions scales as R(L) = [a (p)] for all p ( p,
and [1—R(L)] = [a+(p)] for p ) p, (see Appendix B).

The rest of the paper is organized as follows. In Sec. II
we give a general scaling theory for the spanning proba-
bility function. These general principles are then applied
for 2D percolation in Sec. III. First (see Sec. III A), work-
ing specifically with 2D square systems with free bound-
aries, we find. that the scaling functions have to obey sev-
eral conditions arising from duality arguments and from
sum rules that connect difFerent spanning rules. Due to
the universality of the scaling function, these restrictions
force several derivatives of the scaling function to van-
ish and this simplifies the expansion as a power series in
the scaling variables that represent irrelevant fields in the
RG sense. We find that for systems that obey duality, the
metric factors for the scaling variables do not depend on
the spanning rule. The power series expansion makes it
possible to check numerically several universal amplitude
ratios. Extending the discussion to rectangular systems
(see Sec. III C), we write the spanning probability as a
universal function of (p —p, ), (~,), and the aspect ratio,
which gives again several universal amplitude ratios. At
the end of Sec. III, similar predictions are worked out
for periodic boundary conditions (Sec. III D). Numerical
verifications of the various theoretical predictions are pre-
sented in Sec. IV. Finally, a short conclusion completes
the paper in Sec. V.

II. SCALING THEORY
FOR THE SPANNING PROBABILITY

In this section we study the general properties of the
spanning probability function R(p, L), which is the prob-
ability that a finite cell of size L spans at occupancy
p. The main result of this section is that the spanning
probability is a universal function of the scaling variables
for given dimension, spanning rule, boundary condition,
and system shape, but independent of lattice structure
and (finite) interaction range. It directly follows that the
spanning probability at criticality is a universal number.

A. Scaling relations

Near the critical point the spanning probability func-
tion depends on the scaling variables, including t
(p —p, ), the system size I, and the irrelevant variables

(cd;j (i = 1,2, . . .),
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R(p, L) = F(At, (B,u); ), L), (1)

where A and B;, which make the arguments of the
function E dimensionless, are nonuniversal metric fac-
tors [19,18]. One expects that the metric factors A and
B, are the only nonuniversal system-dependent parame-
ters entering the universal scaling functions because the
metric factor for the system size can be set to unity by
a suitable choice of A and B,. After choosing the metric
factors, the function E is universal, i.e. , it is the same
for all problems with the same dimension, spanning rule,
aspect ratio, and boundary conditions.

Upon the renormalization transformation with the
length rescale factor 6, the scaling variables are expected
to obey the linearized recursion relations

(2)

(3)
(4)

where the scaling powers are written in terms of the cor-
relation length exponent v and the correction to scaling
exponents 8, & 0. In particular, in two-dimensional per-
colation one has v = 4/3 and the leading irrelevant scal-
ing field has 6i = 0.85 [11]. Equations (2) and (4) are
the origin of finite-size scaling.

In addition to the irrelevant scaling fields, we have to
deal with the finite-size corrections. The leading finite-
size correction depends most strikingly on the boundary
conditions of the system. It is plausibly expected that the
leading finite-size correction to R in the systems with free
boundaries is of the order 1/L, which is also numerically
confirmed by Ziff [7]. This kind of a correction arises, e.g. ,

if the variable L in F should be replaced by L + a due
to the free boundaries. On the other hand, for periodic
boundary conditions we expect that the 1/L correction
vanishes because a shift in the boundaries just translates
the system without affecting the system size.

These finite-size corrections can be brought into the
scaling framework [Eq. (1)] by treating them as "irrele-
vant fields" with 82 ——l. In what follows we append the
finite-size corrections together with the correction terms
u; arising from the irrelevant scaling fields. We shall later
check the similarities and the differences between these
two types of corrections. One should also be aware that
further contributions to the scaling function may arise
from nonlinear scaling fields [20], but these terms are ig-
nored in the present treatment.

Ignoring the transient steps and close to p, we may
renormalize the system until L = b' [10], which yields

R(p, L) = F(AtL ~, (B;~,L ' ), 1)
—:F(AtL ~, (B,ur, L *})
= F(» (B'y*)) = F(* (y'f),

where we have defined x = tL /", x = Ax, y; = w;L
and y; = B;y, (i = 1, 2, . . .). This equation gives the gen-
eral scaling form for the spanning probability in terms of
the universal scaling function F(x, (y;)) and nonuniver-
Sa/ metric factors A and B,.

The universality of F immediately implies that R(p =
p„L ~ oo) = F(0, 0) is universal (for given spanning
rule, boundary conditions, and aspect ratio) independent
of the metric factors How. ever, the derivative of F with
respect to x obeys ——A . and therefore we have

the freedom to set ——1 at x = y, = 0 for one spe-
cific problem on a particular lattice and thus fix A for
that system. Having chosen A that way, all other scal-
ing functions will be universal functions of x = Ax, with
no further choice of scales [17]. Thus, if we now change
the problem (e.g. , from periodic to free boundaries), then
the new function F„, is a universal function of x = Ax,
with the same scale factor A. Specifically, we expect

o to be universal.
An alternative approach, which we adopt below, is

to set a different scale factor for each problem, e.g. ,
A„, for the latter case, such that

1. Universality then implies that

A„, /A = ~g'"
~ „o is also universal. Similar rules,

involving & ~ „o, are used to set the (now problem-
Qyi x=y; =0 &

dependent) metric factors (B,).
The universality of R(p„oo) immediately implies that

it need not be equal to p, [7]. This becomes readily
apparent from our RG formulation, which treats the ir-
relevant scaling variables in a systematic way. In fact,
one can show that R(p„L ~ oo) g p, also within the
one-parameter approximation [1] of the RG transforrna-
tion (see Appendix A). When carefully applied, the one-
parameter approximation can also be used to extract use-
ful information concerning, e.g. , the scaling of the span-
ning probability at a fixed occupancy (see Appendix B).

III. SPANNING PROBABILITY
IN 2D PERCOLATION

B. Scaling function for the spanning probability

Renormalizing the system with the length rescale fac-
tor b and with the help of the recursion relations Eqs. (2)—
(4), we find that for given spanning rule, boundary con-
ditions, and aspect ratio,

Up to this point, our results are very general and apply
at any dimension, spanning rule, boundary conditions,
etc. From now on we restrict ourselves to 2D percolation.

A. DifFerent spanning rules for square systems
with free boundaries

R(p, L) = F(At, (B;~,), L)
= F(Atb ~", (B;cu;b '), I/O)
= F(Atb'~, (B;;b "'),L/b'). (5)

In their seminal papers (see Ref. [1] and also refer-
ences therein) Reynolds et al. discussed three different
rules, denoted by Ro, Ri, and R2, for spanning a cell
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of size 6 using free boundary conditions. These rules
state that the cell percolates if there exists a cluster that
foi' %p spans the cell either horizontally or vertically, for
%i spans the lattice in one given direction (say, hori-
zontally), and for %2 spans the cell in both directions.
Each of these rules involves a different scaling function
F, (A x, B; „y,), r = 0, 1, 2, with diferent limiting values
E (0, 0). However, all the scaling functions are deter-
mined by the RG fixed point. As mentioned above, our
convention also allows for difFerent metric factors for each
rule.

In this section we study the relations among the scal-
ing functions and metric factors. We find that sum rules,
arising from the definitions of the spanning, and duality
arguments give powerful relations between the deriva-
tives of the functions F„. This simplifies the expansion
of the scaling functions as power series in the scaling
variables. These series are employed in the numerical
studies.

where A, „= &
" (0, 0) are universal numbers, which mayBI„

also be zero.

2. Duality and its consequences

If we use free boundary conditions, further information
can be extracted by considering two dual lattices, e.g. ,
square lattices with nearest-neighbor (NN) and NN+
next-nearest-neighbor (NNN) connectivity. Then one
has [1]

Ri(p, I ) + R' (q, I) = 1,

Rp(p, L) + R2(q, L) = 1,
(12)
(13)

where primed quantities refer to the dual lattice, which
has occupancy q = 1—p and q = 1—p . Using the univer-
sality of the spanning probability function, which gives
that B„and B„' are equal to the same scaling function F„,
and noting that x' = L'~" (q —q, ) = I '~" [1—p —(1—p, )] =
—x, one may rewrite the previous equations in the form

Suan rules

The three spanning rules are not completely indepen-
dent of each other. Using elementary algebra of proba-
bilities one finds that the probability to span the cell in
either direction (Fp) is equal to the probability to span
the cell horizontally (Fi) plus the probability for verti-
cal spanning (Fi), minus the probability for spanning the
cell in both directions (E2) [1]. This gives the connection
between the three scaling functions

Fi(Aix, (B; iy;)) + Fi(—A', x, (B,' iy;)) = 1,

Ep(Apx, (B py )) + F'2( —'A2x, (B 2y )) = 1.
(14)

(i5)

We emphasize that these relations do not hold if one uses
periodic boundary conditions for the spanning because
there is no duality between these lattices in that case
(see Sec. III D).

We can now proceed as before. Substituting x = y; = 0
in Eq. (14) yields directly the result for the spanning
probability in a square system according to the rule %i,

Fp(Apx, (B, py, f) = 2Fi(Aix, (B, iy, ))
F2(A, x, (B—, 2y, )).

At the fixed point, x = I ~ (p —p, ) = 0 and y;
~,I ~' = 0 and we find that

Fp(0, 0) = 2Fi(0, 0) —F2(0, 0),

(7)

1F.(0, o) =—
2

Similarly, the corresponding probabilities are comple-
mentary for rules %p and %2,

Fp(0, 0) + F2(0, 0) = l.

relating the universal limits for diferent spanning rules.
Equation (7) also reveals connections among the scale

factors for the diferent spanning rules. Taking the
derivative of Eq. (7) with respect to x and evaluating
the derivatives at criticality, we find

Ap „(0,0) = 2A, (0, 0) —A2 (0, 0),
8Fo BF» OF2

Ao ——2A» —A2 (10)

and confirms that ratios A~. jAy are universal. Similarly,
we find the relation between the amplitudes B,„,

B',o&;,o = 2B',»&', »
—B',2&.-,2,

where all the derivatives of the universal scaling func-
tions are also universal numbers. Supposing that all of
them are nonzero, one may normalize the scale factors
by setting s '(0, 0) = z '(0, 0) = z '(0, 0) = 1, which
gives a sum rule

A» ——A»,

Ao ——A2)

B;»4;» ———B,'. »4;»,
B',o&',o = —B,',2&',2.

(»)
(i9)
(20)

(21)

For a self-dual system, such as the bond problem on the
square lattice, Eq. (20) implies that

(22)

On the other hand, the ratios between the metric fac-
tors for the irrelevant fields are expected to be universal,
which is plausible only if L, » ——0, otherwise B, »

——0 for
all the lattices. As we discuss below, this condition need
not apply to the 1/L finite-size corrections. In what fol-
lows we therefore set L, » ——0 for the irrelevant fields.

Taking the derivative with respect to x or y; and eval-
uating the derivatives at x = y; = 0, we find that ampli-
tudes for dual lattices satisfy
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The universal ratios for the metric factors are set by
choosing A, o = 4' 2 = 1, when Eq. (21) gives

B; p
———B,'. 2. (23)

D F (Aox, (B,,oy;)) = (—1) + D F2(—Aox (—B,, oy, )),
(25)

where D" = „„,, k = Q. k, , and n = 1, 2, . . . .

In particular, Eq. (25) implies that D Fi(x, (y;f) is an
even (odd) function of both its variables for odd (even)
n. Specifically, this implies that

D "Fi(0,0) = 0. (26)

Similarly,

Continuing to take higher derivatives, we realize that
the dual properties [Eqs. (14) and (15)] give powerful
relations between the derivatives of the scaling functions:

D"F,(A», (B,,,y;]) = (—1)"+'D"F,(—A», (—B,, ,y;)),
(24)

Combining Eqs. (32) and (26) we find that actually all the
derivatives of Fi taken with respect to irrelevant variables
at x = y; = 0 vanish and therefore B(p„l) does not
depend on y, .

At this point it is important to distinguish the irrel-
evant scaling fields and the finite-size corrections. The
argument leading to Eq. (22) is exact for both kinds of
corrections in self dual -systems. However, extending this
condition for other systems, which are not self-dual, re-
lies on the universality between the ratios of the metric
factors. This latter condition must hold only for the cor-
rections due to the irrelevant scaling fields. Therefore,
Eqs. (22) and (31)—(33) are expected to hold generally for
irrelevant fields, but the finite-size corrections obey only
the weaker condition Eq. (11). In particular, B(p„I,)
may stijl depend on the finite-size correction 1/1.

Collecting all this information together, one finds the
expansions of the spanning probability function near the
fixed point. Expanding in powers of y;, rule %i gives

Fi(Axl {Bi,lying) = —+ fi (») + ).[(Bi,iyi)fgq(Ax)]
Z

+ ).I(B',»') (Bi,».)fs,, (»)]

D"F.(0, 0) = (-1)"-'D"F,(0, 0). (27)
+ ~ ~ ~ (34)

We can use the information of Eqs. (26) and (27) to-
gether with the general sum rule of Eq. (7). A second
derivative of Eq. (7) with respect to x, combined with
Eq. (26), yields

where the functions f are defined by

f;(Ax) = F, (Ax, (B, ,y, = 0))
—F (0, (B, iy, = 0)), (35)

O~F
(A —A ) = 0. (28) gN —XI,f..„„(A.)=(, - (A. , (B„„, 0))

Thus we find Ao ——A2, consistent with Eq. (19) for self-
dual lattices. Combiinng this with Eq. (10) implies that,
in fact, the amplitudes for difFerent rules are all equal
Ap = A] = A2 = A. We shall see below that equal
amplitudes are indeed confirmed numerically. Thus the
universal ratios A)/AI, are all equal to one.

Similarly, taking derivatives of Eq. (7) and using
Eqs. (26) and (27), we find

A [B; o
—B,. 2]D + Fo(0, 0) = 0 for l + m even, (29)

A'[B'; o + B; 2]D'+ Fo(0, 0) = 2A'B; iD'+ Fi(0, 0)

for l + m odd. (30)

Due to the universal ratios between the metric factors,
these equations imply that

B,,p ———B;,2)

for N ) 1. (36)

Fo(Ax, (B,,oy;)) = Fo(0, 0) + f,'(Ax)

+ ).[(B',»') f2';(Ax) 1

+ ).[(B*,»') (B~,o») fs;, (»)]

+ ~ ~ ~ (37)

where fi (0) = 0 and the [f2, (x)] are even functions for
the irrelevant fields.

The discussion above implies that fi and fs, are odd
functions, while f2i; are even [8], and f~, & (0) = 0 for
the irrelevant fields.

The other two rules can be expanded similarly. For
example, rule %o gives

consistently with Eq. (22) for self-dual lattices. Further-
more, we find that

B. Predictions for square systems
with free boundaries

D + Fi(0, 0) = 0 for even l, odd m,
D'+ Fo(0, 0) = 0 for l, m odd.

(32)
(33)

In this section we discuss the consequences of the ex-
pansions of the spanning probability near the critical
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point. We can check these expansions studying the func-
tion P„numerically at p as a function of the cell size

L [7]. On the other hand, since d
" gives the proba-

bility distribution for a finite system of size L to span for
the first time at occupancy p [10], we can alternatively
study the central moments of this distribution [23]

„dBI.(p)
p

(38)

n = 1, 2, . . . . As will be explained in the next section,
the derivative " L is calculated numerically for a set of

discrete values of p, which gives a histogram &
~ (p;) rep-

Ap
resenting the derivative [10]. The histogram is properly
normalized such that P, &

~ (p, ) = 1. The moments are

then calculated using p = P,.(p; —p, ) &
~ (p, ).

In the numerical work we expect that as the system
size L gets large, the behavior of the spanning proba-
bility function can be characterized by the leading (non-

analytic) correction 6i due to the irrelevant scaling fields
(confiuent corrections) and by the analytical correction
62 ——1 from the finite-size corrections. The leading non-
analytic correction has been given in the literature [ll],
and we expect 6~ = 0.85.

Let us concentrate first on the rule %i. As discussed
after Eq. (32), R(p„I ) does not depend on the irrelevant
scaling fields (w;). However, this does not exclude the
finite-size corrections, of order 1/L, for the case of free
boundaries. In that case we have

Pq(0, (B y )) = 1/2+ a, L ', 62 = 1,

and Eq. (22) gives that ai ——0 for self-dual systems. This
result gives the theoretical basis for Ziff s [7] finite-size
scaling form for these systems. In fact, it follows from
the universality with the self-dual lattices.

Since fi (x) and fs, (i) are odd, Eq. (34) implies that
the nth moment for rule %i, pi ~ ——J' dp(p —p, )~ "& ',
multiplied by (AI i~

) scales as

d ioL '+dnoiL '+O(L ) for nk+t = odd
d~, op + d~, 2oL ' + d~, iiL ' ' + d p2I '+ O(I ') for n, k+ t = even, (40)

where

dn, kl —(+1~1) (&2~2)
0 ~

& Bgg Bg2
(41)

where

F (0 y*) = [1 —& (o o)l+ b'L "
+a2/L + b2L (43)

(44)
Equation (40) reveals that as L i oo the odd (scaled)
moments vanish, but even scaled moments approach
nonzero values. The coefficients (d I,~) are proportional
to the amplitudes for the correction terms. In particular,
comparing L /'

pq ——A d oo between different rules
as depicted below, we can check the prediction that the
amplitudes A are independent of the spanning rule.

In addition, Eq. (40) also gives a very important pre-
diction concerning the moment ratios. As L —+ oo, the

inoment ratios p /p2 for even n depend only on the
universal scaling function and therefore they are expected.
to be universal. These moment ratios are easy to study
numerically and therefore we have concentrated on them,
but in addition to that there exists an infinite number
of universal ratios between the correction terms (d
e g ~ dn, I o/(dn, io)

The other two rules obey similar expansions. First,
the spanning probability at the critical threshold can be
expanded as

Ep(0, y, ) = Ep(0, 0) + b, L
+a /L+b I

bi —— bi, an—d ap = 2ai —a2 [see Eq. (39)]. For
these spanning rules the irrelevant scaling fields should.
be present even at p, . The main point in Eq. (44) is that
although the b&'s are not universal, the ratios b&/(bi)" in-

volve only the derivatives of the universal scaling function
and should therefore also be universat. However, in ad-
dition to the finite-size corrections, higher-order scaling
fields give contributions proportional to L ', with 63
apparently of order 2, thus making the numerical confir-
mation of these universal amplitude ratios very difFicult.
The universal amplitude ratios for the irrelevant variables
are more easily seen in the case of periodic boundary con-
ditions (see Secs. III D and IV).

Second, the scaled moments are given by

pp„= (AL ) po, ——e o+) e IIL
k, l

(45)
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p2 „=—(AL'~")"y 2 „
' ~ ~= (—1)"

i e„o+) e„l,)L (46)

F„(p,I, r) = Fg(p, I, 1/r) = F (F+) for r ) 1 (r & 1).
Studying horizontal (or, equivalently, vertical) span-

ning in two dual lattices and cells of size I x rI and
L/r x L (r ) 1, for simplicity) reveals that

where the (e„g~)'s are analogous to the (d„k~)'s, F (p, I-...) +F+(1 p, -I., 1/. ) =1. (53)

(Bi~i) (B2~2)k

~ ~

x dxx" „„„,(x, (y; = 0)).
t9& Bgg t9g2

(47)

Transforming both terms on the left-hand side using the
scaling relations [see Eqs. (5) and (6)], we find that

F (AtL i, (B;(u,L '), 1, r)

The moment ratios p /pi depend only on the universal
scaling function and are thus universal. Furthermore,
as before, with extremely good data one could also check
and verify the universal ratios between the (e„z~)'s [e.g. ,

e, h, o/(e, io) "]
Because the amplitudes A are found to be equal for

all the rules, we expect from Eq. (7) that as L +oo-
the scaled moments also obey the sum rule po
2p, q ~ —p, 2 and, in fact, d~ qo ——e 00 for even n. These
predictions are equivalent to equal A's for different rules.

+F+( AtL —~", (B;(u,L '), 1/r, 1) = l. (54)

In what follows it is useful to introduce a new variable
s = ln(r/rp) [2]. In this paper we always set rp = 1
because the nonmultiplicative constant in s, ln(rp), can
be set to zero by the suitable definition of the rectangu-
lar system [9]. With this new variable and denoting the
probability for the horizontal spanning by Eh, we find

Fh, (Ax, (B;y,), Cs) + Fh( Ax, (B,—y, ), —C's) = 1. (55)

C. Rectangular systems with free boundaries

In this section we extend the discussion above to rec-
tangles [9], which have recently been studied by Lang-
lands et al. [2,4] and Cardy [3], who used arguments
based on conformal mappings. In particular, Cardy de-
rived an analytical formula for the spanning probability
for the infinite rectangular system with Ri. Here we also
concentrate on rule %i.

Define the aspect ratio r for a rectangular lattice of
width L and height H by r = H/L. The amplitudes for
the variables t, (u;} are expected to remain unchanged
and all our earlier results should emerge by setting r = 1.
We start by looking at the function E (F+), which is the
probability for the horizontal spanning for r ) 1 (r & 1).
Thus the spanning probability function is given by

F = F+(At, (B,~;),I, H) (48)
= F+ (Atb i", (B;~,b * ), L/b, H/b), '(49)

where the last equality follows from rescaling with b. If
r & 1, we can set 6 = I and have

F (p, L, r) = F (AtL ~", (B (u;L . *},1, r).
Ifr &1, wecanset b=H andfind

F+(p, L, r) = F+(AtH i", (B,~;H *),r, 1) (51)

= F+(At(L/ )' " (B* '(L/ ) ') " 1).

(52)

The solutions E+ match at r = 1,I = H and we define
the probability for horizontal spanning as Fh(p, L, r) =
E+ (F ) for r ) 1 (r & 1). The probability for the ver-
tical spanning F„ is then given by the simple identity [2]

Taking different derivatives all our earlier results emerge
at s = 0. For s g 0 we find that C= C'a nd Fg-
F~(0, 0, 0) = Fh, —1/2 is odd in x = Ax, (y, = B,y;) and
8 = C8. Expanding near criticality and s = 0 we find
that

F(x, (y, },s) = —+ fo(s) + fi(x, s)
2

+) y;f2, (x, s) + (56)

where fp is odd in s, fi(x, s) is odd in x and a,

gk+l ~
k!t!8"sB'x

k, l (0,0)

s"x with k+ t odd, (57)

while f2; contains only even powers of s and x.
With this form we can make contact with other recent

work on rectangular systems. Cardy [3] argued that the
spanning probability for an infinite rectangular system
is universal and derived the analytical formula for fp(s).
His formula for fp(s) is indeed odd in s. This fact follows
here from scaling, universality, and duality.

Similarly to the case of square systems, the different
spanning rules (also studied in [2]) and boundary con-
ditions can change the functional form of the universal
function E and therefore also fp Therefore for. the other
spanning rules and boundary conditions fo need not to
be odd in s. However, we have just established that for
given spanning rule and boundary condition the spanning
probability function is a continuous universal function of
the scaling variables AL ~"(p —p, ), (B;w;) and Cs. In
principle, by introducing two additional (yet unidenti-
fied) scaling variables, which would account for the con-
tinuous change in the spanning rules and boundary con-
ditions, the universal spanning probability function could
be generalized further.
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Due to the extensive recent work [3,2,4], which con-
firms that fp is odd in s, we are left to verify our form
of fi in the case of horizontal spanning with free bound-
aries. With Axed 8, the nth moment scales as

p,„(s)—:(AL ")"p„(s)
= a-, i(s) +).y'y-, 2'(s) +

(58)

(59)

where we have introduced universal functions g. For
even n, we find that g ~ is even and the g 2 s are
odd functions of 8. For odd n, g q is odd and the
g„,2 s are even functions. From Eq. (56) we argue
that the moment ratios p„/pi depend on s, but reflect
the symmetry between aspect ratios r and 1/) through
(V' /pl)(s) (p /pl)( )'

D. Square systems
with periodic boundary conditions

Systems with periodic boundary conditions do not pos-
sess dual symmetries. If we have a certain configuration
of occupied and vacant sites, duality means that if occu-
pied sites span horizontally, then vacant sites do not span
vertically on the dual lattice. It is easy to invent a coun-
terexample and show that this does not hold for periodic
boundary conditions. Therefore, we have no reason to
expect that the spanning probability functions have any
particular even or odd symmetry.

However, the generic features are expected. to hold.
The forms of the spanning probability functions depend
on the spanning rule; usually the limit of B at criticality
is not equal to p, but is a universal number; the sum
rules of Sec. IIIA 1 at criticality also remain valid. The
metric factors for two different scaling functions are de-
termined as discussed above and have uni. versal ratios.
We can expand near criticality and find

I"(»(y')) = fo+ fi(&) + ) .[y'f '( 2)]~

+) [y*y'fs')(~)l+ (60)

with universal functions f At the criti.cal line t = 0 the
data should scale as

+(0 (y')) = fp+) bo'L '+) bi'~L ' '+"
(61)

with universal amplitude ratios bi,) /(bp) b;p). Similarly,
the scaled nth moment p = (AL ~") p is a universal
function of y;. Finally, the moment ratios p„/pi are
universal numbers as I ~ oo.

The main advantage of periodic boundary conditions
concerns the absence of the finite-size corrections of order
1/I. Thus the leading term in Eq. (61) should always
come from a singular irrelevant field.

IV. NUMERICAL RESULTS AND DISCUSSION

In order to check the theoretical predictions we mea-
sured the spanning probability and central moments p„
for site-bond percolation on a square lattice, using square
and rectangular system shapes. We mainly used rule %i
and free boundaries. Most of the other possibilities (rules
Rp, %g, and periodic boundary conditions) were checked
only for the pure site and bond problems.

A. Numerical methods

Numerical data were generated using the hull generat-
ing walks, which were first used to generate the perco-
lation cluster perimeters by Ziff et at. [21]. The method
has been used in studies of the spanning probability by
Grassberger [5] and Ziff' [7]. In particular, using the hull

method, Ziff was able to measure the percolation thresh-
old for the site problem on the square lattice very ac-
curately, p, = 0.5927460 + 0.0000005 [7]. This result
demonstrates the power of this method. We now give a
very short account of the hull method (for a more detailed
discussion see Refs. [5,7]). We describe the method in the
case of the site problem on a square system, but exten-
sion to the other connectivities and recta&&gular shapes is
straightforward.

Consider a square cell of size L „with free boundaries
for which the spanning along the vertical direction occurs
if there exists a cluster connecting the bottom and the
top boundaries. We check if there is such a cluster by a
leftward biased walk, starting from the lower left corner
of the lattice (see Fig. 1 of Ref. [7] for illustration). One
step of the walk is generated by the following algorithm.

(i) Attach a pointer to the NN site on the left-hand
side.

(ii) Check the pointed NN site.
(iii) If the state of the site is undetermined, then oc-

cupy it with probability p and make it vacant otherwise.
(iv) If the site is vacant, then move the pointer to the

next clockwise neighbor, and go to (ii).
(v) If the site is occupied, then move the walker to this

occupied site and go to (i).

The walk efFectively creates a lattice configuration and
checks the spanning simultaneously. In order to make
sure that a walk does not terminate before the walker
reaches either the top row (sample percolates) or crosses
the right edge (sample does not percolate), we have to
add a column of vacant sites on the left and a row of
occupied sites on the bottom.

The method is easy to implement and it is very
fast compared to the traditional Hoshen-Kopelman
method [22]. Although restricted to two dimensions, we
found the method especially attractive because it is very
easy to collect data for the spanning probability at fixed
occupancy p as a function of the cell size. Suppose one
keeps two variables x „and y, denoting the max-
imum x and y coordinates that the walker has visited.
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Then one can record data for all the cell sizes up to I
as intermediate results of the walks, because if at one
instant y~~„& xm~x we know that the cell of size x~~x
must span.

In its original form the method is perfectly suited only
for the rule Ri, for which we have done most of our sim-
ulations. However, by randomly filling the lattice and
using the hull method for only checking the spanning [ig-
noring step (iii) above] one can easily extend the method
also for rules %o and %q by doing two walks. First we
have to check the spanning along the vertical axis and
then do another walk kom the left lower corner, trying
to turn to the right, in order to check the spanning along
the horizontal axis. With the information of these walks
we can get the data for all the three spanning rules simul-
taneously. Here we lose some efBciency by having to fill
the whole lattice, but we still get data for all the lattice
sizes up to the maximum size as intermediate results of
the walks.

The moments were calculated using standard percola-
tion algorithms for generating the derivative

& [10] at
fixed cell size L (in this work L = 20 —400). The method
consists of filling the lattice with random numbers, evenly
distributed between 0 and 1, and doing the binomial
search in p in order to find the value of p for which this
particular configuration spans the cell for the first time.
For each configuration of the random numbers we started
from the initial guess p = 1/2 and checked if the con-
figuration spanned at this occupancy (i.e. , we declared
occupied all the sites with random numbers smaller than
p). If the system did not span, we increased p by 2
where n is the number of the iteration. If there existed a
spanning cluster we decreased the trial p by 2 " . Re-
peating this binomial search for 14 times we found that
this particular configuration spanned for the first time
between p and p + Lp with Ap = 2 = 6 x 10 . Our
approximation for the "threshold" became p+ 2'. Re-
peating the same procedure for many (typically around
10 ) configurations, we collected the histogram for these
threshold p's, H(p;), with p; = (i + 1/2)Ap. This his-
togram is proportional to the derivative

&
~ [10]. Mo-

ments were finally calculated by summing over the his-
togram p P,.(p, —p, ) H(p, ). This convention auto-
matically takes care of the normalization of the moments
by Q, H(p;) = 1.

lations with fixed bond occupancy were treated similarly.
As a first step the critical point was then estimated using
the data for the derivative

& (or & ). From Eq. (40) we

find that

~ 7266

A

V

~7264-

Therefore we could plot the average x, (x), versus

L ~",adjusting 6 until the data fell on a straight line,
and extrapolate to I —+ oo in order to estimate the crit-
ical point and get some feeling of the leading correction.
A straight line was best achieved around 6 = 0.9, as de-
picted in Fig. 1 for the site-bond problem with p = 0.75.
It is visible from Fig. 1 that the estimate for the critical
point is quite insensitive to the precise value of the efFec-
tive correction exponent 6 and the estimated threshold
is the same (within +0.000 02) for r9 = 0.8 —1. Resulting
estimates for a few critical points on the critical line are
listed in Table I.

Using these points as estimates for the critical points,
we calculated the spanning probability at (p„x,) as a
function of L (see Fig. 2). Figure 2 also displays data for
the bond problem on the triangular lattice. All the curves
approach 1/2 as the cell size gets large, with the leading
correction proportional to 1/I. We have also studied the
site problem on the triangular lattice and the site prob-
lem with NN and NNN connectivity on the square lattice,
which also yield A(p, oo) = 1/2. In. particular, the site
problem on the triangular lattice has R(p„ I) = 1/2 for
all L, similarly to the bond problem on the square lattice
[see Eq. (39)]. The fact that the spanning probability ap-
proaches 1/2 for all the systems demonstrates that it is a
universal number, which does not depend on the lattice

B. Free boundaries

Square shapes urith rule %i

4.4..-
~7262 ~'

We first measured the critical points for selected site-
bond problems. In general, there exists a certain critical
site occupancy p for each fixed bond occupancy x and
vice versa. These points [p, (x) or x, (p)] form the critical
line in the (p, x) plane, connecting the critical point for
the site problem (0.592 746, 1) to the critical point for the
bond problem (1, —).

For simplicity, assume for a while that we measured
data with fixed site occupancy p and varied x. The calcu-

.001

L
—0—

FIG. l. Average x [(x) = P, x, z (x,)] for the site-bond

problem with p = t .75 versus L " for three di8'erent
values of r9: r9 = 0.8 (~), r9 = 0.9 ($), and r9 = 1.0 (k). The
straight lines are the least-squares its for the data L & 64.
The extrapolation to L ~ oo gives x = 0.726 19+ .000 01 for
all the 8 = 0.8, . . . , 1.0. Similar behavior was also observed
for the other site-bond problems.
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pc
0.5927460 (5)
0.615185(15)
0.667280(15)
0.732100(15)

0.75
0.815560(30)

0.85
0.95

1

From Ref. [7].

1
0.95
0.85
0.75

0.726195(15)
0.65

0.615810(30)
0.533620(30)

0.5

(site problem)

(bond problem)

TABLE I. Estimates of a few critical points for the
site-bond problem. The estimated uncertainty is denoted in

the parentheses.

and ps/pz ——17.7 6 0.3 as L ~ oo, supporting our pro-
posal that these ratios are universal. Also, as pointed out
by Ziff [23], these moment ratios imply that "& ' is not
Gaussian. We can compare our results for the moment
ratios with Ziff's [23] results for the pure site and bond
problems: 3.15+0.05 and 18.5+0.5 for p4/pz and ps/pz,
respectively. Our slightly difFerent result for ps/p2s is pre-
sumably due to our larger cell sizes (up to L = 400).

Concerning the expansion of the spanning probability
function in terms of the scaling variables, it is illustrative
to check first the linearized version of the expansion of

1
F(»u') = 2+fi(*)+).i'f 2(*)

type or interaction range.
Typical results for the scaled moments p, = L ~ p

are displayed in Fig. 3. Odd moments indeed vanish
faster than L /", confirming that fi(x) is odd. From
the same data we also calculated the moment ratios
p4/@22 and ps/pz, which are displayed in Fig 4. The
leading correction for the moment ratios is proportional
to L ', but the data in Fig. 4 show little dependence on
the system size, suggesting that the corrections to scaling
are small, as compared to the numerical noise, already for
systems with L ) 100. Averaging the data from systems
with L & 140, we estimate that for the site-bond prob-
lems on the square lattice one has p4/pz ——3.174+ 0.025

0q . (&)

o~ ~
....o.... ~----&

.00--- - '

o
'sj )

-.01- V ' . gV

-.02-

= —+ fi(x) + uif2i(x) + u2f22(x),
2

(63)

~02

L
—0)

~04

.54

.52-

V .50
V

Q.
K

.48-

e
~ e

e e
~ e ~

~ e g

k

ooao a
ooo o

e
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e

a o
0 0

Ol

40 ~ V
$% %
~S gtt

20 oo0 0 0
000 0 0

0
0

.46
~2

-20)
.001

FIG. 2. Spanning probability as a function of 1/L for dif-

ferent site-bond problems with spanning rule %r. We also
show the data for the bond problem on the triangular lattice.
All the systems have E(0, 0) = 1/2. Markers refer to the data
for diferent points on the critical line. From top to bottom:
site problem (p, x, ) = (0.592746, 1) (~), (0.615 185, 0.95) ($),
(0.66728, 0.85) (~), (0.732 10, 0.75) (i), (0.75, 0.726 195) (A),
(0.81556, 0.65) (V), (0.85, 0.61581) ( ), and (0.95, 0.53362)
(0); bond problem (p, x, ) = (1, 1/2) (o). The lowest data
are for the bond problem on the triangular lattice (~).

FIG. 3. Typical behavior of the moments for rule %i. (a)
pi = L pi vs L ' with 8r ——0.85 and (b) p2 ——I p2
vs L '. Markers denote difFerent site-bond problems: site
problem (p„x,) = (0.592 746, 1) (~), (0.615 185, 0.95) (f),
(0.66728, 0.85) (~), (0.732 10, 0.75) (k), (0.75, 0.726 195) (A),
(0.81556, 0.65) (V), (0.85, 0.61581) ( ), and (0.95, 0.53362)
((&); bond problem (p„x,) = (1,1/2) (o). The data drawn

with open symbols were calculated keeping the site occupancy
fixed and the data represented with filled markers were cal-

culated keeping the bond occupancy fixed. The dashed lines

in (a) are only to guide the eye.
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3.24 {a}

0
C4 43.18 Q)cl'

P

correction, i.e., the function f22(x).
We proceed by fitting a smooth function to the data at

Lo ——100, where the data are apparently well described
by Eq. (64), and we can ignore the higher-order terms.
Using the data for two difFerent system sizes we can elim-
inate the function f22(x) Rom Eq. (64) and the function

f2i(x) should be given approximately by

3.12-

.001

L 'Gr, ( ) —I 'GL„( )
21 0L-&.++. L ~~+~~

0
(65)

L2

18.6 ~ ~ ~ ~ ~ ~ ~ ~ ~

Similarly, eliminating the function f2i(x), we get the
function f22(x),

L~' GI. (x) —Lo ' GI„(x)
22 x

0
(66)

180 y 0
~ s0 ~ ~

~ Q

174 cg

16.8 ~ ~ ~ a ~ ~ ~ L ~

0 .001

L
—2

FIG. 4. Moment ratios (a) y4/y2 and (b) ps jp~ versus
L ' for diferent site-bond problems. Markers are the same
as in Fig. 3. The horizontal dashed lines at (a) 3.174 and (b)
17.7 are averages of the data for systems with L & 140.

with 8q ——0.85 and 82 ——1, where the metric factors
are appended to the functions f We can p. roject the
odd function fi out of the data by studying the function
G(x) =

2 [F(x,y;) + F( x, y, ) —1].—For large L we have

G~(x) = ).y'f2'(x) = L '"f»(x) + L 'f»(x) (64)

Resulting estimates for the even functions f2i(x) and

f22(x) are displayed in Figs. 5(c) and 5(d), respectively.
Our crude approximations and noise in the numerical
data cause a large scatter, but within the scatter we see
a reasonable data collapse for our range of system sizes.
This supports the form of the expansion near criticality
as proposed in Eq. (34).

In particular, Fig. 5 demonstrates that even in the
leading order it is necessary to use both the finite-size and
the leading irrelevant scaling fields. It is clearly visible
in Fig. 5 that the analytic correction is dominant at the
critical point and the results are consistent with the ana-
lytical prediction f2i(0) = 0 [see Eq. (22)]. However, the
situation is quite the opposite far away (x & 1) from the
critical point, where the singular correction dominates.
As discussed in Sec. IIIA2, the fact that f22(0) g 0
demonstrates that Eq. (22) does not hold for the finite-
size corrections for systems that are not self-dual.

From the same data we have checked the prediction
(see Appendix B for the derivation) that with a fixed
occupancy p g p„ the spanning probability R„(L) de-
pends exponentially on L. The data shown in Fig. 6
confirm this prediction and show in particular that close
to p and for L + oo, where the assumptions L )) ( and
( oc (p —p, )

" both hold, one has

In this respect we have studied only the site problem, for
which the data for I s5Gi, (x) and LGL, (x) are shown in
Figs. 5(a) and 5(b). In particular, we see &om Fig. 5(b)
that for x = Li~ (p —p, ) & 1 the data for Io GI, (x)
with various cell sizes I collapse well into a single curve.
The data collapse is less satisfactory with the analytical
correction, which deviates systematically from a common
curve [Fig. 5(b)]. Because the analytical correction arises
from boundary efFects, it is plausible that it vanishes as
( (( L, where ( oc (p —p, )

" is the percolation correlation
length. This is satisfied as x )& 1. Therefore, this large
x "tail" can be identified as f2i(x), whose data collapse
confirms the existence of the correction with 8q = 0.85.
However, for small x, i.e., closer to the critical axis t =
0, the situation is more complicated because there the
data show a substantial contribution from the analytical

Rp(L) = [+-(I)]"""' "
for p (p, (67)

1 —Rp(L) = [1 —P+(1)] (" " ~~+ = C

for p& p. , (68)

where the functions F~ are defined in Appendix B and
C~ are constants as long as the corrections to scaling
are ignored. Deviations from the common curves for the
data below and above p, which are visible in Fig. 6, are
due to these corrections to scaling.
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FIG. 5. (a) The function L Gl. (x) for sev-
eral system sizes L: L = 60 (~), L = 100
( ), L =200(o), L=300(o), L=390
(A), L = 395 (~), L = 640 (k), L = 800
(f), and L = 1000 (~). The left-hand
side has 8 = 1.0 and the right-hand side
is plotted with 0 = 0.85. For L ( 400
we studied 10 con6gurations for each p and
the data for I ) 400 were obtained from
2 —3 x 10 configurations per given p. (b)
Same data as in (a), enlarged for x)l. (c)
The scaling function f2i(x) from various sys-
tem sizes 400 ) L & 200. Data for lat-
tice sizes L ) 400 have large statistical noise
and therefore are not plotted. (d) The scal-
ing function f22(x) from various system sizes
400) L & 200.
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2. Square shapes arith rules Rs and Gas

This section is devoted to the diferent sum rules de-
scribed in Sec. III A 1. For that purpose we have studied
only the pure site and bond problems, with the spanning
rules %p and %2.

The spanning probabilities at the critical threshold p
are shown in Figs. 7(a) and 7(b) for the rules %p and R2,
respectively. We estimate that Fp(0, 0) = 0.6778+0.0003
and F2(0, 0) = 0.3222 6 0.0003, in excellent accordance
with the analytical formula from conformal invariance [4),
which yields Fi (0, 0) = 0.6777 and F2 (0, 0) = 1—Fp (0, 0).

Fitting the data for rule %„at p, (say, for the range
L & 6) with the expansion

&v (b)
~ ~

~v~
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+v

~ X

~ v
v

~ a

(a)101
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cL 10-4

0
4'

OO

O 0
~D

a.
OO

4 5 0

105 .

10

107
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L Ip-p I L Ip-p I

FIG. 6. (a) Data for RL, (p) at a fixed occupancy p be-
low p, and (b) 1 —Rl. (p) at p above p, for the site prob-
lem with free boundaries and rule Ri. The data for difFerent
site occupancies below p are represented by open markers:
&p = p —p, = —0.31735 (o), —0.199375 (o), —0.149 875 (Cl),
—0.0924 (A), and —0.0341 (~). The data above p, are shown

by filled markers: bp = 0.0341 (T), 0.0924 ($), and 0.149 875

(~)-

F, (0, y;) = F,(0, 0) +b„L '+a, L '+c L )

(69)

where the last term approximates the second-order cor-
rections, gives bp = 0.059 6 0.02 (0.046 + 0.02) ap
0.21+0.02 (—0.070+0.02), cp = —0.45+0.05 (0.36+0.05),
b2 —— —0.050 + 0.03 (—0.035 + 0.02), a2 —— 0.41 +
0.02 (0.055 + 0.02), and c2 ———0.17+ 0.05 (—0.38 + 0.05)
for the site (bond) problem. Also for these spanning rules
the finite-size correction appears to dominate exactly at
p, at least over our limited range of system sizes. Al-
though the error bars are large, these fits are reasonably
consistent with the prediction that the metric factors of
irrelevant fields differ only in sign for rules %p and %2
(bp —b2) [see Eq. (31)]. Furthermore, fitting the data
for rule %i, we find the finite-size correction amplitudes
ai ——0.31 + 0.01 (0) for the site (bond) problems. Thus
we also con6rm the prediction that the amplitudes for
finite-size correction terms satisfy the weaker sum rule
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suits) are found to be the same for both rules and are also
the same for the site and bond problems in accordance
with the sum rules and universality arguments.

Because even moments p, are rule independent due to
the duality, the moment ratios p4/pz and ps/pz are equal
for all the rules. Using the moment ratios from Table II,
we find that rules %o and %2 have p4/pz ——3.172 +0.030
and ps/pz ——17.8 + 0.3, which are equal to the moment
ratios found for the rule %i. These distributions are thus
not Gaussian and for rules Ro and %2 they are even
asymmetric.

8. Rectangular 8yatem. a

We studied the rectangular cells mainly at aspect ra-
tios r = 1/2 and r = 2 and with the spanzung rule %i.
I.anglands et a/. have shown that the L -+ oo limit of
the spanning function at p, is a universal quantity [2,4].
Here we present data only for the moments.

The scaled moments for r = 1/2 and r = 2 are shown
in Fig. 10. This figure confirms that fo(s) in Eq. (56) is

odd in 8 as discussed in Sec. III C. The data also seem to
scale well with the leading nonanalytic correction having

= 0.85. The moment ratios p„/pi calculated from
the same data are shown in Fig. 11. We find that these

.320- ='~0000, 0 0
()

.00 .05
1/L

.10 ~ ~
~ ~ ~

FIG. 7. Spanning probability for the site (~ ) and bond (o)
problems as a function of I/L accoding to the rules (a) %p
and (b) %2. The dashed lines guide the eye. ~20-

ao ——2ai —a2 [Eq. (11)].The universal amplitude ratios
shall be established for the periodic boundary conditions
below.

The erst two scaled moments p~ = L ~ p, n=1,2 are
displayed in Fig. 8, giving typical examples for the be-
havior of even and odd moments (pi i is already shown
in Fig. 3). Comparing the moments for all the rules we

observe that p is rule independent for even n, and po
—p2, pz ——0 for odd n, as proposed in Eqs. (40), (45),
and (46). This confirms the sum rule, Eq. (10), and its
consequence that all these rules have the same scale fac-
tor A. However, A depends on the underlying percolation
problem. In Ref. [8] we estimated that the site problem
on the square lattice has A,~ „t 0.765 + 0.005.

The moment ratios p /pz for rules %o and %2 (see
Fig. 9 for the data and Table II for the extrapolation re-

TABLE II. Moment ratios p /pi for square cells according
to the rule %p (ratios for 94 are equal) and free boundary
conditions.

OOOO 0 O
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~ 32
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~20-

L
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Coo g g g

.16-

.04

~ 001

n=2
n=3
n=4
n=5
n= 6

5.53 + 0.10
15.7 + 0.2

97+ 2
435 + 10
3010 + 50

FIG. 8. Typical behavior of the scaled moments for the site
(filled markers) and bond (open markers) problems according
to the diiferent spanning rules: (a) jci = I "pi for rule %p

(C3) and —P, i for rule %2 (o). The scaled moments for the
rule %z vanish at criticality for both systems and are already
shown in Fig. 3. (b) P, 2 = I "pz vs I ' for the rules %p

( ), %i (~ ), and %2 (o).
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n= 2
n=3
n=4
n=5
n=6

r = I/2, 2

2.181 + 0.005
4.81 + 0.03
13.69 + 0.10
41.6 + 0.3

145 + 2

TABLE III. Moment ratios p, „/p, i for rectangular cells

with r = I/2 and 2 according to the rule %i and free bound-

ary conditions.

.42

(a)
"'::::--"+.s- +--.+--"-"e-"...

~38-

moment ratios are independent of the underlying system
and show even symmetry as a function of 8 as predicted
in Sec. III C. The universal moment ratios for r = I/2
and r = 2 are listed in Table III.
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C. Periodic boundary conditions

Due to the lack of dual symmetries, the periodic
boundary conditions do not have any particular even or
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FIG. 10. Scaled moments p, = L" "p as a function of
L ', 8i ——0.85 for rectangular cells with aspect ratio r = I /2
(o) and r = 2 ( ): (a) —pi for r = 1/2 and p, i for r = 2 and
(b) pq. Open markers are for the data for the bond problem
and filled markers refer to the site problem. The dashed lines
are linear least-squares fits to the data.
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FIG. 9. Moment ratios for the rules Ro and %2. Data are
calculated for the site (~ ) and bond (o) problems. The left
column refers to the rule %0. (a) p2/pi, (b) ps/pi, and (c)
p4/pi. The right column shows the same ratios for the rule

(d) p2/pi, (e) ps/pi, and (f) p4 jpi. The dashed lines
are guides to the eye. For the site problem the lines are linear
least-squares fits ignoring the largest (L = 400) and smallest

(L = 40) system sizes. The data for the bond problem with
I & 80 are well described by fixing the correction to scaling
amplitude to zero.

odd symmetry, but possess the generic features of uni-
versality as outlined in Sec. IIID. Furthermore, due to
the more complicated topology, we cannot use the hull
generating walk method in its fuH power, but we have to
handle each lattice size separately even for fixed p. How-

ever, we expect that for the periodic boundary conditions
the next correction to scaling Beld has 6q = 2, instead
of the stronger I/I correction for the free boundaries.
Therefore we can study the conHuent corrections more
accurately.

The spanning probability at the critical threshold for
the site and bond problems and the three spanning rules
are displayed in Fig. 12. Once again, both systems have
the same spanning probability at criticality. In order to
analyze the data we used the expansion

R(p~, L) = E(0, 0) + B,~iL ' + (Bi~i) AL

(70)

where 4 = —&, (0, 0) is universal, but may differ be-

tween diferent spanning rules, each having its own scal-
ing function. Using straightforward least-squares its to
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Eq. (70) with various ranges of system sizes and ex-
trapolating the resulting coefBcients to L —+ ao, we
find that the spanning probability approaches the uni-
versal values 0.81468 + 0.0005, 0.63665 + 0.0008, and
0.4584 + 0.0005 for the site and bond problems with

and R2, respectively. The general sum rule
Eo(0, 0) + E2(0, 0) = 2Ei(0, 0) is again well confirmed.

In order to establish that for large L the above ex-
pansion is adequate, we have plotted L+'[B(p„L)—
E(0, 0)j = a + bL ' in Fig. 13. We see that the
data fall indeed close to straight lines apart from the
large scatter. The amplitudes for the leading correc-
tions can be read &om the intercept, giving a = B~cuq ——

—0.29+0.02 (—0.24+0.02), —0.305 +0.03 (—0.26+0.02),
and —0.325 6 0.04 (—0.275 + 0.03) for the site (bond)
problem with the rules Rp, Ri, and %2, respectively.
Using the scale factors a„ for diferent spanning rules we

B(p„L) = E(0, 0) +Bio)iL e'

+(B~) bL '+BL (71)

which approximates higher-order corrections by the last
term, leads to large uncertainties especially for the co-
efBcients of the last two terms. Fitting the data to
Eq. (71) for di8'erent ranges of system sizes, we esti-
mate 6 = —30 + 10, —20 + 10, and —30 6 15 for the
spaniung rules %o, Ri, and %2, respectively. The un-
certainties represent numerical difFiculties in fitting the

find the ratios ao/a2 ——0.89 + 0.04 (0.87 + 0.04) and
ai/a2 ——0.94+0.05 (0.95+0.04) for the site (bond) prob-
lems. The universality between the ratios of the metric
factors is apparently well established.

The straightforward least-squares fit using the full ex-
pansion
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FIG. 11. Moment ratios for the rectangular systems with
aspect ratios r = 1/2 (o) and r = 2 ( ) with the spanning
rule Ri. Data are calculated for the site (filled markers) and
bond (open markers) problems: (a) p2/yi, (b) ys/pi, and (c)4p4/pi. The dashed lines are least-squares fits to the calcu-
lated data.
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FIG. 12. Spanning probability for the site (~ ) and bond
(o) problems with periodic boundary conditions and for the
three difFerent spanning rules: (a) %0, (b) Ri, and (c) %q.
The dashed lines guiding the eye are typical fits to Eq. (70)
using system sizes with I & 50.
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data because the results depend strongly on the range of
the system sizes that are taken into account in the fitting
procedure. With a fixed range of the system sizes (say,
50 & L ( 1000), the fitted amplitude ratios are typically
equal for both systems within 20%.

The universality of 4 becomes perhaps more convinc-
ingly evident &om Fig. 14. In this figure we have col-
lapsed the data &om the site and the bond problems to a
single curve by considering Eq. (71), from which we find
that

L '[A(p„L) —E(0, 0)]

= 1+ [A + B2/(Bi~i) L + '](Bi~iL ')
= 1 —4( Bin)iL— ') as L -+ oo. (72)

Using the estimates for the amplitudes Bj~q as quoted
above, Fig. 14 displays the plots of & L '[B(p„L)—
E(0, 0)] vs B—iuiL '. From this figure it becomes ap-
parent that both systems have the same derivative at the
intercept, giving another estimate for the universal am-
plitude ratio L. The agreement with the theory is most
convincing for the rules %o and %i, but somewhat dis-
appointing for the rule %2. This is apparently due to
the diferent signs of the higher-order corrections, repre-
sented as a term proportional to L . Therefore, Fig. 14
gives strong support in favor of the universal amplitude
ratio for the leading irrelevant variable, with 4 = —25
for all the rules. Taking these estimates for 4 together
with those from the least-squares its, we quote our Anal
estimate as 4 = —25 + 5, independent of the spanning
rule. Note that the amplitude ratios need not be equal for
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FIG. 13. Same data as in Fig. 12, plotted as
'[R(p, L) —E(0, 0)] vs L '. The markers refer to the

difFerent percolation problems: site (~ ) and bond (o) prob-
lems. Data shown for the three difFerent spanning rules: (a)
%0, (b) 9ii, and (c) %2.

FIG 14 Same data as in Fig 13 plotted as
I, ' [R(p„L) —E(0, 0)] vs HzuiL ' for—the site (~ )

and bond (o) problems. Data shown for the three di8'erent
spanning rules: (a) %0, (b) Ri, and (c) %2. The slope at the
intercept gives an estimate for the universal amplitude ratio

The dashed lines correspond to A = —25 for all the
rules.
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TABLE IV. Moment ratios y,„/y, i for square systems with periodic boundary conditions with
the spanning rules Rp, %i, and %2.

n= 2
n= 3
n=4
n= 5
n=6

0

2.259 + 0.009
4.99 + 0.02
14.45 + 0.10
44.0 + 0.3
154.3 + 1.2

1

9.64 + 0.20
26.3 + 0.4
289 + 15
1220+ 40

15100+ 900

69.1 + 2.3
273+5

15070 + 700
(12.3+ 0.7) x 10
(5.9 + 0.8) x 10

all the rules, but it seems that the differences are smaller
than our error bars.

The moment ratios p,„/pi for the three difFerent span-
ning rules are listed in Table IV. As an example, extrap-
olation to I ~ oo is displayed in Fig. 15 for the ratios
p2/pi and ps/pi. We find the same values for moment
ratios for both the bond and the site problems.

P.2/(P 1 }

Note that the moment ratios from Table IV yield
p4/p2 ——2.832+0.025, 3.11+0.10, 3.16+0.12 and ps/p2 ——

13.4+0.3, 16.9+0.6, 18.0+2.0 for rules Ro, Ri, and %2,
respectively. We quote the numbers in order to empha-
size that for the free boundary conditions these moment
ratios were equal, as a consequence of the duality. This
need not be true in general. The moment ratios thus
differ for the different spanning rules and boundary con-
ditions. Also for the periodic boundary conditions the
distribution is non-Gaussian and asymmetric.
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FIG. 15. Moment ratios for systems with periodic bound-
ary conditions and three diferent spanning rules. Data are
calculated for the site (~ ) and bond (o) problems. The left
column refers to the moinent ratio p2/(y, i) for (a) rule %0,
(b) rule %i, and (c) rule %q. The right column shows the
ratios ps/(pi) for the same rules: (d) %0, (e) Ri, and (f)
%2. The dashed lines are linear least-squares fits for the data
L ) 64. (c) contains only one line because the data points
overlap.

In this paper we have studied in detail the spanning
probability function for three difFerent spanning rules [1],
square and rectangular systems, and systems with either
free or periodic boundary conditions. Our discussion of
the spanning probability function relies on the renormal-
ization group approach, which implies that the scaling
functions are determined by the fixed point and there-
fore universal. It is shown that the renormalization group
(scaling) theory, combined with simple relations between
the spanning rules and duality arguments, gives strong
relations between different derivatives of the spanning
function. These relations determine the expansion of the
spanning probability function near criticality and give
the theoretical background for the numerical work.

Indeed, the theoretical predictions derived &om the
scaling theory are confirmed numerically with high pre-
cision. In particular, we have established the following.

(i) The spanning probability at criticality is a universal
number, which need not be equal to p, but depends on
the scaling function, which is set by the physical question
(spanning rules, system shape, etc.) posed at the RG
fixed point. This should hold in general d dimensions.

(ii) The scaling variables enter the universal scaling
function through nonuniversal metric factors, which can
be set by Axing derivatives of scaling functions. The
ratios between the metric factors of the irrelevant scal-
ing fields for two different scaling functions are universal.
This should also hold in general dimensionality.

(iii) Indeed, we found that the spanning probability is
a universal function of (p —p, ), (u;f's, and the aspect
ratio of the rectangular system, apart &om the choice of
the appropriate metric factors.

(iv) The expansion of the spanning probability func-
tion in terms of the scaling variables was theoretically
derived and numerically confirmed in the case of &ee
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boundary conditions, which shows strongest symmetry
in the scaling variables. In particular, it was established
that for two-dimensional percolation with free boundaries
one needs to consider two corrections to scaling, which
are the leading irrelevant scaling field, scaling as L
and the analytical correction 1/L. For the spanning rule

i, the former contribution was shown to vanish exactly
at p„ in agreement with Ziff s numerical observation [7].

(v) The universality of the scaling function is mani-
fested through the universal amplitude ratios. Universal
amplitude ratios were numerically estimated by examin-
ing the central moments of the distribution " ~ and by
studying the spanning probability function at criticality.

(vi) None of the cases studied in this work yield a
Gaussian distribution for "

(vii) The spanning probability at a fixed occupancy
and with rule %i depends exponentially on L, for every
p g p, and for L )) (. We propose that the spanning
probability in d dimensions scales as R(L) = [a (p)]
for p (p, and [1 —R(L)] = [a+(p)]+ for p & p, .

Note added. After we finished this project we received
work prior to publication [24] in which R(p, L) is found to
be a universal function of the scaled variable (p p, )Li~",—
with appropriate scale factors. That result seems to re-
quire no corrections to scaling, probably due to the fact
that the data were collected only for a single large L,
where one may justify setting (y; = 0).
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APPENDIX A: A COMMENT ON RSRG

In the context of the one-parameter approximation
one can define the Axed point p' as the solution of the
equation p*(b) = R(p*, 6). We emphasize that this p'
depends on the scale factor b and one assumes that
limb~ p*(b) = p, . Expanding R(p, ) near the fixed
point, we find

R(p. ) = R(p*) + &(». —
» *) + ", (Al)

with A = ~&+ ~„. = Abi~ . However, the difference p, —p'
also scales as Bb ~", so that Eq. (Al) reads

R(p, ) = F(0, 0) = p*+ AB+ . -+ p, + AB

as 6 ~ oo. (A2)

Thus even here it follows that R(p„L ~ oo) need not be
equal to p . However, it is illustrative to observe that the
universality of the spanning probability at criticality fol-
lows only after the corrections to the scaling are treated
systematically.

APPENDIX B: BEHAVIOR OF R FOR popo

Consider the spanning probability with a fixed occu-
pancy p, R„(L), and the spanning defined according to
the rule Ri of Ref. [1] (spanning in one given direction,
free boundaries in the other direction). Suppose that
p (p„but close enough to p, such that ( = ( (p, —p)
where ( is the correlation length amplitude. Assume
also that L )) (. Similarly to Eq. (5), but renormalizing
until 6' = (, we find

R(p, L) = F(At, (B;~;), L)
= F(Atb'~", (B,~;6 ' ), I,/6')

= F(A& '" (B'~'t")-LA') = F-(L/() (»)
where the last step follows by ignoring the corrections

to scaling and defining a function F . Because F (1)
gives the spanning probability for a box of size (, this
calculation has reduced the system to the dilute (animal)
limit and the system spans if there exist L/( spanning
boxes connecting the lower and upper terminals,

I'he real-space RG of Ref. [1] was based on partition-
ing the underlying lattice into cells of size b and replacing
all b" sites in a cell of size b by a single supersite. The
resulting supersite is then declared occupied if there ex-
ists a percolating cluster that spans the cell. Thus the
probability for the supersite being occupied within this
RG transformation is equal to the spanning probability
of the original cell. It is important to note that the RG
transformation of Ref. [1] ignores the fact that the true
RG involves an infinite number of scaling variables, which
are taken explicitly into account in Sec. II.

(B2)

This expression is analogous to the small-p limit because
as p —+ 0 one obviously has

R„(L) = p'.

Thus we 6nd that with a fixed occupancy p —p ( 0 the
spanning probability depends exponentially on L,

Ri (L) = [a (p)]

where the function a (p) behaves as
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a (p) m [F (1)](" " l ~~- as pm p„Lm oo

~p asp —+0.
(85)
(86)

a+(p) -+ [1 —F+(1)]l" "' ~~+ as p m p„L m oo (88)
1 —p aspM 1. (89)

1 —Ru(L) = la+(p)]'

where the function a+(p) behaves as

(87)

A similar argument holds for p ) p . Renormalizing
the system until b' = ( and arguing that the system spans
unless a line of empty boxes of size ( connects the right
and left terminals (in two dimensions), we find that

1 —R~(L) = [a+(p)j~ for p ) p . (BIO)

The corrections to scaling can be taken into account in
a straightforward way and the exponential dependence of
R„(L) on I remains unchanged. This prediction is nu-
merically con6rmed in Sec. IV for two-dimensional perco-
lation. Furthermore, the argument is easily generalizable
to d dimensions, for which one finds that Eq. (84) re-
mains unchanged, while Eq. (87) is replaced by
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