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Predictability in systems with many characteristic times: The case of turbulence
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In chaotic dynamical systems, an infinitesimal perturbation is exponentially amplified at a rate
given by the inverse of the maximum Lyapunov exponent A. In fully developed turbulence, A grows
as a power of the Reynolds number. This result could seem to be in contrast to phenomenological
arguments suggesting that, as a consequence of "physical" perturbations, the predictability time is

roughly given by the characteristic lifetime of the large scale structures, and hence is independent of
the Reynolds number. We show that such a situation is present in generic systems with many degrees
of freedom, since the growth of a noninfinitesimal perturbation is determined by the cumulative
eKects of many difFerent characteristic times and is unrelated to the maximum Lyapunov exponent.
Our results are illustrated in a chain of coupled maps and in a shell model for the energy cascade
in turbulence.

PACS number(s): 47.27.Gs, 05.45.+b

I. INTRODUCTION

After the seminal work of Lorenz [I], it is well un-
derstood that the predictability of the state of a system
ruled by a deterministic evolution law has severe limita-
tions in the presence of deterministic chaos. In systems
with sensitive dependence on the initial condition one has
an exponential divergence of the distance bx between two
initially close trajectories, i.e. ,

l~x(t) I
=

1
~x(0)

I
e

where A is the maximum Lyapunov exponent [2]. Con-
sequently, if ~bx(0)

~

= 6o and one accepts a maximum
tolerance b on the knowledge of the state of the sys-
tem, (1) implies that the system is predictable up to a
time

~max l

Equation (2) gives only a first rough answer to the
problem since it does not take into account some impor-
tant features of chaotic systems. Indeed to study the
predictability of a generic dynamical system one has to
consider the following nontrivial aspects.

(a) The Lyapunov exponent A is a global quantity: it
measures the average exponential rate of divergence of
nearby trajectories. In general there are finite-time Buc-
tuations of this rate and it is possible to define an "instan-
taneous" rate p, called the effective I yapunov exponent
[3], which depends on the particular point of the trajec-
tory x(t) where the perturbation is performed. In the
same way, the predictability time T fluctuates, following
the p variations.

(b) In dynamical systems with many degrees of free-
dom, the interactions among different parts of the system
play an important role on the growth of a perturbation.
The statistics of the effective Lyapunov exponent is not
suKcient to characterize the growth of infinitesimal per-
turbations and one has to analyze the behavior of the
tangent vector z(t), i.e. , of the direction along which an
infinitesimal perturbation grows, see, e.g. , [4]. Moreover,
if one is interested in the behavior of a perturbation con-
centrated on certain degrees of freedom, e.g. , small length
scales in weather forecasting, and in a prediction on the
evolution of other degrees of freedom, e.g. , large length
scales, a relevant quantity is the time T~ necessary for
the tangent vector to relax on the time-dependent eigen-
vector e(t) of the stability matrix, corresponding to the
maximum Lyapunov exponent. If the perturbations are
small enough, i.e. , bw is proportional to the tangent vec-
tor, one has that
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~maxT T~ + —ln
~o

rl 2/3
v'(q) To (

—
)v(g) I (6)

where in general TR may depend on bx:. So the mecha-
nism of transfer of the error bw through the degrees of
freedom of the system could be more important than the
rate of divergence of nearby trajectories [5].

(c) In systems with many characteristic times, such as
the eddy turnover times in fully developed turbulence, if
the perturbation is not inG. nitesimal, or if the threshold
of accepted error is not small, T is determined by the
detailed mechanism of transfer due to the nonlinear ef-
fects in the evolution equation for bw. In this case, the
predictability time might have no relation with the Lya-
punov exponent and T depends in a nontrivial way on
the details of the system.

The aspects (a) and (b) have been studied in previ-
ous woi'ks [5—7]. Iil tllls paper we Iilalilly address polilt,
(c). We investigate the predictability problem for non-
infinitesimal perturbations in the framework of two mod-
els: a system of coupled maps and a shell model for the
energy cascade in three-dimensional turbulence.

The paper is organized as follows. In Sec. II we discuss
some phenomenological results in fully developed turbu-
lence. In Sec. III the predictability problem is discussed
in a system of coupled maps, using analytic methods sup-
ported by some numerical investigations. Section IV ana-
lyzes the more realistic case of a shell model of turbulence
by both numerical simulations and closure approxima-
tions. In Sec. V we discuss the physical relevance of our
results and open problems.

II. SOME RESULTS FOR THE PREDICTABILITY
IN FULLY DEVELOPED TURBULENCE

In three-dimensional fully developed turbulence, the
inverse maximum I.yapunov exponent is roughly propor-
tional to the smallest characteristic time of the system,
the turnover time w of eddies of the size of the Kol-
mogorov length g. The argument, due to Ruelle [8], is
the following. The Kolmogorov theory predicts that the
longitudinal velocity difference at distance E = lrl scales

Taking into account the intermittency one expects that
the presence of quiescent quasilaminar periods changes
the chaotic features of the fluid flow. The intermittency
of energy dissipation can be described by introducing a
spectrum of singular'ties 6 of the velocity gradients [9],
i.e. , assuming a local scaling invariance so that in any
point x. of the fluid v(E) E"~"i. In the framework of the
inultifractal approach, one thus finds [7]

1 . D(h) —2 —h
A —Re with n = max

To h 1+6 (8)

where D(h) is the fractal dimension of the set of Quid

points characterized by a given singularity h. The value
of n depends on D(h). By using the function D(h) ob-
tained by fitting the exponents (z of the velocity struc-
ture functions with the random beta model [10], one has
o. = 0.459..., slightly smaller than the Ruelle prediction
o. = 0.5, see (7).

Relations (2) and (8) tell us that considering a very
small perturbation at t = 0 and a very small toleranceb, the predictability time vanishes as the Reynolds
number increases, as verified in recent numerical simula-
tions of the shell model (see Sec. IV) [6].

On a very diferent ground, without considering the
exponential growth of infinitesimal disturbances, I orenz

[11], see also [12] and [13], proposed a phenomenologi-
cal approach to the predictability problem in turbulence.
Consider wave numbers around k with corresponding
typical spatial scale E k . The time r(k) for a per-
turbation at wave number 2A: to induce a complete un-

certainty on the velocity Geld on the wave number k is
assumed to be proportional to the typical eddy turnover
time at scale /, from (4):

where Tp ——I/V is the lifetime of the large scale distur-
bances.

These dimensional relations imply that the maximum
Lyapunov exponent scales with Re as

g
i/3

v(&) =—lv(x+ r) —v(x)
I

- e

where V and L are the typical velocity and length of
the energy-containing eddies, and ~ is the mean rate of
energy dissipation.

The nonlinear transfer of energy is stopped at the Kol-
mogorov scale g where viscosity v is able to compete
with the convective term, i.e. , v g v(g), thus from (4)
we have

(9)

An incertitude O(v(q)) propagates through an inverse
cascade from the Kolmogorov scale g A:&. up to the
scale of the energy-containing eddies I ko . The pre-
dictability time on the large scales is therefore

(10)

(5)

wheie Re = VL, /yr is the Reynolds number. The corre-
sponding turnover time is

log2 (k&g/kp) log2 Re. The geometric se-
ries (10) is dominated by the term n = A' so that T is
practically independent of Reynolds number:
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T Tp L/V.

) s/2

E1 L
Tp

(12)

Let us indicate by e the reference velocity field and by
e' the perturbed Beld. The size of the difFerence Se(t)
between two velocity fields at time t can be estimated as
the typical velocity of a disturbance at scale f~, so that
from (4) and (12)

i8e(t)
~

- v(E, ) - V Qt/Tp.

Perturbations grow as square root of time. Let us stress
again that such perturbations cannot be considered in-
Bnitesimal so that the inverse cascade picture is not in
contrast with the exponential amplification of errors on
initial conditions that is present in chaotic dynamical sys-
tems.

There are two main predictions of the Lorenz ap-
proach: predictability time on large scale independent
of Reynolds number and growth of perturbations as a
power of time instead of an exponential.

Jn the next sections we use the theory of dynamical
systems with many degrees of freedom to argue that while
the former is correct, the latter is a too rough description
of the real behavior of he(t).

III. PREDICTABILITY IN A CHAIN
OF COUPLED MAPS

It is worth remarking that closure approximations
[12,13] allow one to write down simple equations for the
evolution of disturbances in turbulent Bows and fully con-
firm these results. In Appendix B, we derive this type of
equation in the simplified framework of the shell model,
but there are no conceptual differences with the analo-
gous derivation in the case of the Navier-Stokes equa-
tions.

The Lorenz picture of an inverse cascade of a pertur-
bation also permits us to estimate the growth of a per-
turbation at intermediate times. Indeed, after a time t, a
perturbation localized on the Kolmogorov length scale is
expected to acct an eddy of size Ez such that its turnover
time is 7 (E1) t. It follows [14], see (9),

* (t + 1) = (1 )»(Z1(t)) + ef( 2(t))
»(t+ 1) = (1 —e)g2(»(t)) + 'f(xs(t))~

(14)
zN 1(t+ 1) = (1 e)gN 1. (zN 1(t—)) + ef(ZN(t)),

ZN(t + 1) = gN(ZN(t)),

where the N variables xj, are defined on the interval
I = [0, 1], e is the coupling constant, and g1, and f are
functions of I into itself. In order to mimic the energy
cascade of turbulent Bow, we assume that the function
gA, represents the evolution law of an eddy of size lA. in
the absence of interactions. In this context, xy can be re-
garded as the velocity difference of the eddies on the oc-
tave of length scale Iy ——L p2 . The evolution is chaotic
with a Lyapunov exponent proportional to the inverse of
the eddy turnover time 7p. The simplest possible choice
for gg(x) is the piecewise linear map

gI, (x) = e"'x, mod 1.

This choice allows for a simple analytical treatment of
the problem.

In order to mimic the phenomenology of fully devel-
oped turbulence, using dimensional arguments and (9),
we choose the eddy turnover time wk so that the Lya-
punov exponent is

22/3(A: —1)
Tp

The coupling parameter e is small and constant for
each scale, although more realistic models could consider
scale-dependent couplings. The form of f(x)—the term
representing the local interaction between eddies —does
not acct the qualitative results. We have considered two
possibilities: f(x) = x and f(x) = x .

In order to study the predictability, the system (14)
has been integrated with two different initial conditions
w(0) and w'(0) difFering on the smallest scale, Ag(0) =
x&(0) —xq(0) = bk Nbp. The initial incertitude is thus
confined to the smallest and fastest scale x~ while we
want to forecast the behavior of the system at the largest
scale xq.

Because time scales are well separated, we expect that
at the beginning the uncertainty in the system is driven
by the fastest scale x~ and the error at any scale grows
with the smallest characteristic time

In this section we discuss the predictability problem
in a system of coupled maps each with a diferent time
scale. This is an idealized situation where each degree of
freedom has a chaotic dynamics with its own characteris-
tic time and it is coupled to the other degrees of freedom
by a weak local interaction. Our toy model can be con-
sidered the prototype for physical situations where one
can separate the evolution on diferent scales. Despite
its simplicity, it displays nontrivial properties which en-
lighten the behavior of more complex systems.

The system is given by a chain of chaotic coupled maps

N Ie A~ tg—
where the power of e is due to the locality of the inter-
actions. The behavior (17) will last up to the time TN
at which the perturbation at small scale saturates, i.e. ,
L~ ——L, &. Then a second regime driven by the variable
x~ i, which has now the fastest exponential growth of
errors, sets in. When this second regime holds, the incer-
titudes at scales A: & N —1 grows as e ~ —' until, at
time T~ q, the variable x~ q saturates and xN 2 dom-
inates, and so on. Such an argument suggests that a
perturbation Lq at the largest scale x~ follows diferent
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exponential laws with rates AA,. (k = 1, . . . , %) in each dif-
ferent regime, with a global (envelope) evolution which
appears very similar to a power law.

Figure 1 shows the error observed at large scale A~ as a
function of time in a numerical experiment realized with
a chain of N = 10 maps. The coupling function is chosen
linear, f (z) = x, the coupling parameter is e = 10
and the largest characteristic time is To ——200. The
initial conditions are random and the initial perturbation
on the small scale is bo ——10 . In a typical chaotic
system where there is only one characteristic time scale,
e.g. , the Lorenz model, the exponential regime for the
growth of a perturbation is recognizable, as straight lines
in the linear-logarithmic plot, for a wide range of values
of ~8x(t)~. On the contrary &om Fig. 1 we see that the
smaller scale dominates the exponential regime only for
short time.

This behavior can be well understood by means of a
quasilinear analysis which also allows for some analytical
estimates. The evolution with (15) and linear f(x) leads
to a linear evolution for the perturbation,

&, (TA:) = &'(Tk+i) + (A ")',~&A:p'A+i) (20)

while A;(TI, ) = 4, t for i ) k. The matrix AM can be
easily computed and at the leading order is given by

~MA(, ~MA, .

(AM) k i—
(21)

From (20) and (21), and using the fact that
e " "AI,(Tj,+q) A,~q, we obtain

1 A, t 1 (n —l)AI,

&A:(TA.+i)
0. =2 ~ . (22)

i.e., MA, ——Ty —Ty+q. If we suppose that the main contri-
bution to the growth of perturbations during period MI,
is given by the faster scale LI„which is correct whenever
~ is very small, we can write for any i & k

a(t+1) = Aa(t),
where A is the N x N Jacobian matrix

(l, e
0 l,

0.. . 0 0)
0 0

( 0 0 0 . . . 0

Let us denote with TI, the time at which scale k satu-
rates, i.e. , Eg(TI, ) = 1, and with Mg the period (number
of steps) during which scale k dominates the dynamics,

Figure 2 shows the result obtained averaging over 1000
initial perturbations. Scattered markers represent the
values of Aq(Ty) at the different saturation times, ob-
tained according to the quasilinear analysis. The agree-
ment with the direct simulation of (14) is quite good.
The global behavior can be fitted by a power law, whose
slope can be roughly estimated by the following argu-
ment. From (22), one has that the periods MA, scale,
apart from logarithmic corrections, as Mk Ak o.
From (21) the growth of Aq during period Mk is esti-
mated to be e". Then, we expect Aq(t) t~ with
p = —ln ~/ ln n.

io-4-

to-8—

FIG. 1. Error growth A1 as a
function of t for e = 10 . The
straight segments correspond to
exponential growth driven by
diferent dominant scales.

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
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FIG. 2. Log-log plot of (Aq)
as a function of t for ~ = 10
The average is taken over 1000
initial configurations. The sym-
bols (diamonds) are the esti-
mated growth of the largest
scale Ai during diA'erent peri-
ods Mk according to the quasi-
linear approximation. Dashed
line: power law expected by the
simple argument describ ed in
the text.
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We have also performed a second numerical experiment
with a stronger coupling e = 10 and quadratic coupling
function f(x) = x2. The initial error is 8o ——10 s, while
all the other parameters in the model are unchanged.
We take an average of 1000 runs of 2000 steps in order to
get a good statistics. The results are reported in Fig. 3,
where one sees that the error on large scale Aq(t) has
a complex behavior resulting from the combinations of
several time scales, which are now not well separated.

However, even in this case, it is possible to determine an
apparent power-law regime for intermediate times.

We stress that the above behaviors do not depend on
the particular form of gA, , f, and Ak. The system of
coupled maps with diferent chaotic characteristic time
teaches us that it is possible to have nontrivial time evo-
lutions of noninfinitesimal perturbations at slowest scale,
and that these can be fitted by power laws, although they
are actually generated by saturation processes. In this

10 -4—

10 8

1p -12

FIG. 3. Error growth Ai for
a nonlinearly coupled system
with e = 10

10 -16

10 -»
10 100 1000
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kind of system, if we are interested in long-time predic-
tions, the maximum Lyapunov exponent is of little or no
importance and one should consider all the time scales
present in the system.

IV. PREDICTABILITY IN A SHELL MODEL
OF TURBULENCE

In this section we discuss the problem of predictability
in a model for the energy cascade in three-dimensional
fully developed turbulence [15—18]. The model, which
is intended to mimic the Navier-Stokes equations, is de-
fined in the Fourier space as follows. The Fourier space
is divided into % shells labeled by the wave-vector mod-
ulus k = k0 2, where k0 is an arbitrary constant,
each one containing all the wave vector k with modu-
lus k(i 2" ( ~k~ ( ko 2 + . The velocity difFerence over
the length scale k is given by a complex variable
u representing the Fourier components of the velocity
field. The evolution is given by the set of N ordinary
difFerential equations

dt
—u„=—z k„u„+zg„+f„,

1
~n +n+ 1 n+ 2 ~n —1 ~n —1 n+ 12

2
n —2 ~n —2 ~n —1) (24)

for n& n~,
vn =

for n + n~) (25)

where f is an external forcing, acting on large scale,
necessary to have a stationary state, and v is the viscos-
ity. The main difFerences with the Navier-Stokes equa-
tions are (i) the wave vectors and the velocity fields u
are scalars; (ii) there are only nearest- and next-nearest
neighbor interactions among shells. The first point im-
plies that it is not possible to have geometrical structures,
all information on phases being lost. The second point
does not represent a strong limitation as long as the en-

ergy cascade in Fourier space is local, with exponentially
decreasing interactions among shells. This is rather sen-
sible for three-dimensional turbulence, but not for the
two-dimensional case [17].

Despite the fact that the time evolution governed by
(23) and (24) spends long times around an unstable fixed

point given by the Kolmogorov law ~u„~ (x k„[18),it
exhibits chaotic behavior on a strange attractor in the
2N-dimensional phase space, with maximum Lyapunov
exponent roughly proportional to v ~ . The velocity
structure functions (~u ~") k ' have nonlinear expo-
nents („very similar to those of real turbulence [16].

Our study of predictability is based on the comparison
of the temporal evolution of pairs of different realizations
of the velocity field, say u and v . Both fields evolve
according to (23) and (24) forin initial conditions such
that (i) the energy spectra of u and v at the initial
tiine are equal; (ii) u and v at initial time difFer only
on small scales, corresponding to wave number k & k

where to„is a random number uniformly distributed in
the range [0, 0].

By changing the value of 0 we can modify the corre-
lation between the two fields. The extreme case 0 = 2',
i.e., completely uncorrelated variables for n & n~, corre-
sponding to the Lorenz choice discussed in Sec. II.

Previous works [6] investigated the growth of difFerent
small perturbations in shell models. Here we want to
study this issue for a finite perturbation at initial time.

In the numerical silnulation we have taken as the refer-
ence field u in (25) a solution of (23) and (24) obtained
from a long simulation starting from a random initial
condition. The forcing f„was taken constant and equal
to

f = (1+z)'Y~,4 (26)

L6+ L7 + Ls
0 3 (28)

and the moments of the difference field, defined as

(I('~l') =
( Y '~- ") (29)

Figures 6 and 7 show the growth of the moments
of (~bu~~) ~~, respectively, for 0 = 2zr and 0 = 10
For the first case we observe at intermediate times a

with p = 0.005. The simulations were done mainly for
two different systems: (A) K = 19 and v = 10; (B)
N = 27 and v = 10 . %'e used the leap-frog method
of integration with time step 10 in the case (A) and
2 x 10 in the case (B).The average is over 10s different
realizations of the field v . All the figures will be for the
case (A), the case (B) being similar.

In order to understand whether intermittency has any
effect on the qualitative features, we also performed a de-
tailed study in terms of closure approximation, where, by
construction, one considers averaged quantities neglect-
ing intermittency. %'e thus developed the standard eddy
damped quasinormal Markovian (EDQNM) approxima-
tion [14] for the shell model (see Appendixes A and B).

Among the various quantities that can be computed,
we focused on the error spectrum at wave vector k

A„=-' ((u„—v„)(u„'—v„*))= (E„—Re W„), (27)

where E = (u u*) = (v v*) is the energy of the two
fields and W = (u v*) is the overlap energy at scale n.

In Figs. 4 and 5 the error energy spectrum L is
showed at difI'erent times for 0 = 2m and 10, respec-
tively.

In Fig. 4 we see that at the beginning we have a very
fast growth until 4 reaches the saturation (i.e. , A
E ) at large n. Then one has a sort of inverse cascade
on the error. This is also the main feature one observes
in the case of strong initial perturbation (Fig. 5).

In order to compare the error growth in the shell model
with the behavior observed in the toy model of Sec. III,
we also compute the (global) growth of the large-scale
error
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log2 h,„-15—

-20

FIG. 4. Error spectrum A
as a function of n at different
time for case (A) and 9 = 2vr.

The lines are taken at times 0,
1, 2, 3, 4, 5, 10, 15, 20, 25,
and 30 sec after the perturba-
tion has been done. The dashed
line is the spectrum E

-25

-30
10 12 14 16 18 20

power-law behavior in agreement with the Lorenz pre-
diction. The intermittency produces anomalous scaling,
i.e. , (i8ui~) t~ i~) where n(q) is a nonincreasing func-
tion of q. From Fig. 6 we have a rather fair evidence
of anomalous scaling. However, in our opinion, the pre-
cise values of the scaling exponents may be a problem
interesting in itself but not too important, at least at a
qualitative level, in the issue of the predictability. Here
the relevant aspect is the fact that growth of physical per-
turbations evolves according to a nonexponential law, as

for infitesimal perturbations. Let us note that the value
of n(2) seems to be close to 1/2 as in the Lorenz pre-
diction where no intermittent eKects are taken into ac-
count. In the case of small initial perturbation (Fig. 7)
one can recognize an initial exponential growth until the
error saturates at small scales. Then we find a kind of
power-law behavior.

For a qualitative comparison with the results discussed
for the coupled maps, we show in Fig. 8 the growth of
bUD. VA can recognize an initial exponential growth

-10

-20

log2 A~

-30

-40

-50

FIG. 5. Error spectrum A
as a function of n at diferent
time for case (A) and 0 = 10
The lines are taken at times 0,
5, 10, 15, 20, 25, 30, 35, 40, 45,
and 50 sec after the perturba-
tion has been done. The dashed
line is the spectruzi: R

-60

-70
10 12 14 16 18 20
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I ~

0.1

q=1
q=2
q=3
q=4

(1/2

FIG. 6. Moments of the
difFerence field ( 8u~ )"
(q = 1, 2, 3, 4) as a function of t
for case (A) and 0 = 2vr.

0.01 I I I ~ I

10
~ I ~ I

100

driven by the smallest scale; in later times all the time
scales interplay leading to a nonsimple function which
can be misinterpreted as a power law.

The closure approximation for the shell model leads
to a qualitative similar behavior. Of course, in this ap-
proach (~8u~~) = Cz (~bu~)~ by construction, so intermit-
tency efFects cannot be detected.

The basic idea of closure is quite straightforward: one
writes a Reynolds hierarchy for the moments of the shell
variables, and truncates the chain of equations at the
lowest sensible order. The full derivation is given below
in Appendixes A and B. The closure equation thus gives
information on the behavior of E and R' as functions
of time. The results are similar to those obtained by

10 3

I"IG. 7. Moments of the
difference field ( Su~ )' ~

(q = 1, 2, 3, 4) as a function of t
for case (A) and 0 = 10

10-4

10 20 40 50 60 70 80 90 100
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10 '

10 3

500 10-4
FIG. 8. bUO as a function of

t for case IA).

10-5

10 6

10-7
10 15 20 25 30 40 50

the direct integration (and ensemble average) of the shell
model, as is evident by the direct comparison of Fig. 9
with Fig. 4 and Fig. 10 with Fig. 5. This is clear evidence
that the relevant mechanism, at least at a qualitative
level, is due to the existence of many characteristic times
and not to intermittency effects.

V. DISCUSSION

The predictability problem can be formulated in terms
of the Lyapunov exponent, or the effective Lyapunov
exponent, only for infinitesimal perturbations. On the

Iog2 An

-10

-20

-25

-30

FIG. 9. Error spectrum A
as a function of n at different
time for the EDQNM approx-
imation and 0 = 10 . The
lines are taken at time interval
0.02 sec from the perturbation,
first line. The dashed line is the
spectrum E

-35

-40
0 10 16 18 20
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0.1

(lu-vl )

0.01

FIG. 10. (~bu~ ) as a func-
tion of n at difFerent time
for the EDQNM approximation
and 0 = 10

0.001
0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

other hand, in systems with many diferent characteris-
tic times and finite perturbations the nonlinear eKects are
very relevant. A direct consequence is that the growth
of the perturbation is, apart at very short times, not ex-
ponential but rather similar to a power law. Actually it
is a sequence of exponentials with varying rates. This
mechanism has an important practical relevance: the
predictability time for finite perturbations can be much
larger than the inverse of the Lyapunov exponent (1).

For example, in three-dimensional turbulence for a
"physical" perturbation localized at the initial time at
the Kolmogorov length q, be = 0('v(g)), the predictabil-
ity time is T L/V, independent of the Reynolds num-
ber. On the contrary, the predictability time for an in-
Gnitesimal perturbation is proportional to the inverse of
the maximum Lyapunov exponent A, which grows as a
power of the Reynolds number. Hence the predictability
time decreases for increasing Re.

These results give a strong indication that despite the
presence of strong chaos, realistic situations have rela-
tively long predictability times.

In conclusion we have showed that the concepts of
Lyapunov exponents, effective Lyapunov exponent, and
Kolmogorov entropy give insuKcient information on the
chaotic behavior of extended systems.

APPENDIX A

Here we derive the equations for the energy of the field
in the eddy damped quasinormal Markovian approxima-
tion (EDQNM) for the shell model. For more details see,
e.g. , [14,19].

We are interested into the energy of the shell n given
by E„=(u„u„').Differentiation with respect to time
of E, and use of (23) and (24), leads to the evolution
equation for E for the shell model:

E„=—2 v k—„E„yi(g„u„*)—i(u„g„*)+ 2 e h„4.
dt

(Al)

In order to have a constant energy input e we assumed a
forcing

(A2)

in (23). Equation (Al) is not closed since the third and
fourth terms on the rhs involve third-order correlation
functions. For example
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(g *) =" (
* *+i *+2) " —&(

*—i *+i)
(A3)

and similarly the other. The third-order cumulants obey
a differential equation involving fourth-order correlation
functions, e.g. ,
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d—(u u +1u +2)dt
= —v (k„+k„+,+ k„+2)(u„u„+1u„+2)

+Z (gn un+ 1 un+2 )

+z(u- g-+1u-+2) + z(u- u-+1 g-+2) (A4)

(x1 x2 x3 x4) (x1 x2) (x3 x4) + (x1 x3) (x2 x4)
+(x1x4) (xsx2). (A5)

By means of (A5), and the assumption of isotropic tur-
bulence

and so on. Thus in order to have a closed problem we
have to truncate the hierarchy. This is done assuming
a quasinormal probability distribution for the field, and
factorizing the fourth-order correlation functions as

with

S(n, t) = k„E„+1E„+2—2 k„E„E„+2—
2 k„E„E„+1.

(A9)

Similar equations hold for the third-order cumulants en-
tering into Eq. (A3).

The quasinormal approximation (A8) is known to give
unphysical results [19]. In particular it does not produce
positive definite energy spectra. The problem has been
cured by introducing the so-called "eddy damped" ap-
proximation. One replaces (A8) with

dt
—+v(k„+k„+,+ k„+2)

+Pn + Pn+1 + Pn+2 (un, un+1 un. +2) = zS(n, t), (A10)

(u„u*)=b„E„,(u„u ) =0, (A6)

it is easy to evaluate the terms involving the fourth-order
correlation functions in the equations for the third-order
ones, and close the hierarchy. For example, for Eq. (A4)
we have

where

p„—= p(k„,E„)= nk„E„'i'. (A11)

(en un+1 un+2) =
(u g +1 u +2)
(u u +1 g +2)

k„E„+gE„+2,
—-' k„E„E„+2,
—

2 k„E„E„+g.
Inserting (A7) into (A4) we obtain

(A8)

—+ v(k„+k„+1+ k„+2) (u„u„+.1 u„+2)= iS(n, t)
dt

Dimensionally k E is an inverse time, the turnover
time at shell n. We have one free parameter, the dimen-
sionless constant o.. It should be adjusted such that the
spectrum is as similar as possible to the spectrum ob-
tained in simulations of the full equation. We will return
to this point later.

Equation (A10) can be easily integrate, and the solu-
tion reads

un un+1un+2) = Z
[v(k„'+k'„~,—+ „'+,)+I +g Pi+& +~j ( — ) S(n t ) (A12)

(u„u„+1u„+2)= io(n, t) S(n, t), (A13)

where

It has been proved that if we assume that S(n, t) does
not vary significantly in the range where the exponential
in (A12) is substantially different &om zero, then this
is a suKcient condition for the positiveness of the energy
spectra [19]. This assumption is called Markovianization.
Therefore the third-order correlation function at time t
in the EDQNM approximation reads

Similar equations hold for the other third-order correla-
tion functions.

We can now go back to (Al) and write down the equa-
tion for the energy E in the EDQNM approximation,

i

—+ 2vk„'
i
E„=2 k„o(n,t) S(n, t)(dt j

——,
' k„,a(n —1, t) S(n —1, t)

—
—,
' k„,o(n —2, t) S(n —2, t)

+2 ~ b„4. (A15)

0(n, t) = [v(k~+kn+1+kn+2)+pn+pn+1+JLltn+2] (t 4 }

n+ a+1+ n+Z }+&n+&n+&+&n+2] ~

v(k. + k.+1+ k.+2) + V- + V-+1+ u-+2
(A14)

The quasinormal ansatz implies the absence of inter-
mittency corrections. This is an essential limitation of
all closure theories. The energy spectrum of the shell
model in the EDQNM approximation must therefore
obey En C(n)e2~3k in the inertial range. The un-
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determined function C(a) is the Kolmogorov constant.
On the other hand, it has become clear in several in-

dependent investigations that intermittency corrections
exist in shell models. The energy spectrum is therefore in
reality more closely described by E~ I" (e)k ~', where
the exponent (2 has been estimated to be 0.70 [16]. The
function E that gives the prefactor to the power law in
the inertial range should not depend on viscosity, but de-
pends on the forcing through e, the mean dissipation of
energy per unit time, or, equivalently, the mean energy
input into the system &om the force. In a really large
inertial range the two power laws are not good approxi-
mations to the one other. The best that can be done is
to demand that the spectra agree as closely as possible at
the upper end of the inertial range. The disagreement at
the lower end will then be approximately (kI, /ko)~'
This is not a very large discrepancy. Assuming an iner-
tial range of 20 shells, that is, a scale separation of 10,
and (2 ——0.70, the mismatch is only a factor 1.5. In prac-
tice a number of o.'s have been tried and the two spec-
tra compared until a reasonable agreement is achieved.
For n = 0.06 we obtain C(n) = 1.5, which is the value
observed both in simulations of the shell model and in
experiments [19].

APPENDIX H

We are interested into the energy of the Geld difI'erence
at the shell n,

A„=-', ((u„—v„)(u„*—v„*))= (E„—Re W„), (B2)

where W = (u v*). The evolution equation of W is
easily derived by difFerentiation with respect to time and
reads

—W„=—2 v k„W„+i(g„v„*)—i(u„h„*)+ 2&8„4.

(B3)

As in the case of E, this equation is not closed since it
involves third-order cumulants of u and v . For exam-
ple,

(9~ vn) k~( n n+1 un+2) 2 k~ —&( n —1 n un+1)
—

2 k„2(u*„2u„*,v„*) (B4)

and similarly the other. As done for the energy E, the
hierarchy is closed for the fourth-order correlation func-
tions. With a calculation similar to that of Appendix A,
one obtains

P—+ v(k„+k„+~+ k„+2) (v„*u„*+~u„*+2)
dt

Here we derive the equations for the energy of the field
difFerence in the eddy damped quasinormal Markovian
approximation (EDQNM) for the shell model. The pro-
cedure is similar to that described in Appendix A for the
energy, so we only report the main equations.

We consider two independent realizations of the field,
u and v, with the same energy spectrum E, both
evolving according to (23) and (24). For simplicity of
notation, the equation of Inotion of the field v is rewrit-
ten as

—v„=—vk„+~h,„+f,„,dt
1k~ ~n+1 ~n+2 2 k~ —1 ~n —1 ~n+1

1 y 5/C

'Un

~ eb„4.

= —ik„W„*+1W„*+2+ i2 A:„W„E„+2
+i 2 A:„W„E„+1 (B5)

(v„*u„*+~u„*+2)= —io(n, t) k„[k„W„*+~W„*+2
—

2 k„W„E„+2—
2 k„W„E„+g](B6)

with 0(n, t) given by (A14), The other cumulants lead
to similar equations. Collecting all the terms one finally
obtains the equation for W in the EDQNM approxima-
tion,

and similar equations for the others.
We then perform the eddy damped and Markovian ap-

proximation, i.e. , add a damping term (p, + p, +q +
p +z)W to the lhs, where p is given by (All), and
we integrate the resulting equation in the Markovian
approximation see Appendix A for more details. From
(B5), it follows

+ 2vk„W„=2 k„0(n,t) (W„*+,W„*+2—2 W„E„+2—2 W„E„+g)
dt

——k„,0(n —1, t) (W„E„+g—2 W„*,W„*+,—2 E„yW„)
—

2 k„20(n—2, t) (E„gW„—2 E„2W„—
2

W*
2 W„*,)

+2 e b„4. (B7)
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