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Calculation of the effective diffusivity of heterogeneous media using the lattice-Boltzmann method
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The effective diffusivity of a heterogeneous medium is calculated numerically as a function of the in-
clusion fraction using the lattice-Boltzmann approach. Effective diffusivities are calculated for struc-
tures consisting of either permeable or nonpermeable inclusions distributed in a continuous phase.
Two-dimensional simulations show good agreement with results obtained by means of Monte Carlo
simulations of tracer diffusion. Numerical results are shown that are in agreement with the predictions
of Maxwell's equation, for small inclusion fractions.

PACS number(s): 51.10.+y, 66.30.Jt, 05.60.+w

I. INTRODUCTION

Diffusion in heterogeneous media is a central issue in a
wide variety of mass transfer phenomena. Transport of
methane in coal beds [1], diffusion of reactive substances
in catalizers [2], and transport of nutrients in tissues [3]
are examples that are intimately involved with diffusion
in heterogeneous media. These systems are often com-
posed of one or more dispersed phases distributed in a
single continuous phase. In general, the effective
diffusivity of molecules through heterogeneous materials
depends on the inclusion fraction and solute mobility in
each phase as well as on morphological details of the in-
dividual phases [4,5].

Consider a heterogeneous medium with either perme-
able or nonpermeable inclusions. A concentration gra-
dient is applied across the medium maintaining steady
mass transport (see the "experimental setup" in Fig. 1).
The mass transport is locally described by the diffusion
equation

tion. The coefFicient D,z can be defined as follows: let w*
and w be the steady-state molar Aux across the hetero-
geneous media and the homogeneous media (no inclusion
phase), respectively. Then D,fr is given by the following
relation [4]:

w
(3)

That is, D,z is the number that fits the macroscopic
Fick's law w*=D,~G, where G is the steady-state gra-
dient for the homogeneous media case. One can show
that

Dc(P2 Pl )L2 ~~1

L2w*= I Dp(BPIBX, )x I dX~ .

So that, in order to calculate w *, the steady-state concen-
tration distribution p(X&, X2) must be known. This is
achieved by solving the steady state in (1) with suitable
boundary conditions (no mass ffux at nonpermeable
boundaries, and constant concentrations at right and left

Here p is the molar concentration, and Dz is the local
molecular diffusivity, which is equal to Dz in the continu-
ous phase and Dl in the inclusion phase. If the inclusion
phase is nonpermeable, then DI=O. At length scales
much larger than the typical pore size, the mass transport
in Fig. 1 is generally described by the macroscopic
diffusion equation [4]

D +2C O

where C is the macroscopic mean concentration, and D,ff
is the effective diffusivity coeKcient along the X, direc-
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FICx. 1. Experimental setup for the estimation of effective
diffusivities.
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boundaries).
Previous approaches concerning prediction of D,& in

multiphase materials include Monte Carlo simulation of
tracer molecules [5] and methods of volume averaging
[4]. In the former approach, tracer particles undergo a
simulated random walk through the structure of a hetero-
geneous material. Molecular diffusion in the continuous
phase is described as a series of randomly directed steps,
with length A, =A,olne, where e E [0, 1] is a random num-
ber and Xo is a mean step length. The eff'ective diffusivity
is calculated by monitoring the distance traveled by the
tracers in a certain amount of time. The diff'usivity is cal-
culated using the relationship [5]

(X')
2d+A,

'

where ( X ) is the mean-squared displacement, d
represents the dimensionality of the system, and gA, is
the total length of the walk. Because of its stochastic na-
ture, Monte Carlo simulations need a large amount (of
the order of 10 ) of tracer particles to obtain accurate es-
timates of diff'usivities. In the method of volume averag-
ing, one departs from the diffusion equation defined on a
heterogeneous domain with suitable boundary conditions
[4]. If spatially periodic heterogeneous media are as-
sumed and variations on local diffusivities within the
periodic cell are neglected, it is possible to take volume
averaging of the continuity equation to obtain a represen-
tation of the transport equations with no geometry limi-
tations [4]. The main advantage of this procedure in
comparison with other approaches is that an algorithm
for the calculation of the tensor of effective transport
coe%cients is obtained. However, the volume averaging
approach has the limitations of being restricted to spa-
tially periodic media. Kim, Ochoa, and Whitaker [4]
compared eff'ective diffusivities predicted with the volume
averaging procedure and experimental diffusivities in
transversal isotropic, unconsolidated porous media. Such
comparison between theory and experiment showed good
agreement and clearly indicated the inhuence of the glo-
bal structure on the effective trar. sport coefficients. Mea-
surements were made in physical systems consisting of
glass spheres, mica particles, and disks made from Mylar
sheets.

In a recent work, Garbuczi and Bentz [6] used the
Nerst-Einstein relation, which connects the electrical
conductivity of the material with its diffusivity, to esti-
mate effective diffusivities of cement-based materials. By
imposing a voltage gradient across the sample, the es-
timation problem is reduced to the solution of a conduc-
tor network mapping problem, which is solved via conju-
gate gradient relaxation algorithm. Essentially, one
solves the complete electrical problem of the voltage dis-
tribution in a random material across which a potential
difference is applied.

The extension of the above-discussed methods to sys-
tems with rather complex transport phenomena including

chemical reaction, adsorption, etc. , is not straightfor-
ward. Heterogeneous media including Quid Aow and
chemical reactions are common in physical situations. In
principle, an alternative to address this class of problems
is to solve the transport equations [4,5] to obtain informa-
tion concerning effective transport coefficients [as posed
by Eqs. (1) and (3) for D,z].

In this work, we describe a lattice-Boltzmann (LB)
method [7—11] to determine D,ir as defined by Eq. (3). It
has recently been shown that LB methods provide alter-
native numerical techniques for solving transports equa-
tions, such as the Navier-Stokes [8] and reaction-diffusion
systems [9]. The parallel nature of these newly developed
schemes, adapted from cellular automata, affords an easy
implementation of fast, efficient, and accurate simulations
in parallel machines [8]. The efficiency of the LB
methods competes with that of traditional numerical
methods, while their physical interpretation is transpar-
ent [7]. For instance, nonpermeable boundaries are im-
plemented via the classical bounce back boundary condi-
tion of lattice-gas simulations.

The basic idea for the calculation of D,~ is the follow-
ing: for a given heterogeneous medium with either
permeable or nonpermeable inclusions, find the steady-
state solution of (1) via the LB numerical scheme; then
calculate the mass fiux w across the right (or left) bound-
ary (see Fig. 1) to estimate the relative difFusivity
D„=D,~/Dc by means of Eq. (3). Estimates of D,fr ob-
tained in this work agree very well with those obtained
with Monte Carlo simulations [5] for permeable in-
clusions. On the other hand, results from LB simulations
are compared with predictions from the Maxwell's equa-
tions [12], showing good agreement for small inclusions
fractions. As in previous work [4,5], it is found that the
morphological details of the heterogeneous media have
an important effect on the behavior of D,~ with respect to
the inclusion fraction.

The work is organized as follows. Section II describes
the LB method. Section III discusses the numerical stra-
tegy to implement the LB algorithm. Finally, Sec. IV
presents and discusses results of simulations.

II. THE LATTICE-BOLTZMANN METHOD

A lattice gas is a simplified model of molecular dynam-
ics. It is a fully discretized model in which a regular lat-
tice is populated by identical, pointlike particles posi-
tioned on the nodes. The particles propagate along the
lattice links and interaction with each other only when
they meet at a node. Then a collision occurs, conserving
mass. After the collision the particles are redistributed in
the available lattice directions. Lattice-gas methods have
proven to be useful in many applications such as How

[7—9] and phase transition [11] simulations. Lattice
gases are especially suitable for treating complicated
boundary conditions and complex domains, because no
slip and no transport boundary conditions are easily im-
plemented (it lets the particles bounce and back).

In the LB method, instead of using discrete particles,
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one describes the time evolution of population densities
assuming Boltzmann distribution locally [7,8]. The LB
method discussed has the following characteristic: a reg-
ular, square lattice, L, suspended in two-dimensional
space, 0= [0,Ll ] X [0,L2], with four links per node,
each link having unit length AX, and time advances in
units of AT, where L and T are spatial and temporal scale
lengths, respectively. Let f,.(x, t) be the one-particle dis-
tribution function with velocity c,- at some dimensionless
time t and dimensionless position x. The nearest-
neighbor vectors are taken as

(i —1)vr . (i 1)~—
e, =cos ul+sin uz, 1 «i «4,

2

where ul, u2 are unit vectors along the xl and xz direc-
tions, respectively. In addition, a rest particle state
(co=0) is used. Consequently at each lattice site, we
have five states. The behavior of a LB method is
governed directly by its rules: rules for advecting parti-
cles to new locations and rules for determining the new
directions of the particles. These are characterized in the
microdynamical evolution equation as [7,8]

f, (x+e, , t+1)—f,.(x, t) =O, (x, t),
where Q, is the collision operator. The zeroth moment
(total mass) at time t and position x, is defined by

where u is the velocity at the node and Z is the partition
function given by

p(x, t) —f'~(x, t)
fP(x, t)= ——,i&0 (9)

One can show that f (x, t)=p(x, t)/8 and

fP (x, t ) =p(x, t ) /2 [8]. The transition to a continuum
description is done by assuming that the f; (x, t ) have ap-
preciable variations only over a space scale L, ))AX and
a time scale T &)AT. Ponce-Dawson, Chen, and Doolen
[9] developed the mapping of the LB equations (7)—(9) to
the diffusion equation (6) for a triangular lattice. Al-
though the procedure is essentially the same as that in

[9], for the sake of completeness in presentation we will
derive the LB diffusion equation for a square lattice. The
left-hand side of Eq. (4) can be replaced by its Taylor ex-
pansion, to yield a differential form of the LB equation:

4

f0~(0)+ g f,'~(0)e
i=I

where p is a velocity-dependent term, and (, ) denotes
the standard internal product. For u=o (our case), it is
possible to conclude that lM =0 [8]. Therefore

4

p(x, t)= g f (x, t)
j=O

oo

(E B,+e(e, 8„))"f,(x, t)=A, (x, t),
, n

(lo)

if the transport (diffusion) equation is written in physical
coordinates (X, T) as follows:

Bp
Bt

—7'(D V'p) =0,

where D is the physical diffusion coefficient. Then coor-
dinates (x, t) are related to (X, T) coordinates by
X - =x Ax and T=tht, and lattice density p and physical
density p are related by p=p(b. x ) . If the system is close
to equilibrium, the collision operator, Q, ( tx) can be
linearized about a local equilibrium distribution. After
the linearization, Q, appears as a matrix acting upon the
deviations of f, (x, t) from its equilibrium f, (x, t), such
that Eq. (4) takes the form [8]

f, (x+e;, t+1)—f, (x, t)

4= y n; [f)( t)x—f (x, t)] .
j=O

In addition, it can be taken 0; = —5,"/r (uncorrelated
collision redistribution), which is known as the single re-
laxation time (Bernstein-Careen-Kruskal) approximation
[7]. We obtain the equilibrium solutions by imposing a
Boltzmann distribution locally:

fP(u)=f, '~(0)ze "' ', f' (u)=f'~(0), (8)

where B, =B/Bt, B„=(B!Bx„B/Bxz).In the above ex-
pression, the following scalings have been assumed [9]:
f; =O(E), B, =O(E ), and B =O(E), where E is a small
parameter. In fact, since the purpose of the model is to
describe diffusion effects, we have b.X/L; =O(c. ) and
b, T/T=O(E ). Up to second order (n =-2), Eq. (10) be-
comes

E B,f;+E(e; 8„)f;+ e; d„f;(x,t)e, —
2

[f,(x, t) —f "(x,t)]

where f has to be determined. Then, Eq. (11) can be
split into two parts corresponding to c and c variations:

f 1

&e;.a„&f;= — '
(12)

a,f,'~+(e; a„&f+ —,'e;a„f,e, =O

From (9), the following equality is obtained

(13)

We assumed that f, (x, t) has small departure from equi-
librium f,'"(x, t ):

f, (x, t ) —f (x, t )
~

« f,' l(x, t ) .

So that f;(x, t ) can be written as

f, (x, t)=f,'~(x, t)+Ef (x, t)+0( ),
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The above equation can be interpreted as an analogy to
the Fick law of mass transport [13] where f,' is the mass
Aux in the ith direction and ~ is the "diffusion
coefficient. " Substitution of (14) into (13) yields

B,f,'q —e, B„[r(e,.B„)f,'q]+ —,'e, B,f, e, =0 . (15)

D=D -=
—,'(r —

—,') .
—(b, T)

(b,X)
(17)

Note that the lattice parameter ~ ranges from +0.5 to
infinity. However, it is known that the single relaxation
time approach is a good approximation only for values of
r ranging from 0.5 to around 10 [9]. Given a physical
difFusivity coeKcient D, a relaxation time ~, and a lattice
spacing bX, the second equality in (17) defines the actual
time step AT. If the diffusivity coeKcient D varies with
position x, one merely chooses ~ as a function of x ac-
cording to (17).

In calculations of fluid flow using LB methods, it is
well known that the square lattice does not have proper
isotropy of fourth-order tensors [8]. However, in calcula-
tions of mass diffusion the use of the square lattice it is
not a problem since only isotropy of second-order tensors
(like g;e;, e~i ) is sufficient to derive the diffusion equation
(6).

III. NUMERICAL STRATEGY

This paper focuses on diffusion through two-
dimensional heterogeneous media constructed by placing
inclusions in a continuous phase (see Fig. 1).

Because in each phase difFerent diffusivities are as-
signed (or difFerent LB parameter r), it is necessary to
know at all times the location of the phases. To accom-
plish this, the simulation domain is discretized into a log-
ical matrix array of nodes (typically, 500X500 for two-
dimensional simulations). The lattice is used only to
discretize the spatial structure; distribution of phase
nodes can be made randomly or deterministically. The
inclusions have maximum diameter 50, in units of lattice
spacing. Nodes belonging to the inclusion phase are as-
signed a logical value .TRUE. , and all other nodes are as-
signed .FALSE. To determine the phase in which the
transport phenomenon is taking place, the algorithm re-
calls the value of the node; a returned value of .TRUE.
means the mass is inside an inclusion, while a value of
[5], the above discretization procedure is flexible and can
be used to investigate both regular (maybe periodic) or ir-
regular inclusion geometries. In simulations the mass is
kept diffusing by imposing a difference concentration
across the media. For each configuration of inclusions,

Summing over i and taking into account the isotropy of
the second-order term g, e,, e~k =25;z, we get

B,p
—V'(D V'p) =0,

where D =
—,'(r —

—,
'

) is the diffusivity coefficient of the lat-

tice, which is related to the physical diffusivity coefficient
Dby

the system was allowed to attain the steady-state and
then the mass Aux measurements were averaged over the
next 5000 time steps. Because the first-order approxima-
tion (11) works well for small values of r, we have used
~= 1 for the continuous phase in all the simulations.

To simulate nonpermeable inclusions, the standard
bounce back boundary condition [7—9] was implemented
in the boundary between permeable and nonpermeable
regions. To simulate permeable inclusions, mass is
translated across the boundary between regions with
different diffusion coefficients, and collision step [Eq. (7)]
is carried out according with the value of r [calculated as
in (17)] corresponding to the node. Specifically,
&=2DC+ —,

' if the node belongs to the continuous phase
(.TRUE. ), and r=2DI+ —,

' if the node belongs to the in-
clusion phase (.FALsE. ). In this way the current is con-
served across the boundary between regions with
different diffusion coeKcient.

IV. NUMERICAL RESULTS

0.2 -—
0.0 0.2 0.4 0.6 0.8 1.0

Inclusion fraction p

FIG. 2. Effective diffusivities for overlapping and permeable
rectangular inclusions. Open square symbols represent Monte
Carlo results.

We present two sets of numerical simulations that de-
scribe diffusion in heterogeneous media with permeable
inclusions, and diffusion through heterogeneous media
with nonpermeable inclusions.

Effective diffusivity results for overlapping rectangular
inclusions in two dimensions are presented in Fig. 2. Re-
sults are reported as relative diffusivities D„=D,~/Dc for
inclusion fractions in the range O~cp~ 1 and diffusivity
ratios D&/Dl ranging from 1.25 to 4.0. Inclusions are
randomly distributed rectangles with sides aligned with
the coordinates axis X& and X2. If r& and rz are the size
of such rectangles, then r, ranges from 1 to 5 spatial lat-
tice units and 0.25~ r, /r2 «5.0. Each point in Fig. 2
represents the average of five structural realizations to a
given inclusion fraction. We have also included the
values predicted by the Maxwell's equation [12]:

2Dc+ DI 2y(Dc DJ )D„=
2Dc +DI+ y(Dc DI )
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which was derived assuming that the inclusion phase oc-
cupies a small fraction and consists of nonoverlapping,
spherical inclusions randomly distributed in the continu-
ous phase. Notice that, results from LB simulations and
predictions from Maxwell's equation (18) agree very well,
for small ratios Dc/DI and all inclusion fractions. Such
agreement leads to the conclusion that Maxwell's equa-
tion is also valid for nonspherical inclusions. To compare
with Monte Carlo techniques, we calculated the relative
diffusivity by means of the method reported in [5].
Tracer particles undergo a simulated random walk
through the structural representation. Here molecular
diffusion in the continuous phase is described as a series
of randomly directed steps with length A, =A,olnE, where c
is a random number with uniform probability in [0,1],
and A,o is the mean step length in the continuous phase.
Particles inside the inclusions take steps of length
A, = —ykolnE, where y=DI/Dc [5]. In this way, the
current is conserved across the boundary between regions
with different diffusion coefficients. Results show good
agreement between effective diffusivities obtained via
Monte Carlo and LB techniques.

Although we have obtained results only for the in-
clusion geometry described above, the technique can be
used to investigate a wide variety of inclusion geometries,
such as spheres and irregularly shaped inclusions. We
consider now the case of nonpermeable inclusions. Be-
cause mass transfer takes place only in the continuous
phase, a diffusion problem with complex boundaries must
be solved. No mass Aux across inclusion boundaries is
easily implemented. One merely lets particles bounce off
neighboring nodes defining the inclusion boundary. Fig-
ure 3 shows a typical concentration distribution for over-
lapping rectangular inclusions with r, /r2 =0.5. The con-
centration scale can be read according with the color
scale at the right of the figure, and inclusions are
represented in black color. Figure 4 shows results of
effective diffusivities for randomly distributed inclusions
(as in Fig. 3) with rectangular geometry for the rates
r, Ir2 =0.5 and r, /r2 =2.0. Note that the effective
diffusivity in the case r& Irz=2. 0 is higher than the

1.0

0.8-

0.6-

(9 0.4-

0.2—

0.0
0.0

I

0.2 0.4 0.6

Inclusion fraction p

FIG. 4. Effective diffusivities for randomly distributed in-
clusions with rectangular shape.

effective diffusivity in the case r, /rz=0. 5. This is a
consequence of the fact that, for r, /r2=2. 0, the in-
clusions are aligned with the direction of the diffusional
process, such that preferential channels of transport are
created. On the other hand, for r&/rz=0. 5, the in-
clusions are orthogonally aligned with the direction of
transport, such that they oppose the diffusional process.
Following the notation in Kim, Ochoa, and Whitaker s
work [4], the curves in Fig. 4 corresponding to the
r& /r2 =2.0 and r

&
/r2 =0.5 cases represent the two dis-

tinct components of the effective diffusivity tensor in
transversely isotropic, unconsolidated porous media. The
difference between such effective diffusivities illustrates
the fact that the randomly distributed rectangular in-
clusion induces an anisotropic media. The ratio between
the effective diffusivities in Fig. 4 ranges from 1.0 to 3.0,
which is in accord with the ranges derived via volume
averaging techniques for spatially periodic inclusions [4].
Figure 4 also includes the relative diffusivities D„predict-
ed with Maxwell's equation (18). As expected from
Maxwell's assumptions, predictions of LB techniques and

200 nodes

1.0:.

0.8—

0.6-

tD 0.4-

X2
0.2-

0.0
0.0 0.2 0.4 0.6

FIG. 3. Typical concentration distribution for the case of
nonpermeable inclusions. Concentrations are displayed accord-
ing with the scale at the right-hand side of the figure.

Inclusion fraction p

FIG. 5. Effective diffusivities for randomly distributed non-
permeable ellipsoids.
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Maxwell's equation agree well for small inclusion frac-
tions (0~(p~0. 15), however, such agreement is better
for the r, /r2 =2.0 case. Observe that there exists a criti-
cal inclusion fraction y*(1.0 for which D,&=0, where
y* depends mainly on the inclusion geometry. y* is a
threshold inclusion fraction at which there is not mass
transport across the sample. In other words, at y the
accessible porosity of the porous media becomes equal to
zero [5].

Finally, Fig. 5 shows the behavior of D, with respect to
inclusion fraction cp for two-dimensional spheroids ran-
domly distributed in a continuous phase. The shape of
the curve (D„,&p) is the same as the ones in Fig. 4: name-
ly, a smooth decaying followed by an inaccessible struc-
ture (D„~O)depending on the inclusion geometry. This
suggests the existence of a universal behavior, in analogy
with the permeability of fluids in porous media [14].

in heterogeneous media. The LB techniques are easily
implementable because of their ability to handle compli-
cated domains arising from heterogeneous media cases.
Results were illustrated for structures consisting of rec-
tangles or spheres randomly distributed in a continuous
phase of lower diffusivity; however, our methodology can
be used to study any type of structure. Because LB tech-
niques can describe diffusional processes in non-steady-
state regime, it can be used to describe dynamic effective
diffusivities of heterogeneous media [14]. This work is
now in progress. Also a study of spatially periodic struc-
tures and its comparison with volume averaging pro-
cedure results will be presented elsewhere.

ACKNOWLEDGMENT

V. CONCLUSIONS

We have presented in this paper a numerical strategy
that uses LB techniques to estimate effective diffusivities

Two of us (S.N.M. and J.G.T.) would like to thank
CONACy T for financial support.

[1]D. M. Smith and F. L. Williams, Soc. Petroleum Eng. J.
24, 529 (1984); R. Jackson, Transport in Porous Catalysts
(Elsevier, New York, 1977).

[2] N. Wakao and J. M. Smith, Chem. Eng. Sci. 17, 825
(1962).

[3] B. A. Westrin and A. Axelsson, Biotechnol. Bioeng. 38,
439 (1991).

[4] J. H. Kim, J. A. Ochoa, and S. Whitaker, Transp. Porous
Media 2, 327 (1987).

[5] M. R. Riley, F. J. Muzzio, H. M. Buettner, and S. C.
Reyes, Phys. Rev. E 49, 3500 (1994); S. Reyes and K. F.
Jensen, Chem. Eng. Sci. 40, 1723 (1985).

[6] E. J. Garbuczi and D. P. Bentz, J. Mat. Sci. 27, 2083
(1992).

[7] F. Higuera, S. Succi, and R. Benzi, Europhys. Lett. 9, 345
(1989).

[8] R. D. Kingdom, P. Schofield, and L. White, J. Phys. A 25,
3559 (1992); F. J. Alexander, S. Chen, and J. D. Sterling,

Phys. Rev. E 47, R2249 (1993); D. Grunau, S. Chen, and
K. Eggert, Phys. Fluids A 5, 2557 (1993).

[9] S. Ponce-Dawson, S. Chen, and G. D. Doolen, J. Chem.
Phys. 98, 1514 (1993).

[10]T. Karapiperis and B.Blankleider, Physica 78D, 30 (1989);
P. Papatzacos, Complex Systems 3, 383 (1989).

[11]D. H. Rothman, J. Stat. Phys. 52, 1119(1988).
[12]J. C. Maxwell, 3 Treatise on Electricity and Magnetism,

3rd. ed. (Dover, New York, 1954), Vol. 1.
[13]R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport

Phenomena (John Wiley, New York, 1960).
[14] M. Sahimi and M. A. Knackstedt, J. Phys. I (France) 4,

1269 (1994); J. P. Stokes, D. A. Weitz, J. P. Gollub, A.
Oougherty, M. O. Robbins, P. M. Chaikin, and H. M.
Lindsay, Phys. Rev. Lett. 57, 1718 (1986); D. A. Weitz, J.
P. Stokes, R. C. Ball, and A. P. Kushnick, Phys. Rev.
Lett. 59, 2967 (1897);J. A. M. S. Duarte, M. Sahimi and J.
M. de Carvalho, J. Phys. II (France) 2, 1 (1992).






