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Current distribution in the three-dimensional
random resistor network at the percolation threshold
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We study the multifractal properties of the current distribution of the three-dimensional random
resistor network at the percolation threshold. For lattices ranging in size from 8 to 80 we measure
the second, fourth, and sixth moments of the current distribution, finding, e.g. , that t/v =- 2.282(5),
vrhere t is the conductivity exponent and v is the correlation length exponent.
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I. INTR.ODU CTION

Quite surprisingly, it was found in the mid-1980s that
dynamic phenomena on fractal structures often were con-
trolled not by one or two relevant length scales, but
rather by an infinite hierarchy of such length scales [1].
One of the prime examples of this phenomenon is the cur-
rent distribution in the random resistor network at the
percolation threshold [2-5]. In spite of the large eff'ort

that was invested to understand how such an infinite hi-
erarchy could appear, e.g. , through studying hierarchical
structures yielding to analytic calculations [3,5], no satis-
factory general explanation was found. The large numer-
ical eKort that was invested at that time on the random
resistor network focused on two dimensions. The reason
for this was that three-dimensional networks were essen-
tially out of reach of the computational power available
at the time. The aim of the present work is to estab-
lish that, as in two dimensions, the current distribution
in three dimensions is multifractal and to determine the
corresponding scaling exponents with high presicion. In
addition to their theoretical interest, these results are of
importance in making contact with experimental studies
on three-dimensional conductor-insulator mixtures [6—8],
and microemulsions [9—13]. To achieve this goal, we made
use of the latest developments in iterative solvers and
massively parallel computers.

In Sec. II we present the model and the method of
solution. In Sec. III we discuss the current distribution
through the behavior of the moments and their expo-
nents, in addition to exaInining the statistical Huctua-
tions of the moments.

*Present address: Silicon Graphics Computer Systems, 1
Cabot Road, Hudson, MA 01 749.

We consider a three-dimensi. onal cubic lattice of size
with periodic boundary conditions in the x and y

directions. For the z direction the boundary conditions
are as follows: At z = 1 and z = I we place two plates
with a constant potential difference set at a value of l.
Therefore, the length of the lattice in the z direction is
L—1, while in the x and y directions the length is 1. This
geometry was chosen because the data layout becomes
optimal on the Connection Machine CM5, which we used
for our computations.

All bonds are visited and, with a probability p, a re-
sistor is placed. All resistors have the same resistance,

We set p equal to the bond percolation threshold for
the cubic lattice, p = 0.2488, as determined by StauKer,
Adler, and Aharony [14]. After all the bonds have been
visited, a (parallel) cluster finding algorithm is applied
to determine if there is a spanning cluster that connects
the two plates. If no such cluster exists, the procedure is
repeated until one is obtained. This cluster finding algo-
rithrn is very fast but only determines if there is such a
cluster, not its exact geometry.

The equations to be solved are the usual current equa-
tions (Kirchhoff's equations) on the lattice, which can be
easily solved using the conjugate gradient or related iter-
ative algorithms [15]. We wrote the program in CM For-
tran and used the iterative solvers in the Connection Ma-
chine Scientific Software Library (CMSSL), which con-
tains thirteen of them. Which one to use depends on the
particular matrices one is dealing with. For this prob-
lem we found that the quasiminimized cgs (QCGS) [16]
algorithm performs very well.

Our stopping condition is for the residual to be less
than 10, which for the biggest lattices gave a true
accuracy of about 10 . We estimated this by calcu-
lating the conductivity of each realization in two ways:
(1) Calculate the total current crossing an XY plane at
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z = L/2, which, knowing the potential difFerence (=1),
gives the conductivity, and (2) calculate the second mo-
ment of the currents. This is again equal to the conduc-
tivity as the externally applied potential difference is 1.
On the biggest lattices, for which the accuracy at which
we can determine the currents is the lowest, they agreed
to within O(10 ). As it is too time consuming compared
to solving the Kirchhoff equations, we made no effort
to identify the bonds that did not belong to the span-
ning cluster. We simply solved for the currents, keeping
the disconnected bonds and dangling ends in the system.
This made it impossible to get an accurate count of the
number of current-carrying bonds. We will, therefore,
give results for the second, fourth, and sixth momemts of
the currents, leaving out the zeroth moment. The num-
ber of realizations for I = 8, 16, 32, 48, 64, and 80 were
12000, 9198, 2765, 1120, 1913, and 953, respectively.
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III. CURRENT DISTRIBUTION

Solving for the currents in the bonds allows us to cal-
culate the nth moment of the current distribution, given
by
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FIG. l. (a) The second moment of the current (i.e. , the
conductance G) scales as a power of the system size L, with
an exponent equal to —1.282(5). (b) The variance of the
conductance distribution scales exactly as the conductance
itself with the system size, L

where B denotes the realization, NR is the number of
these realizations, and ik(R) is the current in the kth bond
in realization B. These moments are calculated in the
constant voltage ensemble where the potential difference
is kept constant realization to realization. We expect the
moments of the currents to scale as
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PIC. 2. Power-law scaling of
the fourth moment as a func-
tion of the system size L . The
exponent is —3.920(6).
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FIG. 3. Power-law scaling of
the sixth moment as a function
of the system size L . The ex-
ponent is —6.477(10).
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where L = L —1 is the length of the system in the z
direction, and x(n) is the exponent of the nth moment.
Figures 1(a), 2, and 3 show, on a log-log scale, the sec-
ond, fourth, and sixth moments, respectively. The second
moment measures the total dissipated power, and since
the externally applied voltage difference is 1, it directly
gives the conductance of the network. So, Fig. 1(a) gives
the scaling of the conductance as a function of L, giv-
ing the exponent x(2) = 1.282(5). Figure 1(b) shows
the scaling of the variance of the conductance distribu-

tion as a function of L . We see that it scales with the
same exponent as the conductance itself. The same is
true for the other moments. Thus, the relative Huctu-
ations neither grow nor decrease with lattice size. The
scaling of the conductivity with L is obtained by simply
dividing the results for the second moment by L, (since
this is the conductance) giving t/v = 2.282(5), where t is
the conductivity exponent and v is the corrrelation func-
tion exponent. Our value for t/v is in agreement with,
but more precise than, the value determined by Gingold
and Lobb [17] who obtained t/v = 2.276(12). Our error
estimates, like those of Ref. [17], are purely statistical.
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FIG. 4. y(n), the exponent of the nth moment in the con-
stant current ensemble, as a function of n. As n increases,
y(n) approaches the dashed line, which is given by 1jv.

FIG. 5. Same as Fig. 4, but showing y(n) as a function of
1/n This show. s very clearly that as n —+ oo, y(n) + 1/v.
The dashed line is a guide to the eye and simply connects the
points at 1/n = 0 and 1jn = 0.6.
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FIG. 6. Histogram of G/(G)
on a semilogarithmic scale. It
shows that the distribution for
larger values of G/(G) is expo-
nential.
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We did not do a finite-size scaling analysis because, for
the large system sizes we used, finite-size effects were
so small we could not observe them over the statistical
noise in our data. With v = 0.88, we therefore have that
t = 2.01. The experimental values reported for this expo-
nent range from 1.2 to 2.1 for the measurements based on
microemulsions [9—13], and for the measurements based
on conductor-insulator mixtures, the values 2.0 + 0.2 [6],
1.85 + 0.25 [7], and 1.6 + 0.1 [8].

The exponent of the fourth moment is related to
the scaling of the Nyquist noise of the random resistor
network through the fluctuation-dissipation theorem as
shown by Rammal, Tannous, and Tremblay [4]. Thus,
as for the second moment, the fourth moment is related
to a macroscopic quantity and therefore is of direct ex-
perimental interest. However, no relation between the
sixth moment of the current distribution and a directly
measurable quantity has been identified. We determine
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FIG. 7. Histogram of K/(K)
on a semilogarithmic scale. It
shows that the distribution for
larger values of K/(K) is expo-
nential.
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x(4) = 3.92O(6) and x(6) = 6.477(10).
If y(n) is the exponent of the nth moment in the can-

stant current ensemble, we have (i ), L„" . It is then
easy to show that y(n) = x(n) —nx(2). This way, we

can easily change between the two ensembles. Figure 4
shows y(n) as a function of n, where we see that it be-
haves in the classic multifractal way [5,18]: The three
exponents we show do not fall on a straight line and as n
increases they approach a constant that must equal I/v
[2,1.9]. This is shown by the dashed line in the figure.
To shower this relation even more clearly, we plot in Fig. 5

y(n) versus 1/n, and where we use for y(oo) the best
value we found for v = 0.88 [20], and references therein.
The dashed line is merely to guide the eye. It connects
the point at 1/n = 0 to that at 1/n = 0.5. We see that
the exponents for the fourth and sixth moments are in
agreement with this line although the sixth moment is
starting to lose precision. These y(n) plots demonstrate
the multi&actality of the current distribution in this net-
work, but the convergence to I/v as n ~ oo is rather
slow, especially when compared to the two-dimensional
case [18].

The sample-to-sample fluctuations of the values of the
conductivity (G) and the fourth moment (related the
Nyquist noise strength, let us call it K = (i )~) also
yield interesting information about the system [21]. We
have demonstrated in Fig. 1(b) that the variance of the
conductance (from sample-to-sample fluctuations) scales
as the conductance itself with respect to J . Exactly
the same behavior is observed for the variances of the
higher moments. Therefore, the distributions of G/(G)
6.om different size systems will collapse onto a single dis-
tribution. The same is true for K/(K). To characterize
these distributions, we examined on a semi-logarithmic
scale these distributions against (G —(G)) /(G) and

(K —(K)) /(K), respectivel. y. Such plots should yield
straight lines for Gaussian distributions. This way we

found the distributions not to be normal, and a similar
procedure showed them not to be log-normal. In Figs. 6
and 7, we show the distributions of G/(G) and K/(K) for
di8'erent lattice sizes on a semilogarithmic scale plotted
against G/(G) and K/(K). For the larger values, we find
in both plots straight lines that indicate exponetial dis-

tributions of the form N(G/(G)) exp( —2G/(G)) and
%(K/(K)) exp( —1.3K/(K)), respectively.

IV. CONCLU SIONS

By using a combination of eKcient algorithms and a
massively parallel computer, we were able to do a high
precision study of the distribution and moments of cur-
rents in a three-dimensional network at the percolation
threshold.

Our result for the conductivity exponent is in agree-
ment with but more precise than previous values. In
addition we evaluated the exponents for the fourth (re-
lated to 1/f and Nyquist noise) and sixth moments. The
values we have found support the notion of a multifractal
current distribution for the three-dimensional network.

We have furthermore studied the sample-to-sample
Iluctuations and the distributions of the second (conduc-
tivity) and fourth (noise) moment of the current distri-
bution. We And that the relative fluctuations scale as the
moments themselves with lattice size, and that the un-
derlying statistical distributions appear to be exponential
rather than Gaussian. Furthermore, the distribution of
conductivities at the percolation threshold has proven to
be an important ingredient in the formulation of scaling
theories for the optical properties (ac conductivity, reflec-
tivity, transmittivity) of two-dimensional systems such as
semiconductor metal films [22] and metal-insulator com-
posites [23]. Similar scaling theories in three dimensions,
when constructed, will also need the distribution of the
conductivities for three-dimensional systems at the per-
colation threshold, which we have presented in this paper.
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