PHYSICAL REVIEW E

VOLUME 53, NUMBER 3

MARCH 1996

Fractal dimension fluctuations for snapshot attractors of random maps
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We consider the determination of the information dimension of a fractal snapshot attractor (i.e.,
the pattern formed by a cloud of orbits at a fixed time) of a random map. It is found that box-
counting estimates of the dimension fluctuate from realization to realization of the random process.
These fluctuations about the true dimension value are a result of the unavoidable presence of a
finite smallest box size €. used in the dimension estimation. The main result is that the fluctuations
are well described by a Gaussian probability distribution function whose width is proportional to

(log1/e.)"2/2,

Averaging dimension estimates over many realizations (or over time for a single

realization) thus yields a means of obtaining a greatly improved estimate of the true dimension

value.

PACS number(s): 05.45.+b, 02.50.—r

I. INTRODUCTION

In this paper we consider random maps
Xn4+1 = Mn(xn)’ (1)

where, on each iterate n, the map function M,, is chosen
randomly from an ensemble of map functions according
to some probability distribution function. For simplicity,
we will henceforth specialize to the case where M,, is
a given function (fixed in time n) of a random scalar
parameter c,,

M"(x) = M(x’ Cn),

where c,, is chosen randomly on each iterate with a prob-
ability distribution function that we denote P(c).

The dynamics generated by random maps has recently
been the subject of theoretical study [1]. In addition,
random maps are of interest as models of advection by
temporally irregular fluid flows [2-6]. Indeed, in recent
experimental papers [3] the authors made explicit use of
random maps to discuss and analyze their results. These
experiments dealt with the fractal patterns formed by a
scum of floating particles on the surface of a fluid that
was undergoing temporally irregular motion. The motion
of the floating particles was chaotic in the sense that the
positions of nearby particles diverged exponentially from
each other with time. Furthermore, as explained later
in Sec. II, the particle motion was on average compres-
sive, so that the describing two-dimensional map is area
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shrinking (dissipative) rather than area preserving (con-
servative).

Under such circumstances one expects the particles to
be attracted to a fractal pattern, similar to the strange
attractor of a chaotic nonrandom map. One difference
here is that, because of the random time dependence of
the map, the pattern is not steady with time but moves
around in a random way. Thus we speak of a “snapshot
attractor,” which is a picture of the fractal pattern at a
given instant in time [1-5,7]. More precisely, say we ini-
tiate a smooth density of orbit points at some negative
time —ng. We then map this density forward in time
using the random map and examine the density at some
positive time n. Now imagine that we keep n fixed and
increase ng. To increase ny by one, we keep all the same
M., of the random realization, but add one new randomly
chosen M,, at the beginning of the sequence. As ng in-
creases, the pattern at time m becomes more and more
fine scaled, approaching a spatially fixed fractal attractor
in the limit as ng — oo [1-5,7].

While the pattern generated in the above manner is
substantially different if n is changed, the dimension of
the pattern is the same for all n. Indeed Ladrappier
and Young [1] prove that, with probability one, a given
realization of the random process will result in a se-
quence of patterns each having an information dimen-
sion given by the Kaplan-Yorke formula [8], which for
the two-dimensional cases of interest to us here is

Dxy = 1+ (h1/]h2|). (2)

Here h; and h; are the Lyapunov exponents, one of
which, hq, is positive (chaos), while the other, ks, is neg-
ative and satisfies h; + hy < 0 (area contraction).

In practice the information dimension of a fractal at-
tractor is most commonly obtained by box counting
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(e.g., this is the method employed in the experiments
in Ref. [3]). To define the information dimension by box
counting, imagine that we divide the area into a grid of
boxes of size € and then calculate the fraction of particles
(measure) of the snapshot attractor in each box. The
information dimension is then defined by

Dy = lim I(e)/log(1/e), (3)
where the information I(€) is given by

I(e) = - Zﬂi log p; (4)

and p; is the measure in box i. In real situations, how-
ever, the limit of € going to zero cannot be taken. Instead,
one estimates Dj by first calculating I(e) for a range of
€ values down to some minimum €, and then fitting a
straight line to the data for I(e) versus log(1/¢) in the
available € range. The estimated Dy (which we denote
Dgc) is then taken as the slope of the fitted line.

The main points of this paper are as follows: (i) for
small but nonzero €,, such dimension estimates fluctuate
from realization to realization of the random process, (ii)
the fluctuations conform to a Gaussian distribution, and
(iii) the width of the Gaussian scales as (log1/e,) /2.
Thus, as e, — 0, the width of the distribution goes to
zero and almost every realization gives the same value
[Eq. (2)], as it should.

The above implies that averaging of dimension esti-
mates over many random realizations yields a means of
obtaining an improved estimate of the true dimension
value (i.e., the box-counting value that would apply to
every realization if €, — 0). Alternatively, the stationar-
ity of the random process implies that the average over
realizations can be replaced by averaging over different
snapshots taken at different times for a single realization
(this was done in the experiments in Ref. [3]).

In Sec. IT we introduce an illustrative random map pre-
viously used [2] to model the evolution of the pattern of
scum floating on a fluid surface. This map is then used
in numerical experiments and the information dimension
of the resulting snapshot attractor is estimated using the
previously described box-counting method. This is re-
peated for many realizations of the random map pro-
cess and the estimated dimension values are shown to be
well described by a Gaussian distribution about the true
value, which we obtain to high accuracy using (2).

Section III considers a random baker’s map model for
which explicit results are easily obtained. It is shown an-
alytically for this model that the fluctuation in dimension
estimates is Gaussian and that the width of the distri-
bution scales as (log1/e.)~'/2. Based on the results of
Secs. II and III, we conjecture that results (i)—(iii) above
apply very generally.

II. NUMERICAL EXPERIMENTS
ON A MODEL RANDOM MAP

A. Model

We now consider a model random map [2,4] given by
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ZTnt1 = [Tn + Yn(l — e”%)/a] mod 27, (5a)
Yn+1 = KSin(mn+l + c'n.) + e_ayna (Sb)

where c, is chosen randomly in [0,27] at each iterate
(i-e., the probability distribution of ¢ is P(c) = (2m)~!
in [0,27]). In what follows we take o = 0.09 and k =
0.5. The Jacobian determinant of the map (5) is e~
independent of z and y. Thus areas are contracted by

the factor e™ < 1 on each iterate and h; + hy = —a,
which when used in (2) yields
Dy = 1+h1/(h1+a). (6)

In the case with no randomness and ¢, set to zero (5)
reduces to the map introduced by Zaslavsky in Ref. [10].

As a physical motivation for (5) consider floating parti-
cles on the surface (z = 0) of a fluid located in the region
z < 0. Assume [2] that the fluid flow consists of three in-
compressible components v = v; + vy + v3, where v, is a
steady horizontal shear flow given by vi = voyxe, v2 is a
steady down welling given by vo = —uoyyo + uozzo, and
v3 is a temporally irregular vortical component modeled
as

v3(2,y,t) = wosinfz + c(t)] Y _ §(t — mT)ya.

Here c(t) is a temporally irregular function of time and
cn = ¢(nT) is modeled as a random variable. Setting z =
0 (appropriate for floating particles) and integrating the
particle position from just after the nth §-function pulse
to just after the (n + 1)th §-function pulse, we obtain (5)
after suitable rescaling. Note that the divergences of vy,
va, and vz in the full three-dimensional space are each
zero, but that the divergence restricted to the surface
z = 0 is negative, V' - v = [0v,/8z + Ovy/8y].—0 =
V' . vy = —ug, thus leading to area contraction by the
map.

B. Numerical experiments on the map
given by Egs. (5)

Snapshot attractors were generated by first randomly
sprinkling 108 initial conditions uniformly in the region
0 <z < 2w —2 < y < 2. These initial conditions
were then each iterated using the same randomly chosen
sequence of phase angles {c,}. After a large number of
iterates, the positions of all the orbits were recorded and
these positions were regarded to represent the snapshot.
Using 40 different random realizations of the sequence
{cn}, 40 different snapshots were generated. Figure 1
shows a representative snapshot attractor generated in
the above manner.

For each snapshot we performed a box-counting deter-
mination of the information dimension, by first dividing
the region 0 < =z < 27, —2 < y < 2 into 22P boxes of
dimension Az = 2mwe by Ay = 4e where ¢ = 27P. We
then estimated the measure u; of each of the 227 boxes
as the fraction of the 10® orbit points in that box and we
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FIG. 1. Snapshot attractor of Egs. (5).

did this for successively smaller values of € (larger values
of p). The slope of the best-fit straight line to the nu-
merical data for I(e) versus log(1/€) was taken for € in
the range 27! > € > ¢, = 2719 for each of the 40 real-
izations and constitute our estimates of the information
dimension. The cutoff at €, = 271° was chosen because,
for smaller ¢, it was found that the estimates of the mea-
sures u; are degraded by the effect of the finite number
of orbits (namely, 10°).

The 40 box-counting estimates of the information di-
mension were found to have small fluctuations about a
mean value. As explained below, these fluctuations are
consistent with a Gaussian distribution whose mean and
standard deviation are

Dgc =1.514+0.01, (7a)

o =0.05+ 0.01. (7b)

To test consistency with a Gaussian distribution we
utilize the “probability plot” technique [11]. This is a
method for determining if the sample of N measurements
(21, 22,--.,2nN) is consistent with these measurements be-
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FIG. 2. Probability plot.
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ing drawn from a probability distribution ¢(z). In our
case the measurements z; are the 40 box-counting di-
mension estimates and ¢(z) is taken to be a Gaussian
distribution function. The method is to first reorder the
measurements so that they are ranked by size (that is,
z; < 241 for 0 < ¢ < N). Then the mean cumula-
tive frequency p; = i/N is plotted against z;. How-
ever, p; is plotted on a nonlinear scale as follows: if
F(z) = [ ¢(')d2 is the cumulative distribution func-
tion, then the distance from the origin along the vertical
(p;) axis is proportional to F~(p;). Thus, if the mea-
surements are indeed drawn from a Gaussian distribu-
tion, then the resulting plot will approximate a straight
line. As shown in Fig. 2, this is the case.

We also determined an accurate value of the positive
Lyapunov exponent h; by iterating the Jacobian matrix
of (5) for 107 iterates. Several repetitions with differ-
ent random realizations yielded the same value of h; to
within three decimal places, namely, h; = 0.987. In-
serting this value in Eq. (6), we obtain Dky = 1.52, in
agreement with the value of Dpc in (7a).

III. RANDOM BAKER’S MAP

In this section we consider a simple solvable random
map model for which the dimension fluctuation proper-
ties can be explicitly demonstrated analytically. The map
is

if yp, < cn

AT,
Tnt+1 = . 8a
+ {%+/\:Bn if yn > cn, (8a)
_J yn/cn ify, <cn
Ynt1 = { (yn - cn)/dn lf Yn > Cn, (8b)

where 0 < A < 1/2, d,, =1 — ¢,, and ¢, is restricted to
lie in (0,1) and is chosen randomly on each iterate. The
variables (x,y) are considered tolie in the unit square
0 < (z,y) < 1. The action of the map is illustrated
schematically in Fig. 3.

Using the same notation as in the preceding section,
we assume that a smooth particle density is initialized
at time —ng where ny > 0. As a result of the uniform
stretching of (8b), the particle distribution at fixed n be-
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FIG. 3. Schematic illustration of the action of the random
baker’s map Egs. (8) on the unit square.
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comes uniform in 0 < y < 1 as ng —» +o0o. We now
consider the determination of Dg¢ for the measure pro-
jected onto the x axis using a minimum interval size
€. = A™. Without loss of generality, we can fix the
time at n = 0. With this model the information I(€)
for e = AF(k =0,1,...,m) is

Ik =374, (92)

i=1
where

Aj=—(c_jlogc_; +d_jlogd_j). (9b)

To obtain (9) first consider £k = 1. We note that the
measure is uniform in y at all finite times (we have taken
the limit ng — +00) and that the measure at time n = 0
results from one iteration of the measure at time n = —1.
Thus the measure at n = 0 lies in the two A-width strips
in Fig. 3, with the left strip having a measure c¢_; and
the right strip having a measure d_;. Hence we have (9)
for k = 1. To establish (9) for £ > 1 one can now proceed
by induction. We omit the details.

Equations (9) can be rewritten by separating A; into
an average and a fluctuation A; = (A) + 4,

k
IA%) = k(A) + ) 45, (10)

=1
where (A) is the average of —(clogc + dlogd) over the
probability distribution of c¢. Since the c¢’s are chosen
randomly on each iterate the §; are zero mean, inde-
pendent, identically distributed random variables. Thus
(9a) represents a Brownian random walk (biased by (A))
of length k and a graph of I(\*) versus log(l/e) =
klog(1/A) is essentially the graph of the position of
a biased Brownian random walker versus time. As k
increases the root mean squared fluctuation in (10),
(32 6;)%)1/2, increases like k'/2. Thus, for k — oo the
term k(A) dominates and, with probability one, we ob-

tain the same dimension for all realizations,

Dy = (A)/log(1/2), (11)

which also agrees with (2). Thus, to establish the re-
sult that, for small €,, Dpc has a Gaussian distribution
with width scaling like (log 1/€,)~'/2, we need only show
that the slope of the least-squares best-fit straight line to
2?21 0; versus k for 0 < k < k, has a Gaussian distri-

bution with width proportional to k:l/z. This is done in
the Appendix.

IV. CONCLUSION

In conclusion, we have shown that box-counting dimen-
sion estimates of random map fractal attractors fluctuate
about a mean value from realization to realization and
these fluctuations are Gaussian with a width that scales
like (log1/€.)~/2, where €, is the smallest box size in
the dimension estimate.

ARTHUR NAMENSON, EDWARD OTT, AND THOMAS M. ANTONSEN 53

ACKNOWLEDGEMENT

This work was supported in part by the Office of Naval
Research.

APPENDIX

We consider the function
(A1)

where f(0) = 0 and J; are zero mean, independent, iden-
tically distributed random variables. For a given real-
ization {4;}, let ak + b denote the least-squares best-fit
straight line to f(k) in the range 0 < k < k.. We want
to show that a has a Gaussian distribution with width
proportional to k. 12, Minimizing the mean squared er-
ror

k.
E = [f(k) - (ak +b)]? (A2)
k=0
with respect to a and b, we obtain
e D_Kf(R) Y f(k) (43)

6
k. Sk k.

for k. > 1. Substituting (A1) in (A3) and expanding for
k. > 1 we obtain after some algebra

3 k.—1
~ E : -2
a = -—E 7 (Sk__j.
* =1

Thus {a?) = (9/k8)(6%) Y j* = (9/5)(6?)/k« and hence
(a2)1/2 ~ k:,,_l/z, as previously claimed. We now show
that (15) yields a Gaussian distribution. Let p(d) and
q(a) be the probability distributions of § and a =
—k2a/3. Let p(x) and (k) be the Fourier transforms of
p(d) and g(@) with transform variable k. Equation (A4)
yields

(Ad)

q(r) = p(r)p(2%K) - p((ks — 1)7K). (A5)

Noting that p(x) is maximum at k = 0 and that, by
virtue of the Fourier transform 825/0k2|.—o = —(§2), we
have

Pk) 21— L(57)s% = exp (—%(52)/%) (A6)

for small k. Putting (A6) in (A5) we obtain for §(x) a
Gaussian in k,

q@) =~ exp (— {<~'15(2)—>kfn2}) .

The inverse Fourier transform of (A7) is thus a Gaussian
in @ for g(a).

(A7)
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