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By using feedback control in k space and pinning in x space we successfully stabilize unstable
steady wave-packet solutions in a representation of the driven/damped nonlinear drift-wave system.
Three typical solutions are chosen to be controlled. Without controlling they display different dy-
namical features: one is chaotic in time while coherent in space, another is chaotic both in time
and in space, the third one is explosively unstable. All the states can be stabilized to the respective
unstable regular reference states by our controlling schemes.

PACS number(s): 05.45.+b, 03.40.Kf, 52.35.—g

I. INTRODUCTION

Chaotic and turbulent behaviors occur in a variety of
nonlinear dynamic systems. In many cases such behav-
iors are considered to be harmful. For instance, in mag-
netically confined plasmas anomalous energy and particle
transport across magnetic field can be induced by fully
developed turbulence that causes undesirable energy loss.
As well known, for chaotic systems a trajectory is very
sensitive to perturbations; two orbits starting from neigh-
boring points in phase space will separate exponentially
from each other as time goes on. For this reason chaotic
systems are generally accepted to be unpredictable and
hardly controllable. However, it turns out in recent years
that chaotic systems are not so dificult to control [1—
12]. Diff'erent methods have been proposed to control
chaos. For example, by Ott-Grebogi-York method [1]
one can stabilize unstable periodic orbits embedded in
a chaotic attractor. Feedback control [3,5] with respect
to dynamic variables is also demonstrated to be very ef-
fective in suppressing chaos, and it is easy to realize in
experiments. Most theoretical works on controlling chaos
focus on systems described by ordinary difI'erential equa-
tion's (ode's) or by low-dimensional mappings. Recently,
however, there has appeared a great interest in control-
ling nonlinear extended systems [13—17]. In this paper
we present, along the line of our previous Letter [13],
an investigation on controlling spatiotemporal chaos. In
Sec. II we specify our partial diff'erential equation (pde)
model and derive a set of mode equations for the per-
turbation to a steady wave &om the model pde. The
controlling schemes are described in Sec. III. In Sec. IV
the results of the controlling are shown for three typical
dynamically different states. In particular, we present

*Mailing address.

an example of controlling a state that is chaotic both in
time and in space. Since we will use truncated mode
equations as the representation for the original pde, the
meaning of "chaotic in time and space" will be restricted
and explained later. Section V gives some discussions.

II. MODEL EQUATION

The equation with p = e = 0 is called nonlinear drift-
wave equation [19]or regularized long-wave equation [20].
A periodic boundary condition P(x + 2m, t) = P(x, t) is
used throughout the paper. This model is of importance
in both fIuid and plasma fields. If a nonuniform plasma
is embedded in a magnetic field B = Bz, drift waves can
be excited. The equation can be derived as follows [25].
The momentum equation of ions reads

vi
dt

e eBV4+ v~i x zj
mi m, C (2)

here and in the following the subscripts ~~, ~ indicate
the directions of parallel and perpendicular to z, and
the subscripts i, e the ion and electron, respectively. C
is the light speed. 4 is a fIuctuating electric poten-
tial. For drift-wave oscillations, the typical &equency
cu « 0, = eB/m, ;C, and the parallel wavelength 2m. /k~~ is
in the order of the gradient scale length of the nonuniform
plasma, which is much longer than the perpendicular
wavelength 2x/k~. To the lowest-order approximation
the left-hand side (lhs) of Eq. (2) can be neglected, one
obtains the perpendicular velocity of the ions, v~i ——vE,
here

The following equation is taken as the system to be
controlled [18],

0$ 8 P 8$ 0$+ a + c + fP = —pP —csin(x —Bt).
Ot OtOx2 Ox Ox
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The continuity equation for ion is

(4)

Bt
'+V' (nv) =0,

where v; = v~~z + v~, , and v~, ——vg + vp. Now assume
adiabatic electron density

n, (r, t) = n( x)e xp[ec(r, t)/T, ( x)];

Cz x V~4
v@ =

B
For further approximation, we start from Eq. (2) in the
perpendicular direction. Substituting v~, ——v~ into its
lhs, d v~;/dt—:[8/Bt + (v; V)]v~;, and neglecting the
term with V'~~ k~~, one obtains v~; ——v@+vg, here v~
is the polarization drift,

the system to a variety of diferent solutions, from stable
steady wave packets up to turbulence. Diferent types of
solutions can be distinguished, to a certain extent, by the
"wave energy" E(t) defined as

E(t) =

Let us denote a steady wave packet solution of Eq. (1) as
P(x —Ot), the corresponding wave energy E must be a
constant (fixed point). P(x —Ot) can be stable or unsta-
ble. If P(x —Ot) is stable, E is a stable fixed point. 0th-
erwise E is also unstable. In the simulations of Eq. (1) we
have observed constant, periodic, quasiperiodic, chaotic
E(t).

A steady wave solution P(x —Ot) can be found al-
gebraically if we transform the system to the reference
frame following the driving wave sin(x —Ot). For this
purpose let us set ( = x —Ot; Eq. (1) then becomes

here the mean density n and electron temperature T,
depend on the radial coordinate x only. With quasineu-
trality condition n, = n, and confined to one-dimensional
limit, one obtains, for P = eo/T„

0 oI'P

Bt B(2

A steady wave solution satisfies

(8)

, 0'l OP OP cIQ
1 ~

~

K~csps + IGTcspsg' cIy2 p Ot Oy Bg

(6)

d - d2$ d(b - d(j)P+ a, + c + fP + pP+ csin( = 0.

where r = (dn/dx)/n, KT = (dT, /dx)/T„c,
gT, /m, , p, = c,/0, . Replacing y in Eq. (6) by x
for the spatial coordinate, one obtains Eq. (1) with
p = e = 0. From the derivation we know that the coeK-
cient a in Eq. (1) must be negative in physics. Here we
fix a = —0.287, c = 1.0, f = —6.0 as we did in Ref. [18].

A sinusoidal wave csin(x —Ot) is applied to Eq. (1)
which, together with the damping term —pP, can drive

Substituting

P(() = Q Ak cos(k(+ Bk)

into Eq. (9) one can solve the amplitude Ak's and phase
Ok's from the following set of equations:

—k[c —(1 —ak )A]Ag sing@ + pAkcosgk

) A(A( sin(0( + 0( ) + ) A(A( sin(BI —0( ) + ) A|Ai sin(gi —0() = 0, (11)
I+l'=k

k[c —(1 —ak ) O—]Akcosgk —pAi, si ngi, + equi y

) A(Aiicos(gi + Bii) + ) A(Ailcos(BI —011) + ) AiAIicos(0(I —gi) = 0. (12)
l+l' =k l —l'=k l' —l =k

Here and in the following k = 1, 2, . . . , 1V(K —+ oo) and In a series of 0 regimes the dependence of the steady
wave energy

ifk=1;
0, ifkg1. E = ) (1 —ak')A'„/4

k=1
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on e may form bistable curves. Figure 1 presents two
groups of such S-shaped curves E(c), one in Fig. 1(a)
is for 0 = 0.50 —0.65, the other in Fig. 1(b) for 0 =
0.285 —0.34.

In Sec. IV three typical solutions will be taken as our
reference states for controlling, they are as follows. Case
1: 0 = 0.65, e = 0.20; case 2: 0 = 0.34, e = 0.19; and
case 3: 0 = 0.56, e = 0.07. The parameter conditions of
these cases are marked in Figs. 1(a) and 1(b) by plusses.
They locate either in the lower branches or in the rnid-
dle branch of the S-shaped bistable curves E(c). At all
these three parameter combinations the reference steady
states are unstable. To describe their dynamics it is very
convenient to use a set of equations for the modes of
perturbation wave to the steady wave packets. First we
divide the solution of Eq. (8) into two parts,

8 [9 0 (9

Ot
1+a bQ —0—1+a c)P

+ f [j—(q) by] +

fbi'

b—P = 0. (15)
MP „(9
8( 8( [9(

Substituting the Fourier expansions of P, Eq. (10), and
of 8P,

b(t((, t) = ) bk(t)cos[k(+ nk(t)],
k=1

(16)

into Eq. (15), one can then obtain a set of equations for
the deviation amplitudes and phases (bk, clk),

~(( t) = ~(~) + ~~(E, t)

here hP is a deviation from the steady wave, which obeys
the following equation:

bk = Nk(t),

nk = Mk(t),

where

(17)

(i8)

fk
Nk(t) = — bk + ) [A(b(rsln(ol + o(lr —nk) + b[btrsin(n~ + Cits —o(k)]1 —ak~ 2(1 —ak2)

) [A)b[ sin(0( —n) —nk) + 6)b) sin(cl) —cb) —nk)]
l —l'=k

+ ) [Arbr sio( —brr y ac —ar, ) + brbr sio( —ar -b nr —as)[),
l' —l=k

C
Mk(t) = —k —0

1 —ak2
fk

2(1 —ak2)bk ) [A[6~ cos(0r[ + D'~r —Clk) + 6[b~rcos(A~ + Ck[r —CXk)]

+ ) [A~b(rcos(0~ —A~r —CXk) + 6~6[rcos(O([ —Cl~r —Clk)]

+ ) . [Arbccos( br + nr —as)—+ brbr cos(—ar + ar —as)[I.
l' —l=k

(2o)

For Cases 1—3, the solutions of the mode Eqs. (17) and
(18) with appropriate truncations agree with the direct
numerical simulations of Eq. (1) [18,23].

In general for a system with 21V-dimensional phase
space, the phase volume element is dV = Qk z dqkdpk,
here qk and pk are the coordinates of phase space, respec-
tively. The growth rate of phase volume can be obtained
as

N

k= kaqk BPkr

In representation Eqs. (17) and (18), the phase volume
can be expressed as

k=1

Then one has

dV (9(b )
dV ) (9(62k)

-bkBbk ( dt

N
2p

1 —ak2
k=1

t90'.k

t9Q,'k

c) (dc k')+
(9nk [, dt )

N

bkdbkdclk = —
] dbkdcxk.
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+—) (1 — k )b„(t). (22)

The first term in the right-hand side of Eq. (22) arises

The last equality can be obtained by using Eqs. (17) and
(18); all the nonlinear terms are canceled with each other
in the summations [24]. When —p ( 0 the phase volume
contracts with constant rate P& 2p/(I —ak ).

With nonzero bg((, t), the wave energy deviates from
the steady wave energy. The difFerence is

bE(t) = E(t) —E
—= —) (1 —ak )Al, bA,, (t)cos [0(, —ni, (t)]

from the interaction between P(() and hP((, t), the sec-
ond one gives the self-energy of the deviation bP.

III. FEEDBACK CONTROL IN K SPACE
AND IN X SPACE

P

A direct way to stabilize an unstable P(() is to force
Eq. (1) by a negative feedback —rI[P((, t) —P(()]. At
a suKciently large g a stabilization of the given refer-
ence state can be established for certainty. However, this
feedback is diKcult to realize practically since one has to
monitor each point in x space (or each mode in k space)
and respond to the system changes everywhere (or for
every mode). There are two convenient ways to control
the system:

The first is to monitor a single mode (e.g. , k = i) and
then input a monochromatic wave rib; (t) —to control the
system. To this end Eq. (17) for k = i is changed to

0=0160
b„, = N;(t) —qb;(t)/(I —ai'), (23)

U. 1 2
and all the other equations for bkg, (t) and for nk(t) re-
main the same as in Eqs. (17) and (18). With the feed-
back term the contracting rate of the phase volume be-
comes

2p
1 —ak2

2g
1 —az

(24)
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The phase volume contracts faster when the feedback
term with —g ( 0 is applied.

The second scheme is to monitor a local region in x
space and to apply feedback to the system in this re-
gion. A practical way may be to add a term such as
—(q/~r) [P(x, t) —P(x —Ot)]exp[ —(x—x, )'/r], O && r && 1;
for numerical simplicity we can take the limit r ~ 0 and
use re(x —xo) [P—(x, t) —P(x —Ot)]. In this case Eqs. (17)
and (18) are replaced by

0.1 (j

(b)

with

bk (t) = Kk (t) —qgI, (t),
ni, (t) = Mk(t) —qhI„. (t),

(25)
(26)

0.06—

0 $40

1 ) blcos[(l —k) (xll —At) y ni —nk],1 —ak2
I,=1

1
hk(t) = ) bl sin[(l —k) (xli —Bt) + nI —ai, ]/bI.„.
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FIG. 1. Bistable steady wave energies E(e) in the regimes
of (a) 0 = 0.50 —0.65 and (b) 0 = 0.285 —0.34. In the plots
the + signs give the positions of cases 1, 2, and 3, respectively.

One can see that when pinning in x space, the feedback
is applied practically to every Fourier mode of the sys-
tem. Possibly this is why, as can be seen in the following,
pinning in x space is very efI'ective in our case.

When a pinning is applied, the additional contract-
ing rate of the phase volume in I' is no longer a con-
stant. This is difFerent &om the controlling in A: space.
In the following we will see that when a chaotic state is
controlled to the steady state by Eqs. (23), SE(t) con-
verges to zero practically monotonously after a short
transient time (see Fig. 4), while for controlliiig by pin-
ning [Eqs. (25) and (26)], SR(t) inakes excursions from
time to time (see Fig. 8), although on the whole it ap-
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to steady state in the shortest time.
The system response to injecting monochromatic wave

with i & 3 is diferent. In Fig. 7 we plot the trajectory in
the bz-bz plane obtained by injecting a monochromatic
wave with i = 3 and g = 1.0. The transient process
has been omitted. One can see that the system does

FIG. 3. Space-time dependence of P(x, t) in case 1, 0 =
0.65, e = 0.20, no control. One can see it is chaotic in time
while coherent in space.

0.006

time dependence, P(x, t), of case l. One can see that the
variation of P in space is rather smooth. Nevertheless,
P(z, t) is not a steady wave, its spatial pattern varies ir-
regularly with time, and the time evolutions of the mode
amplitudes and phases as well as of the wave energy are
chaotic.

The aim state P can be controlled by injecting a
monochromatic wave with i = 1 or i = 2. In Figs. 4(a)
and 4(b) we plot hE{t) and bq{t) for the case of injecting
a monochromatic wave with i = 2 and g = 1.0. The
projection of the trajectory in the bq-b~ plane is shown
in Fig. 4(c). The aim state is approached after a certain
transient time. It is remarkable that the chaotic motions
of 40-dimensional systems (% = 20) can be controlled
by feeding back only one equation. In Fig. 5 we plot
bq(t)cos[o. ~(t)] versus bq(t)cos[nq(t)], the condition is the
same as in Fig. 4, the transient states have been omit-
ted. One can see that the orbit winds up smoothly to
smaller and smaller cycles. The underlying mechanism
is that the additional feeding term can create a poten-
tial well centered at bP = 0 to change the reference state
from repeBing to attracting so long as {i,rjj are properly
chosen.

Investigation shows that when we suppress chaos of
case 1 by injecting only one monochromatic wave of z = 1
(or 2), there exist both lower and upper thresholds for rl,
if gI. & g & gU the aim state can be reached. When
g & gl, the system can either be attracted to limit cycles
or, if g is too mall, remains chaotic. If g & gU, though
the chaotic motions can be suppressed the system can-
not reach the aim state P, instead it will asymptotically
approach another steady state with nonzero bE. On the
other hand, if we input two waves with i = 1, 2 simulta-
neously, there is only a lower threshold, the system can
always be controlled to the aim state so long as g ) gI. .
Figure 6 plots the transient time T as a function of g;
here T, is determined by the condition that ~bE~ keeps
less than 10 in sufficiently long time (e.g. , in 20 time
steps, At = 10 ~). The signs "+" and "x" show the re-
sults of feedback with i = 2 and with both waves i = 1, 2,
respectively. It is interesting to see from the plot that the
variation of T with g shows stairs. In both cases one can
And an optimum q at which the state can be controlled

0
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0.02

,
'I

0.01

0
0 100 a00

0.03

0.0 '1

0.00
0.00

I
I I I I I I I I

f
I I I I I I I I

0.01 0.02 0.03

FIG. 4. Case 1 is controlled to the steady state by inject-
ing a monochromatic wave i = 2, g = 1.0, (a) bE(t), (b) bq(t),
(c) bg(t) vs bg(t).
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FIG. 5. bq(t)c osnq(t) vs b2(t)cosn2(t), the same condition
as in Fig. 4, the arrow gives the direction of increasing time.

FIG. 7. When injecting a monochromatic wave i = 3, case
1 cannot be controlled to the aim state. This is an example
controlled to a limit cycle when g = 1.0.

not approach the aim state P((), instead it is attracted
6nally to a limit cycle. When g is increased to 6.0 a
steady state can be approached but bE is nonzero. We
failed to control the system to P by injecting the wave
with i = 3 at any q detected. Nevertheless, chaos can be
successfully suppressed.

In Fig. 8 the results of pinning the state at xo = 0

with rI = 0.2 are presented, where (a) bE versus t, (b)
P(0, t) —P(x —Ot) i

—o versus t One can. see that asymp-
totically the orbit converges to the steady state. In con-
trast to Fig. 4(a) of case 1 where bE approaches zero ex-
ponentially, in Fig. 8(a) after the transient time bE still
makes excursions frequently for long times. This phe-
nomenon can be explained by the time-dependent shrink-
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FIG. 6. Transient time T, as a function of g; here T is
recorded if bE remains less than 10 in subsequently 20 time
steps At(= 10 ), in the plot + gives a run of injecting one
wave i = 1, x gives a run of injecting two waves i = 1, 2 (the
same rl values are used for i = 1,2). One can see the stairs in
TG ~

0 300

FIG. 8. Case 1 is controlled to the steady state by pinning
atx0=0withg=0. 2. (a) bEvst, (b) bgvstatx=0.
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ing rate of the phase volume of 8P as mentioned above.
There is only a lower threshold gL, for pinning control; no
upper threshold is found. Increasing g can shorten the
transient time, however, a saturation relaxation time can
be reached for very large g.

B. Case 2

Without control, the system state is also chaotic. How-
ever, the difference between case 1 and case 2 in dynamics
is significant. In case 1 the spatial pattern of P(x, t) is
smooth, the chaos occurs only in its time evolution. But
in Case 2 the motion of P(x, t) is chaotic not only in time
but also in space. Since we use truncation in the mode
equations, we are actually dealing with a set of high-
(but finite-) dimensional ordinary difFerential equations.
Then the statement "chaotic in space" is not in the strict
meaning. Here by chaotic in space we mean that the spa-
tial variation recovered from the truncated modes looks
rather random, and almost all the modes ranging to high
k are excited. Figures 9(a) and 9(b) give bE versus t
and bi(t) versus 62(t), respectively, both look inore er-
ratic than case 1 [Figs. 2(a) and 2(b)]. In Fig. 10 we plot
P(x, t) of case 2 vs both x and t, the field is no longer
smooth and coherent in space. At any Axed time t, the
spatial distribution P(x) is irregular. P(x) has a wide
spectrum P(k) in k space, and P(k) varies dramatically
with time. In Fig. 9(c) we give one example of P(k). One
can see that the amplitudes of all the 20 modes, includ-
ing small A: and large k, are manifesting in the spectrum,
indicating that the modes with high A: s are also very ac-
tive in the motions. This is essentially distinguished from
Fig. 2(c) of case 1 where the high k modes are quiescent;
they are never excited when time goes on. It would be
interesting whether our feedback scheme is still eR'ective
in such a turbulent case 2.

The spatial irregularity of case 2 is presumably caused
by the overlap of the unstable regimes of difI'erent modes.
This overlap can be observed by evaluating the nonlinear
dependence of the mode eigenvalues on the parameters 0
and e. The method is developed in Ref. [21,22]; here we
simply give the result. In Figs. 11(a) and 11(b) for 0 =
0.34 we plot the real and imaginary parts of the eigen-
values, A- ' (the mode growth rate and eigen&equency,(~ ')

k = 1—5), respectively versus e. Here and in the following
the subscript k means that the eigenvalue (its real and/or
imaginary parts) varies continuously &om that of mode
k at e = 0. When e = 0, P vanishes and one can get the
exact eigenvalue Ay = —p/(1 —ak ) +ik[c/(1 —nk ) —0].
With increasing e, Ak changes nonlinearly with respect
to e due to the mode-mode couplings between the steady
wave P and the deviation 8P. From Fig. 11(b) one can see
that in a certain range of e the eileen&equencies between
modes k = 1 and 5 and between k = 2 and 3 are locked
together, respectively, indicating the resonances of these
two pairs of modes. As a result of the resonances A~"~

k=3
and A-' [the solid lines in Fig. 11(a)] cross zero, the
two modes lose their stabilities. Their unstable regimes
overlap with each other in the range of 0.18 ( ~ ( 0.25.
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FIC. 9. Chaotic motions of case 2, 0 = 0.34, e = 0.19, no
controL (a) bE(t); (b) bi(t) vs b2(t), the motions are very
irregular compared with Fig. 2; and 2(c) P(k), the spectrum
of P(x) in k space. The spectrum is wide, the high k modes
are also manifesting.
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FIG. 10. Space-time dependence of P(x, t) in case 2, 0 =
0.34, e = 0.19, no control. It is chaotic in time as well as in
space.
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Case 2 (e = 0.19) is right in this range. No such overlap
is found in case 1. This is probably the reason that the
motions in case 2 lose spatial long range coherence but
not in case 1.

It is striking that one can still suppress the space-
time chaos of case 2 by injecting only one monochromatic
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FIG. 12. Case 2 is controlled to the steady state by in-
jecting a monochromatic wave of i = 1, g = 1.0. bE vs t.
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wave. Figure 12 gives an example in which by injecting
i = l, rI = 1.0 the aim state is arrived with 6E(t) going
to zero.

Here we can discuss another interesting problem in &-

space control, i.e. , how to choose proper modes for con-
trolling so that the number of feeding modes can be re-
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FIG. 11. The nonlinear variations of (a) real parts and

(b) imaginary parts of eigenvalues Az of mode k = 1 —5 for
II = 0.34. In (a) the unstable regimes of mode k = 3, 5 (solid
lines) overlap with each other in the range 0.18

0.25.

FIG. 13. AP(k), the mean square deviation of the ampli-
tudes of Fourier components of P(k) (k = 1 —8) for case 1
and case 2.
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duced to as few as possible. Our heuristic argument is
based on the linear stability analysis of the unstable aim
state. The eKciency may be good if we feed back the
mode that has a small angle with respect to the most
unstable manifold and has a large projection on it. In
experiments and practicaL situations the above plausible
argument may be of help to find proper modes for the
k-space feedback control. For instance, from the linear
stability analysis we know that in case 1 the nonlinear
resonance between mode A: = 1, 2 is responsible for the
instability of the steady wave P (cf. Ref. [22]), in this
case most probably mode 1 and 2 have smallest angles
with respect to the unstable manifold. And indeed we
successfully stabilize the unstable aim state by feeding
back mode 1 or 2. As a comparison, we fail to stabilize
the aim state by injecting mode k = 3 since this mode
has a small projection on the unstable manifold. On the
contrary, in case 2 we can successfully control the chaos
by feeding back a single mode k = 3 (e.g. , i = 3, rl = 2.0)

despite the fact that the state is much more turbulent
than that of case 1. The reason is that in case 2 the
nonlinear resonance between modes k = 3 and k = 2
(cf. Fig. 11) is one of the causes for the instability of the
steady wave, and so the Fourier mode k = 3 may have a
small angle with respect to the most unstable manifold
of the unstable aim state.

The information on the Quctuations in k spectra of
P(x, t) may also help us to choose the feeding modes
in numericaL or real experiments. For this purpose,
first we work out P(k, t ) at a series of times t (m =
1, 2, . . . , M), and calculate the average value of P(k)

m=1

the mean square deviation AP(k) can be obtained as

Among all the modes, one can choose those with larger
EP(k) as the feeding modes. For example, one can see
in Fig. 13 that for case 1 AP(k = 2) is the largest, while
in our numerical tests k = 2 is the most effective feeding
mode; and for case 2 AP(k) with k = 1 —3 are the
largest ones, as the feeding modes they are alL effective
for suppressing chaos.

Figure 14 gives an example of suppressing chaos by pin-
ning the aim state at a Axed point xo ——O, q = 1.0. The
calculation starts from a fully developed chaotic P(x, t)
state, which is realized after a suKcient long comput-
ing time without controlling. The controlling is added
at t = 0. Figure 14 shows the space-time distributions
P(x, t), here

P(x, t) = ) Agcos[k(x —Qt) + 8p]
k=1

+ ) b (it)c so[ (kx—Ot) + ni, (t)],
k=1

in which (a) t = 0 —40, (b) t = 40 —80, and (c)
t = 80 —120. One can see that at an early stage the
pattern is very erratic in time and in space. As time goes
on the regularity is gradually established by controlling.
After about t ) 100, complete regularity is realized and
the solution becomes a traveling wave with constant am-
plitude and phase speed. As a comparison one can see
that, in Fig. 10 when without controlling, the state start-
ing from the same initial distribution P(x, t = 0) as in
Fig. 14 looks very turbulent.

FIG. 14. The space-time dependence p(x, t) of controlling

case 2 by pinning at xo ——0 with 9 = 1.0. A wave packet of
initially erratic both in time and in space is controlled finally

to the steady wave. (a) t = 0 —40, (b) t = 40 —80, (c)
t = 80 —120.

C. Case 3

This is an explosively unstable state locating in the
middle branch of the S-shaped E(e) curve. If the state is
disturbed the perturbation amplitude is unbounded un-
less it reaches another stable state. In this case we are
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dealing with a wave packet in an unstable branch of a
bistable curve rather than a chaotic state. The cause of
the instability of the steady wave in case 3 is difFerent
&om that in cases 1 and 2. For example, in Fig. 11,
the unstable modes have complex conjugate eigenvalues,
the instability of the steady wave packet is caused by
the Hopf bifurcation. In case 3, however, the eigen&e-
quency of the unstable mode (k = 2 in this case) becomes
zero, consequently the eigenvalues of k = 2 degenerate
to a pair of real values (cf. [21,22]). Prom the physical
point of view, it is very useful to suppress this unsta-
ble mode and make the middle branch stable by a very
weak controlling. Without controlling, in order to drive
the system from the lower (upper) branch to the upper
(lower) branch one needs large perturbation to overcome
the middle barrier. If the middle state is stabilized by
a weak feedback one can rather fIexibly realize the lower
or upper state by taking off the feedback and switching
on a small pushing up or down. The idea is realized
in our case by using both Eqs. (23) and Eqs. (25) and
(26). In Pig. 15(a) we plot bE versus t for 0 = 0.56
and ~ = 0.07 without controlling, initially the state is
very close to P, it leaves the steady state exponentially
with time. In Pig. 15(b) the state is controlled by using
Eqs. (23) with i = 2, g = 1.0. The system is eventuallua y
locked to the middle branch, though the initial state is far
&om the aim state. We have tried other parameters, e.g. ,

z = 1,g = 1.0 and i = 3, g = 1.0 the middle branch can
always be stabilized. Pinning in x space is also efFective
to stabilize the middle branch.

V. DISCUSSION

In thcs paper we present in detail the numerical results
of three special cases of controlling chaos in a space-time-
dependent system. The k-space control and x-space pin-
ning are found to be efFective in suppressing spatiotem-
poral chaos rather generally. First, the approaches are
not sensitive to the initial conditions. We have tried
various distinct initial states (not too far Rom the aim
state, otherwise it is possible that the system falls into
a completely different basin), in all our three cases, spa-
tiotemporal chaos can be successfully controlled. Second,
the approaches work well in a wide range of parameter
space, we have tested diverse parameter combinations in
the range 0.3 & 0 ( 0.7, the states are chosen in the
lower or middle branches of the bistable curves ~Fi . 1
he chaos can always be controlled by feeding back a sin-

gle mode or pinning a single x point. In particular one
can stabilize not only a state chaotic in time and reg-
u ar in space but also a state chaotic both in time and
in space. However, as we mentioned above, as a repre-
sentation for a space-time-dependent system our model
of mode equations is restricted, for further investigation
one has to deal with the pde directly.

In general, the efFectiveness of x-space pinning depends
on the pinning location. Then it is an interesting problem
in x-space control to choose proper space points through
which injections can sensitively change the system dy-
namics and efFectively drive the system toward the aim
state. However, our model (1) has a symmetry invariant
to the space displacement, and then the controlling eK-
ciency does not depend on the choice of pinning point.
t is remarkable that in our cases we are able to suppress

chaos successfully by pinning only a single point. The
reason might be that in our model the space correlation
len th is &ong is long. This long-range space correlation may be
induced by the driving wave [the second term in the rhs of
Eq. (1)]. In more general cases of space-time-dependent
systems one has to inject more than one space point to
control chaos. It is extremely important to estimate the
lowest plnnzng density 0 for a successful control. We
guess that 0 might be determined by the space correla-
tion length L of the chaotic systems such that I/O ) I.
However, this conjecture should be con6rmed in future
investigations on more space-time-dependent systems.

100
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