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We analyze two models of partially absorbing media: one with a trapping reaction at static
sites, and one with a single absorber driven by a dichotomic process. Our goal is to investigate
the effect of the correlation time in the motion of the trap on the trapping dynamics. For 6xed
traps, we show different time behaviors arising from different distributions of traps. Analytical and
simulated results of the mean distance from a trap to the nearest nonabsorbed particle, and of the
mean number of particles between traps, are shown. For a quasidynamical trap, we show how the
dynamics of the absorption depends on the correlation time of the absorber.

PACS number(s): 05.40.+j, 82.20.—w, 05.20.—y, 02.50.—r

I. INTRODUCTION

In recent years considerable effort has been devoted to
the study of diffusion-controlled reactions, which play an
important role in diverse branches of chemistry, physics,
and biology. These processes include coalescence and an-
nihilation reactions in one- or two-species systems [1—5].
However, much less work has been done in systems of
partially absorbing media, which are of particular inter-
est in many problems of attenuation in biological and
physical systems [6,7].

In this paper we study a trapping reaction (symbol-
ically written A + B ~ B) in two systems of difFusing
A particles: one with static B traps, and another with a
single trap that performs a dichotomic motion. Our main
goal is to describe the effects of the correlation time in
the dynamics of the trap on the trapping process. We
chose, as a paradigm of a stochastic process with corre-
lation time, a dichotomic process known as "telegraphic"
noise. This is the simplest process with a Rnite corre-
lation time, and it can be used to model more complex
processes, such as Ornstein-Uhlenbeck's, which has the
same two-times correlation function.

The model equations include a Dirac b-function poten-
tial for the reaction term, which is a limiting case of a
model developed by us in previous papers [9]. We show
how the distribution function of particles can be calcu-
lated exactly and how to obtain the different velocities
of depletion produced by finite or in'. nite distributions of
traps.

We will briefly review the central concepts of the
model, as it was presented in [9]. The model equation
for the evolution of the probability density of the diffus-
ing particles is the following:

0 0
P~(x, t) = D~ —P~(x, t) —p8(x —e(t))P~(x, t),

time unit for the reaction to take place in each event,
and e(t) is a stochastic process that models the position
of the absorber. The only necessary hypothesis to solve
this equation is that the process e(t) is Markovian.

We first take the mean value of Eq. (1) with respect to
the process e, that is, over realizations of the trap motion.
We obtain

t9—(P~(x, t)) = D~ 2 (P~(x, t)) —pA(x, t),

P~(x, t) = d*'G(x, t ~x', O) P„(*',O)

t +oo
dt' dx'G(x, tax', t')

x b(x' —e(t') )P„(x', t'),

where G(x, t~x', t') is the evolution operator or
Green function of the difFusion equation [(Bt
DB..)G(x, tax', t') = b(x —x')8(t —t')].

We solve Eq. (3) by iterating, to get the series

P~(x, t) = dx'G(x, t~x', t')P~(x', 0)

dt' dx'G(x, t~x', t')b(x' —e(t'))
0 —OO

x dx"G x', t' x",t" P~ x",0 +. . . .

(4)

where A(x, t) = (b(x —e(t))P~(x, t)) is an absorption
function that contains all the effect of B on A. We now
look for an equation for A(x, t) whose solution allows one
to get the averaged density (P~(x, t)). To start with, we
take the integral form of Eq. (1):

where p is a constant representing the probability per
After multiplying Eq. (4) by 8(x —e(t)) and taking aver-

ages, we obtain the absorption function
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A(x, t) = {8(x—~(t))P&)

dx'G(x, tI x', t') {8(x—e(t) )) P~ (x', 0)

dx" G(x, tIx', t') G(x', t'Ix", t")
t +oo t +~

dt' dx' dt"

x (8(z —e(t) )8(x' —e(t') )) P~ (z", t") +

The Markovian property of the process e can now be used
to write the averages of b functions of Eq. (5) in terms of
W(z, tIz', t'), the transition probability of the process. A
new series is obtained, which can be cast again in integral
form:

'y =
S(x —xg) =

lim A p~/v. ,
v, Am0

lim p/r,
~,d -+0

lim 8;,„/A.
v. , A —+0

(1o)

t

A(x, t) = dt'

W(x, tIxp, 0)P~ (xo) dx()

dt' dx'G(x, t]x', t')

x W(z, tIz', t') A(x', t').

dx'G(x, tIx', t') P(x', t') 8(t')
This exact limit, which allows direct comparison be-

tween analytical and simulated results, has been consid-
ered before for a single trapping particle [9,7,8], and its
connection with the difFusion equation with an albedo
(radiation) boundary condition has been discussed there.
In a previous paper [9] we have studied several situations
in which the traps are also allowed to difFuse.

Equation (9) can be cast in integral form with the aid
of the Green function G(x, tIx', t'):

Once Eq. (6) is solved the solution of Eq. (2) can be
expressed as P(x, t) = dz'G(x, tIz', o)P(x', o)

dt' dx'G(x, tIx', t') A(x', t').

(Pz(z, t)) = f dz'G(z, t~ 0)zPz(z', 0)
t,) fdt—.

0 —C3O

xh(x —x, )P(x', t').

dx'G(x, tI x', t')

For a uniform initial distribution of the species A, in-
tegrating the second term of Eq. (11) we have

II. FIXED TR,APS P(z, t) =Pz —0) f dt'G(z, t~z, t')P(z, , t ), (tt)',
0

Consider the reaction process A + B ~ B, in which
the A species performs a discrete random walk on a one-
dimensional lattice, and the B species is a set of K im-
perfect traps at sites jk. The discrete equation governing
the evolution of the probability density of A particles is

which can be solved using the Laplace transform

Pp exp( —Iz —x~ I gs/D)P z, s P x~, s.
/4sD

P, (n+ 1) —P, (n) = p~P, i(n) + p~P;+i(n)
N

—2p~P, (n) —p ) h. ..P, (n), (8)
k=1

where i is the lattice site, n is the time index, p~ is
the jumping probability, p is the reaction (absorption)
probability, and the sum is performed over the set of
traps. The continuous limit of Eq. (8) is obtained by
defining the variables t = nw and x = iL, and letting the
time and space steps, v and L, go to zero. The resulting
equation is a reaction-dift'usion one:

For specific distributions of the traps, Eq. (13) pro-
vides an algebraic system of equations in the unknown
P(x~, s), which give the general solution. In the follow-
ing we consider some possibilities.

In the presence of a single trap at the origin the solu-
tion, after inverse Laplace transforming, is

P(* t) =P erfl I+e»
I

I*I +
2D 4D2 y

0 0
P(x, t) = D P—(x, t) —p ) b(x —xk)P(x, t), (9)

xerfc
I

(14)

where
where w = Dt. We can calculate the time dependence of
the mean distance of the nearest A particle to the trap
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/

/2Po (v7rp' )
~ /2DP,xerfc (15)

from Eq. (14), which provides a description of the deple-
tion of the A system. If Q(y, t) = exp —Jo" P(x, t)dx is
the probability that the nearest A particle is at a distance
equal to or greater than y from the trap, then the mean
distance of the nearest neighbor is (y) = j Q(y, t)dy
[10]. In this case we have the following long time behav-
lor:

which tends slowly to the known w / asymptotic behav-
ior [10]. In Fig. 1 we show this result and the result
of a simulation of the process. (For a description of the
simulations, see below. )

In the presence of several traps, a quantity of interest
for the analysis of the depletion of the A particles and
the formation of an aggregate of traps is the integral of
the probability density between two inner traps. Its time
dependence shows the path that the system follows to
segregate the two species. With two traps at positions
xi ———L and x2 ——I, Eq. (13) (JtI = 2) is solved as a
system of two equations in the unknowns P( L, s)—and
P(I, s), which, using the symmetry, gives

I'o
P(x, s) = —1 —p

S

exp —x+L 8 D +exp —x —L 8 D

p+pexp —2L 8 D +2 8 D

This distribution, integrated between the traps, has
the following long time behavior:

P(x, t)dz = 2PpL (vr7. )

I

then implies

P(jL, s) = P(0, s) = ——Po pP(0, s)
y'4Ds

In Fig. 2 we show the result of the simulation performed
in this situation.

This power law of the decay of the number of particles
between the inner traps of a multitrap system persists
(with varying prefactors) for any finite number of traps.
But for an infinite number of trapping sites, a situation
possibly realized in a real physical system —such as quasi-
particles diffusing in a defective crystal —the behavior is
quite different. Let the trap sites be x~ = jI; then the
densities P(j L, s) are all equal for an infinite number of
traps due to the symmetry of the system. Equation (13)

N/2

x )
j=—Nl2

exp —jL 8 D

which, in (13), gives

The geometric sum in Eq. (18) can be done exactly, and
for % —+ oo one obtains

—1
I'p 1+ exp( Lgs/D)—

P(0, s) = —1+
+4Ds 1 —exp( —I.gs/D)
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FIG. 1. Distance of the nearest surviving A particle to the
trap vs time, in a system consisting of a single trap and 100
initial A particles uniformly distributed. The unbroken line is
the plot of Eq. (7). The parameters are 7 = 0.005, A = 0.1,
D = 1, p = 1, grid sites=100, 200 realizations.

FIG. 2. (b) Log-log plot of the number of surviving par-
ticles between traps vs time, in a system of 10000 initial A
particles uniformly distributed and two traps. The straight
line (a) has step one-half. The parameters are r = 0.005,
A = 0.1, D = 1, p = 1, grid sites=1000, 6 realizations.
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Pp Pp /4D8P x, s
8 8

1+exp( —Lgs/D)+
1 —exp( —I Qs/D)

x ) exp (
—~x —jI~Xje/jj) .

j=—oc
~ 100

Now the sum in Eq. (20) can be split into two geo-
metric sums, one from j = —oo to 0 and another from
j = 1 to oo. The resulting expression can be integrated
ln X glvlIig

(X3 D
D

IXI-j

P(x, 8)dx = I'OI P,&4D &4Ds
83/2 I

2000
I

4000
I

6000
I

8000
I

10000

1 + exp( Lgs/—D)xp+
1 —exp( —LQs/D)

(21)

P(x, 8)dx - PpL exp ( pt/L) . — (22)

At large time, the behavior of (21) is exponential (Fig.
3).

FIG. 3. I og-linear plot of the number of surviving A par-
ticles between two adjacent traps vs time, in a system with
an in6nite number of equally spaced traps, showing the expo-
nential behavior of Eq. (14). The parameters are r = 0.005,
A = 0.1, number of initial A particles=2000, D = 1, p = 1,
grid sites=100, 10 realizations.

The simulations were performed on a circular lattice of
M sites. We initially distributed K particles at random
over the circle, and allowed them to perform a discrete
random walk. In each time step, all the particles were
moved one site to either side at random with probability
p~ = 1/2 . Also, in each step, all the particle positions
were checked and compared with the fixed trap(s) site(s).
If they coincided, the particle was immediately removed
&om the system with probability p. These steps were
repeated up to a time far shorter than the one required for
a mean particle to complete a round trip along the circle
[~(circumference) /p~], except for the simulation of the
infinitely-many-traps system. This was simulated by two
traps diametrically opposed in the circle, and letting the
particles difFuse many times around it. The distance Rom
a specified trap to the nearest surviving particle and the
number of surviving particles between two specified traps
were evaluated by simple algorithms at some predefined
times and stored to be averaged. The whole process was
repeated many times with the same parameters to obtain

l

mean values of the interesting quantities.
The problem of particles diffusing in a random distri-

bution of traps can also be solved in this framework, with
an extra efFort. However, this problem has been previ-
ously solved in Ref. [5].

III. QUASIDYNAMICAL TRAP

In this section we study a one-dimensional trapping
system with a single trap, subject to a dichotomic pro-
cess with finite correlation time (or "telegraphic noise").
We aim to analyze the efFect of the correlation time on
the trapping dynamics. The telegraphic noise is the sim
plest process with a Gnite correlation time, and can be
used to model more complex processes, such as Ornstein-
Uhlenbeck's, which has the same two-time correlation
function.

We have the absorption function localized on two
points, A(x, t) = A (t)b(x —a) + A (t)b(x + a), and
the integral in space of (6) is a two-term suin:

A (t)b(x —a) +A (t)b(x+ a) = dx'G(x —x', t)P~(x', 0) [W(x, t~a, 0)P~(a, 0) + W(x, t~a, 0)P~(a, 0)]

dt'G(x —a, t —t') W(x, t~a, t')A. (t')

dt'G(x + a, t —t') W(x, t~ —a, t')A (t').

The transition probability of a telegraphic process with
correlation time A is

W(x, t~a, t') = —(1 + exp [
—2A(t —t')])8

1+—(1 + exp [
—2A(t —t')])b

Let us suppose a localized initial distribution of the
diffusing particles, and a symmetric initial distribution
of the absorber: Pji(x, 0) = b(x —xp), P~(a, 0)
P~( a, 0) = 1/2. Subst—ituting these and Eq. (24) into
Eq. (23), and using the symmetry A (t) = A (t), we
found the following equation for the temporal part of the
absorption function:
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st (t) = (2r/4xDt) exp —(a —xrr)'/4Dt

d~' G O, ~ —~' ~, ~ —~'

+G(2a, t —t') ~, (t —t')]A. (t'). (25)

Equation (25) is a convolution that can be solved by
Laplace transforming:

10

10

10

10

10

~ I I ~ I
I

I s t

A (s) =
exp —a —xo s D

4/sD
10

0. 1 10 100

E,(s) —= l: [G(0, t) 2//, (t), s]

(4Ds) '~ + (4D(s+2A))

Eg(s) —= 2 [G(2a, t)u)2(t), s]

= -exp —2a s D 4Ds

+ exp( —2[a]~(s + 2A)/D

x [4D(s+ 2A)]
'~ ). (27)

In a general situation the inverse transform can be very
diKcult, but the extreme cases of infinite and zero corre-
lation time are easy. If A = 0, we have

st. (s) = —exp (—(a — (t/ x/oD) s( / /Dt+sV/2)

FIG. 4. Number of A particles absorbed vs time. The pa-
rameters are (a) p = 0.1, A = 0, 10, oo (the three cur~es al-
most coincide); (b) p = 1, A = 0; (c) p = 1, A = oo; (d)
p = 100, A = 0; (e) p = 100, A = 10; (f) p = 100, A = oo.

A (s) = —exp —~a —xo~Qs/D
4

x p/4 4- gs/D 4- (p/4) exp (
—2)a~ t/s/D)

(29)

This, in turn, has simple forms at short and long times:

—1

s exp —~a —xo~t/s/D) (t/s/D+ p/2) (long time, 2 +oo)-
A (s) =

&

4exp —a —xo s D s D+p 4 short time, A —+oo .
(30)

The distribution of the diffusing particles can be ob-
tained &om the absorption function:

(Ps(x, t)) = J r/x'G(x —x', t—t')Pstx', ll),

dt'G x —a, t —t'

+G(x + a, t —t')]A(t').

For an initial distribution of the form P~ (x, 0) = 8(x—xo)
we G.nally have

(P~(x, s)) =
exp —x —xo s D

/4Ds
—

I

— Is/ /n 4 —
I

+ Is/ /o)

exp —a s D

8+s (Vs+ ~/2)

This results can be compared with those for a system
with two fixed traps The abso.rption function [Eq. (26)]

I

and its limit cases Eqs. (28) and (29) will serve. A sim-

ple calculation with a single trap at the origin shows the
same absorption function as in the dichotomic case with
infinite correlation time (A = 0). Likewise, two sym-
metric traps at both sides of the origin have the same
absorption function as the dichotomic absorber with null
correlation time (A ~ oo). In Fig. 4 we show the absorp-
tion function (number of particles absorbed) for these
two limits and for a Gnite correlation time. These curves
were obtained via a numerical inverse transformation of
Eqs. (28), (29), and (26), and clearly show the difFerent
behaviors produced for a correlation time in. the dynam-
ics of the traps. We can conclude that this affects the
system for a time depending on the ratio p/D ~2, and
that this dependence disappears at long times.

IV. CONCLU SIONS

In conclusion, we have shown that the behavior of a
system with an infinite number of traps cannot be in-
ferred from that of a system with a 6nite number of traps.
Bath the analytical results and the simulations show that
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the density between two tr@ps in the former case decays
exponentially in time. In the latter, regardless of the
number of traps (but finite), the behavior follovvs a poorer
law. In fact, this behavior can be understood by noting
that in an infinite system with a finite number of traps,
the diffusing particles can travel arbitrarily far from the
trapping region. In any @nits system this cannot hap-
pen, and the exponential contribution to the integrated
density should persist. Consider, for instance, a finite
system with perfect reflecting boundary conditions. The
Green function corresponding to this case will have an
infinite sum of Gaussian contributions (arising from an
imagelike method), similar to the sum appearing in Eq.
(20) in the context of an infinite periodic system. Clearly,
the asymptotic behavior for long times will also be expo-
nential.

We have presented a simple model of a quasidynamical
absorber driven by a dichotomic process, shown how a

Rnite-time correlated process can be taken into account,
and how the correlation time affects the dynamics. It is
worth stressing the adequacy of the present scheme to
yield straightforward results in a variety of situations
as long as the subjacent dynamics is Markovian, as in the
present case. We stress that this is the simplest example
of diffusion in the presence of traps with a correlated
dynamics. We can expect a stronger effect in the case of
annihilation reactions (A+B —+ 0) if both reactants have
a correlated dynamics. Their study will be the subject
of further work.
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