
PHYSICAL REVIEW E VOLUME 53, NUMBER 3 MARCH 1996

Nonuniversal critical spreading in tw'o dimensions
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Continuous phase transitions are studied in a two-dimensional nonequilibrium model with an
infinite number of absorbing configurations. Spreading from a localized source is characterized by
nonuniversal critical exponents, which vary continuously with the density P in the surrounding
region. The exponent 8 changes by more than an order of magnitude and g changes sign. The
location of the critical point also depends on P, which has important implications for scaling. As
expected on the basis of universality, the static critical behavior belongs to the directed percolation
class.

PACS number(s): 05.50.+q, 02.50.—r, 05.70.Ln

I. INTRODUCTION P(t) oc t

Despite recent progress, understanding the phase dia-
grams and critical points of nonequilibrium models re-
mains a challenging problem. In the relatively well-
understood case of continuous transitions into an absorb-
ing state (i.e. , one that traps the dynamics), a high degree
of universality has been found, supporting the prediction
that such transitions belong generically to the class of
directed percolation (DP) [1—3]. Examples include the
basic contact process and its variants [4—9], surface re-
action models [3,10,11], branching annihilating random'
walks with odd parity [12—14], and assorted multiparticle
processes [15—19]. The static critical behavior of models
with multiple absorbing configurations [20—27] also falls
in the DP class. On the other hand, some aspects of time-
dependent critical behavior in the latter class of mod-
els are surprising: the critical exponents that describe
spreading from a seed vary continuously with the density
in the environment and the usual hyperscaling relation
must be modified. Until now this phenomenon has been
investigated in one dimension only; here I present a study
of nonuniversal critical spreading in a two-dimensional
model.

Models with an absorbing state are characterized by
an order parameter p, the density of self-reproducing en-
tities or active sites. The stationary value p vanishes as
the reproduction rate A approaches a critical value A:
p oc A~ for small L = A —A . For A & A the only
steady state is the absorbing state, in which all change
ceases. Much insight is gained from studies of spread-
ing &om a single active site [28]. The chief quantities
of interest are the survival probability P(t) (the process
is said to survive so long as it has not become trapped
in the absorbing state), the mean number of active sites
n(t), and the mean-square distance B (t) of active sites
from the original seed. At the critical point they follow
asymptotic power laws
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n(t) oc tv, (2)

B'(t) oc t'.

These power laws, which form the most salient feature
of the critical spreading process, have been confirmed
for a broad class of models. The exponents b, g, and
z, estimated from simulations and series expansions [29],
are in good agreement with DP values.

Several models have been devised with absorbing
states that embrace a large number of configura-
tions: two-dimensional catalysis models [22—25] and one-
dimensional particle systems such as the pair contact pro-
cess (PCP) [20,21,27]. In the PCP each site of a lattice
(Z) is either vacant or occupied by a particle; the ac-
tive "sites" are nearest-neighbor particle pairs. They are
annihilated with probability p and give birth, with proba-
bility 1—p, to a new particle at a vacant neighboring site.
Since particles may only be created or destroyed if there
are pairs and since particles cannot move to other sites,
any configuration of isolated particles is absorbing; the
system always becomes trapped in such a configuration
if p & p . While static critical behavior in models with
multiple absorbing configurations still conforms to DP
[30], spreading presents another feature: one can choose
the absorbing configuration into which the seed is placed.
Critical spreading has been studied in three rather dif-
ferent one-dimensional models with multiple absorbing
configurations: the PCP, the threshold transfer process,
and the dimer reaction [21,27]. For "natural" absorbing
configurations (those generated by the critical process
itself), the spreading exponents assume DP values. If,
however, the initial density P; differs &om the natural
value, the exponents b and g change; they vary linearly
with P, . (P represents the density of isolated particles
in the PCP, not the order parameter. ) An exponent,
P' must be introduced to describe the ultimate survival
probability
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P = lim P(t) oc (p, —p)~ (4)

in the active regime. This exponent also depends on P;.
(P = P for natural iiutial configurations, just as for mod-
els with a unique absorbing configuration. ) It appears in
the generalized hyperscaling relation [27]

/
1+ —,)h+q=Pl dz

(5)

which reduces to the relation originally derived by Grass-
berger and de la Torre [28] for P' = P. Certain proper-
ties are independent of P;: the location of the critical
point, the exponent z, and b + g, which governs pop-
ulation growth in surviving trials. This suggests that
the initial density influences the survival probability, re-
jected in the exponents h and P', but does not alter the
asymptotic properties of surviving trials.

The background sketched above motivates the inves-
tigation of critical spreading in dimensions greater than
or equal to 2, which ofI'ers a greater range of possible
growth patterns. In the following section I define a
two-dimensional model with multiple absorbing config-
urations and describe the simulation procedure used to
study it. Results are presented in Sec. III and a scaling
analysis in Sec. IV, followed by a brief summary in Sec.
V.

starting from an empty lattice, particles adsorb until no
open sites remain. In this case there is an exponential
approach to the jamming density P = 0.36413 [31,32].
The order parameter p for the SNR is the fraction of
open sites; configurations devoid of open sites are ab-
sorbing. Of course, many absorbing configurations are
possible, with particle densities P ranging from 1/5 to
1/2 (see Fig. 5). I shall refer to the set of absorbing
configurations characterized by common statistical prop-
erties (particle density and correlations) as an absorbing
state. It is also useful to define the ensemble A I, of
absorbing configurations generated by the SNR with ad-
sorption probability p, starting from an empty lattice of
size L For. any absorbing configuration ( on L sites,
A„L,(() is the probability of realizing ( as the final con-
figuration.

Based upon experience with models of this kind, in
particular, with the dimer reaction, the one-dimensional
cousin of the SNR [21,27], one expects that there is a crit-
ical value p above which the system always gets trapped,
while for p ( p, there is an active state in which the reac-
tion may proceed indefinitely. Equivalently, one expects
that for p & p the absorbing state is the only stationary
state and that for p ( p there is in addition a nontriv-
ial invariant measure on configuration space. (While the
only latter emerges in the infinite-size limit, for p ( p,
the quasistationary state is suKciently long lived to allow
precise characterization in simulations. )

II. MODEL

The second neighbor reaction (SNR) is a Markov pro-
cess or interacting particle system in which each site of
the square lattice Z is either vacant or occupied by a
particle. Particles may not occupy adjacent sites. If all
four nearest neighbors of a vacant site (i, j) are also va-
cant (i, j) is said to be open. Open sites are the only
active sites in the model. In each step of the process, a
site is chosen at random; if it is open, a particle is placed
there provisionally, otherwise nothing happens. Suppose
a particle has just arrived at (i, j). If all four of the sec-
ond neighbors (i+i, j+1) are vacant the new particle is
adsorbed and remains at (i, j). But if any of the second
neighbors are occupied, the new particle is only adsorbed
with probability p; with probability 1 —p it reacts with
one of its neighbors (selected at random, if necessary)
and both particles leave the lattice. Each such reaction
creates one or more new open sites. Adsorbed particles
are immobile and can only leave the surface in a reaction
with a newly arrived particle. Each adsorption attempt
marks a fixed time interval; we take the time unit as
N = L such events.

Since the fraction of open sites is quite small in the
vicinity of the critical point, efFiciency is greatly improved
by choosing trial adsorption sites from a list of open sites.
This entails a variable time increment At = 1/No for
each event, where No is the number of open sites. Taking
statistics at fixed time intervals (rather than after a fixed
number of events) ensures proper stationary averages.

For p = 1 the model corresponds to random sequen-
tial adsorption (RSA) with nearest-neighbor exclusion;

III. SIMULATI(3N RESULTS

An accurate estimate of p is crucial for reliable deter-
mination of critical behavior. Several simulation methods
are available for locating the critical point: half-life stud-
ies, time-dependent simulations, and analysis of station-
ary properties. Use of any one method exclusively can
be misleading. Here I begin with the half-life method,
which is based on finite-size scaling analysis of the mean
survival time. One generates a large number of indepen-
dent realizations, all starting from an empty lattice (all
sites open), with periodic boundaries, and determines the
time w required for half the sample to reach the absorbing
state. ~ is a decreasing function of p and an increasing
function of lattice size L. One expects that in the vicinity
of the critical point [15]

where A = p —p and h, is a scaling function. The expo-
nents v~~ and v~ govern the divergence of the relaxation
time t„and the correlation length ( as A ~ 0: t oc A
and ( oc A "~. The critical point is distinguished by the
simple power law 7 oc I ~]/ ~ as L ~ oo. Following a
preliminary survey that indicated that p 0.3935, I es-
timated w for I = 16, 32, 48 64, 96, 128, and 176, for p =
0.3930 —0.3940. It is convenient to plot in& —(v~~/v~) lnL
versus lnL, using the expected value of the exponent
ratio for DP in 2+1 dimensions (see Fig. 1). Only
for p in the range 0.3926—0.3927 are the data consis-
tent with a power law. The corresponding exponent is
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TABLE I. Critical point and exponents in the second neighbor reaction. Numbers in parentheses
denote uncertainties.

0.2
0.25 (isotropic)
0.25 (anisotropic)
0.33443 (natural)
0.36413 (RSA)
0.5

pc
0.4102(2)
0.3965(1)
0.39238(2)
0.39262 (1)
0.39240(5)
0.39220(5)

b
0.078(8)
0.054(2)
0.677(5)
0.468(6)
0.64(1)
1.30(5)

0.64(4)
0.90(1)
—0.035(5)
0.216(8)
0.035(20)
—0.12(6)

1.84(2)
1.76(1)
0.97(1)
1.117(13)
1.038(3)
0.91(2)

0.125(5)
0.18(5)

0.58(1)
0.70(2)
2.0(2)

DP 0.460(6) 0.214(8) 1.134(4) 0.586(14)

the range [In t —1.5, ln t+ 1.5] and similarly for the other
exponents. ) I conclude that 0.39261 ( p, ( 0.39263,
given the marked curvatures of the bq and gq graphs for

p values outside this range. The exponents obtained by
extrapolating the local slopes to infinite t are in good
agreement with accepted values for DP in 2+1 dimen-
sions (see Table I).

I turn to the exponent P' governing the ultimate sur-
vival probability starting from a localized active region.
Natural absorbing configurations, constructed as above
(with p = p, = 0.39262), were used in determinations
of P for p ( p, . These studies yield P' = 0.58(2),
while in DP P = P' = 0.586(14) [33]. The station-
ary open site density p was determined on lattices of
size I = 16, 32, 64, and 128. To minimize finite-size ef-
fects, p(p) was obtained for two or more system sizes,
until doubling I produced no significant change. A lin-
ear least-squares fit to a plot of ln p versus ln(p —p)
(with p, = 0.39262) yields P = 0.56(2). In summary, the
static critical behavior and critical spreading from "nat-
ural" absorbing configurations are both fully consistent
with DP scaling in 2+1 dimensions.

It is of interest to characterize the natural absorbing
configurations. Large samples of the latter were gener-
ated by running the simulation at p, starting from an
open lattice (L & 176), until it reached an absorbing
configuration. The results for the particle density P„ t

I
i

I0 8

where 0 (x) is an indicator variable that is 1 if and only if
site x is occupied. Figure 4 shows that h(r) is negligible
for r ) 6. Thus correlations in natural absorbing con-
figurations in the SNR are of only slightly greater range
than in the one-dimensional dimer reaction [21].

Having established the properties of the active station-
ary state, the natural absorbing state, and of critical
spreading from the latter, I turn to spreading in "non-
natural" absorbing configurations. Detailed studies were

performed for the maximal density (P = 0.5), the min-
imal one (P = 0.2), and for two kinds of configurations
with P = 0.25, one with square-lattice symmetry, the
other having a preferred axis. In addition to these peri-
odic states, absorbing configurations were generated via
RSA. (Examples are shown in Fig. 5.) In each case,
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show only a weak dependence on L, permitting reliable
extrapolation to infinite L, yielding P„ t ——0.33429(3).
Further insight into absorbing configurations is provided
by the two-point total correlation function

(0 (x)cr(x + r))
2

0.0

-0.4

-0 ' 8

-1.2
2 4 6 8

0004000400040004oeoooeoooeoooeoo0004000400000004OeoooeoooeoooeooOooeoooeoooeoooeoeoooeoooeoooooooooeoooeoooeoooeOeoooeoooeooo ~ 00
OOOOOOOOOOO ~ Ooo ~0400040000000400oooooooeoooeooooooooooooooooooooooo ~ ooooooooooo ~Oeoooeoooeoooeoooooeoooeoooeoooe0400040004000400

00000000000000000000010000000000000000000000000000000000000000000000000000000000
~00000000000100000010000000000000000000000000000
F000000000000000000000000000000000101000000000000000000000000000ooeooeooeoeooeoe0000000000000000Ooeooeooeoeoeooo0000000000000000

4ooooooooooooooo0000001000400040Oeoooeooo ~ OooeoooooeoooeoooeoooeeoooeoooeoooeoooooeoooeoooeoooeooeoooeoooeoooeooOooeoooeooo ~ OOOO
F000400040004000Ooeoooeooo ~ OooeoOeoooeoooeoooeoo
Ooo ~0004000 ~ OOOO
~ OooeoooeoooeoooOoeoooeooo ~ Oooeooeoooeoooeoooeoo
Ooo ~ Oooeoooeoooe

04040404040 ' 0' 044040 F040404040400404040404040404eoeoeoeoooeoooeooeoeoooeoeoeoeoe
~ 0~ 0 ~00040404040Oeoeoeoeo ~ Oeoeo ~eoeoeoeoooeoooeoOeoeoeoeoeoeoeoe
F040 ' 04040404040oeoeoeoeoeoooeoe
~040404040 ~ 0~040
OOO ~ Oeoeoeo ~ 04044040104040404040ooo ~ oooooooooooeooooooeooo ~ ooooo

FIG. 4. Two-point correlation function h(r) in natural ab-
sorbing configurations. ~, (1,0) direction; x, (l, l) direction;
o, (2,1) direction.

FIG. 5. Examples of initial absorbing configurations inves-
tigated in this work. Left: top, density P = 1/5; middle

P = 1/4, anisotropic; bottom, P = 0.363 (RSA), Right: top,
0.328 (natural); middle P = 0.25, isotropic; bottom,

P = 0.5.
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the critical point p, (P) was identified by searching for
asymptotic power laws as in Eqs. (1)—(3).

Consider first the lowest density absorbing configura-
tion (P = 0.2), in which particles are arrayed in a ~5x ~5

pattern. Simulations indicate that the spreading process
is 8upercritica/ for p = p b„~g ——0.39262. The survival
probability P(t), for example, tends to a nonzero value as
t —+ oo, rather than exhibiting power-law decay. Power-
law spreading occurs for p = 0.4102(2), about 4% greater
than p, b„ik (see Fig. 6). As indicated in Table I, the
spreading exponents g and z are much larger than the
corresponding DP values and b and P' are much smaller.
The changes in p, and in the exponents accord with the
notion that open sites spread more readily in a region of
low particle density.

The absorbing configuration with maximal particle
density (P = I/O), by contrast, presents hostile terrain
for spreading. Running at the bulk critical point, the
process appears to be subcritical: P(t) and n(t) decay
exponentially. To observe power-law spreading one must
reduce p to 0.3922, about 0.14% below the bulk critical
value. The shift in p is small, but the effect on the expo-
nents is dramatic: spreading is subdiffusive (z ( 1) and
g is negative. (The latter is coiisistent with known con-
straints: g + b & 0, so the population in surviving trials
increases with time. ) Studies with intermediate initial
densities, summarized in Table I and Fig. 7, confirm the
tendencies noted for the extreme cases: higher densities
correspond to smaller values of g and z, larger b and
P', and a depressed p„and conversely, consistent with
the expectation that the larger P, the more spreading is
impeded. The only exception is the anisotropic system,
which despite having P ( P„&, resembles isotropic sys-
tems with P & P„ t. Why anisotropy renders spreading
more dificult is unclear. The contrast between the two
studies at P = 0.25 is nonetheless striking and demon-
strates that factors other than the particle density can
inHuence critical spreading.

IV. SCALING THEORY
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FIG. 9. Mean density of open sites vs distance from seed,
for P = 0.2, p = p, . Prom left to right, t = 200, 500, and 1000.

PIG. 8. Spread of open sites P = 0.2, p = p, . Light gray,
t = 200; dark gray, t = 500; black, t = 1000. An area of
600 x 800 lattice spacings is shown.

( t) t77
—ds/2G( 2/tz ~tl/v( ~ ) (8)

P(t) - t—'@(~t'/"~~),

tions do not evolve to the bulk critical state, which exists
uniquely at p b„~k. As a result, the usual scaling theory
for absorbing states must be modified. In (isotropic) ab-
sorbing configurations with P ( P„«, critical spreading
occurs at p = p ) p b„~k, where an active steady state is
not possible. As the population of open sites spreads, it
leaves in its wake a region devoid of open sites, with par-
ticle density PI, slightly greater than P„«. After some
time, this region cannot be reactivated. (For p ) p, „«,
the survival probability decays exponentially even when

P = P„aq.) Thus, for p, „«(p ( p, (P), the active region
is confined to an expanding ring; it is a kind of "chemi-
cal wave" that converts one type of absorbing configura-
tion to another as it passes. An example of this kind of
spreading is shown in Fig. 8. The mean density of open
sites (averaged over 500 trials) is plotted in Fig. 9 as a
function of distance from the origin, confirming that the
active region forms an expanding ring. Critical spreading
with P & P„«presents a rather diB'erent picture. Here
the critical point lies below p, b„~k, which means that sur-
viving trials consist of an expanding region with a small
but finite density of open sites.

For non-natural initial conditions, the exponents vio-
late the hyperscaling relation Eq. (5). This is not sur-
prising since the scaling argument assumes that surviving
processes evolve, for large t, into a bulk critical system
[27,28]. This assumption, as we have seen, is not valid
when p g p, b„ik. To describe this situation, the scal-
ing analysis can be modified as follows. We assume, as
usual, that spreading may be described in terms of a pair
of scaling functions, dcifined via [28]

where E = p, (P) —p is the distance from the critical
point. (For A ) 0 spreading may continue indefinitely. )
In Eq. (8) p(x, t) is the local order-parameter density,
averaged over all realizations; it is concentrated near the
origin at time zero. The prefactors are constructed to
yield power laws [Eqs. (1)—(3)] when A = 0. Existence
of the limit P implies that 4(x) x as x —+ oo, with

Consider spreading with P ( P„«and p. (P) & p. b„»,
in which the active region is an expanding ring. Simula-
tions indicate that for 4 ) 0, the active region expands at
a constant speed v(K) and that the maximum open-site
density in surviving trials attains a steady value pp(4)
for large t. In the contact process and similar models,
p(x, t) ~ P p as t ~ oo, for any fixed x. But here we
expect instead that p(x, t) -+ P pp (A) f ( ~

x~ /vt), where
f(u) attains its maximum value (unity) at up = 1 and
f ~ 0 as u —+ 0 or u —+ oo. We expect pp to have a
power-law dependence on 4:

(10)

Consider the limit t m oo, ~x~ -+ oo, with ~x~/vt = up.
For 4 small but positive, p(x, t) A~ pp so that
G(oo, y) y/ +/ for large y. On the other hand, we
must have G(oo, y) y "~~l" "'/ l for lim~„~ t~ p(x, t)
to exist. Comparing these asymptotic behaviors, we find
a hyperscaling relation for annular spreading

/' pl
I dz

~
1+, S+g= —.

p'

Inserting the exponent values shown in Table I yields
P" = 1.80(35), for P = 0.2. This is consistent with P" =
1.68(6), obtained directly from simulations at p values
between p~ b„ik and p (0.2).

As noted above, surviving trials at p, (P) for P & P„«
develop a finite open-site density and so are compact ob-
jects. The critical exponents for spreading of compact
coloiues are expected to satisfy the relation [34]
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ctrl' i
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+

very long times, since ]p —p, b„~k[/p, ,b„u, is very small
(less than 10 ). This is supported by the observation
that even at fairly late times (t = 10 ), the distribution of
open sites does not appear compact, but rather consists
of several disconnected regions (see Fig. 10). Presumably
the spreading exponents found for P = 0.5 and 0.364 are
not the asymptotic ones; their determination will require
studies of considerably longer duration.

V. SUMMARY

+ +

FIG. 10. Typical colony for P = 0.5, p = p, and t = 10 .
The line represents 100 lattice spacings.

dzb+g = —,2'
which simply expresses the growth of population in a
region of positive density, given that the radius grows

t'I2. The exponents for density P = 0.5 are, however,
inconsistent with Eq. (12): 8+ rl —z = 0.27(13) [The
deviation from the generalized DP hyperscaling relation
Eq. (5) is considerably larger: (1 + P/P')8 + rl —z =
0.6(2).j For RSA initial configurations (P = 0.364 13) the
corresponding deviations are —0.3(1) and 0.2(1). We can
understand this discrepancy by noting that the onset of
compact growth, which requires that the colony diameter
D )) (, the bulk correlation length, should only occur at

The study of nonuniversal spreading in two dimen-
sions reveals a large variation of critical exponents with
the density P of the environment into which the process
grows. The variation of the spreading exponents is much
more pronounced than in one-dimensional models with
multiple absorbing configurations [21,27]. In the SNR
8 and P' vary by more than an order of magnitude, rl

changes sign, and z, which is essentially constant in the
one-dimensional models, varies by more than a factor of
2. (Similarly, h + rl appears to be constant in one di-
mension, but varies substantially here. ) Moreover, the
critical point p, depends on P, whereas in one dimension
it remains constant. The shift in p has important con-
sequences for scaling since the critical spreading process
does not evolve into a bulk critical state for P g P„ t.
A comparison of spreading in two environments with the
same density but diferent symmetries reveals that the
process is strongly influenced by factors other than the
density.
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