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Though one-dimensional self-gravitating N-body systems have been studied for three decades,
the nature of relaxation is still unclear. There have been inconsistent results regarding the relaxation
time; some initial states seemed to relax in the time scale T' ~ N t., but other states did not relax
even after T ~ N?t., where t. is the crossing time. The water-bag distribution was believed not
to relax after T ~ N?t.. In a previous paper, however [Phys. Rev. E 50, 2607 (1994)] we found
that there are two different relaxation times in the water-bag distribution; in the faster relaxation
(microscopic relaxation) the equipartition of energy distribution is attained but the macroscopic
distribution turns into the isothermal distribution in the later relaxation (macroscopic relaxation).
In this paper, we investigate the properties of the two relaxations. We find that the microscopic
relaxation time is T' ~ N t., and the macroscopic relaxation has the much longer time scale 4 x
10*N t., thus the water bag does relax. We can see that the inconsistency about the relaxation
times is resolved as we see the two different aspects of relaxation. Further, the physical mechanisms
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of the relaxation are presented.

PACS number(s): 05.45.+b, 98.10.+z, 03.20.+i, 95.10.Ce

L. INTRODUCTION

One-dimensional self-gravitating many-body systems
have been studied for three decades, both from astro-
physical and chaotic dynamical interests. In the astro-
physical point of view the system is a simple model of
stellar systems, such as globular clusters, elliptical galax-
ies, and clusters of galaxies, and is convenient to draw out
basic understanding of evolution and relaxation. On the
other hand, it has been a problem in statistical mechanics
whether all globally coupled systems with large degrees
of freedom are ergodic and usual statistical mechanics is
applicable.

Hohl [1-3] first asserted that there is a relaxation time
scale of N2t., where N is the number of particles and
t. is the characteristic time which is approximately the
time for a member to traverse the system. In the late
1980s, however, several authors showed that there is no
time scale of N2?t. in relaxation, but the character of
evolution depends on the initial condition. A specific
class of initial states (conterstreamed with virial ratio
0.3) appears to relax on the time scale N t. [4-6], which is
much shorter than Hohl’s prediction. On the other hand,
other initial states with lower or higher virial rations take
a much longer time to relax. In particular, the water-
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bag distributions do not appear to relax even after N2 t,
[7,8]. Through these studies, one of the properties of
evolution was recognized, which is that the systems do
not relax directly to the thermal equilibrium, but to a
quasiequilibrium after the violent evolution.

Severne and Luwel [9] suggested that there are three
phases in relaxation. If the initial state is far from equi-
librium, violent oscillation of the mean field gives rise to
the violent relaxation [10] for the first several oscillations.
This phase is called the virialization phase. After the sys-
tem is almost virialized, remaining small fluctuations of
the gravitational field cause the change of the individual
particle energies. They called this era the collisionless
mizing phase. After that, the collisional relazation phase
takes place, in which the particle interactions tend to
drive the system towards the microscopic thermal equi-
librium. This is the thermal evolution.

We have studied the evolution of the stationary water-
bag initial distribution, which is believed not to relax to
the thermal equilibrium. In this case, the virialization
phase does not take place. In our previous paper [11]
(we refer to it as Paper I), we showed that there exist
two characteristic time scales even after the virialization
phase. The shorter one is the microscopic relazation,
which means that mixing among energies of particles has
developed completely as the result of mutual interaction
but the global energy distributions are not transformed
into that of the thermal equilibrium. This transforma-
tion occurs in a much longer time scale, which we refer
to as the macroscopic relaxation time. The microscopic
relaxation does not correspond to the collisionless mix-
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ing because as compared with the microscopic relaxation,
which leads the systems to the equipartition of energies,
the collisionless mixing does not necessarily mean the
equipartition.

Our aim is to understand the physical mechanism of
the microscopic and macroscopic relaxations and then to
resolve inconsistent results about the relaxation. Section
II gives a description of our model and summarizes the
evolution of the water-bag distribution found in Paper
I. In Sec. III dependence of the microscopic relaxation
on the number of the particles is studied numerically,
and the physical interpretation is presented. In Sec. IV
the macroscopic relaxation is considered, and conclusions
and discussions are given in Sec. V.

II. MODEL

The system comprises NV identical mass sheets, each of
uniform mass density and infinite in extent in the (y, z)
plane. We call the sheets particles in this paper. The
particles are free to move along the x axis and accelerate
as a result of their mutual gravitational attraction. The
Hamiltonian of this system has the form

N

H= %vaﬂzrcm%zm —z, (1)

=1 i<j

where m, v;, and z; are the mass (surface density), ve-
locity, and position of ith particle, respectively.

In our calculation, we employ the following scaling.
The total mass M = Nm = 1, the total energy E = 1/4,
and 47G = 1. With these normalizations, the units of
length, velocity, and time are introduced as follows:

L = (4E)/(4nGM?), unit of length, (2)

V = (4E/M)/2, unit of velocity, (3)

te = (1/4nGM)(4E/M)*/2, unit of time, (4)
where t. is referred to as crossing time, which is the typ-
ical time for a particle to traverse the system.

The potential of the system with finite N has no di-
vergence, and the equienergy hypersurface is compact.
Thus we can define the thermal equilibrium by the max-
imum entropy state. The distribution of particles in the
thermal equilibrium is called the isothermal distribution.
This equilibrium is the statistical equilibrium of the gen-
eral kind for many-body systems. Figure 1 shows the
isothermal distribution in p space.

In addition to the thermal equilibrium, self-gravitating
systems have another concept of equilibrium, dynamical
equilibrium. It is defined mathematically in the continu-
ous limit to an infinite number of particles in the system
while the total mass is constrained to be finite. A state of
the system is described by a distribution function f(z,v),
which is the number density of the particles at (z,v) in
1 space. Since the mass of a particle goes to zero as
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FIG. 1. The isothermal distribution in p space. The num-
ber of particles is 1024. The full description of this distribu-
tion is given in Paper I.

the number of particles goes to infinity, the gravitational
interaction between two constituents becomes negligible
and the particles move by the force due to the mean po-
tential ®, where ® is determined by the Poisson equation,

V3% = 47G / f(z,v) dv. (5)

Dynamics of the system is subjected to the collisionless
Boltzmann equation,

of of of .

E-ﬁ-v%—V‘I’(m%—O‘ (6)
A dynamical equilibrium is a stationary solution of the
Poisson and the collisionless Boltzmann equations. There
exist many dynamical equilibria (see, e.g., [12]) includ-
ing the water-bag distribution, which has a homogeneous
phase density. We choose the water-bag distribution as
one of our initial conditions. For the sake of simplicity,
we distribute the particles uniformly in a rectangle re-
gion in the u space with the virial ratio of unity (Fig. 2).

FIG. 2. The water-bag initial distribution in u space. The
number of particles is 1024. The full description of this dis-
tribution is given in Paper 1.
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It is not the exact stationary solution of the collisionless
Boltzmann equation but it rapidly evolves to such an
equilibrium very close to the stationary water-bag distri-
bution.

The systems with the continuous medium approximate
systems with finite but large number of particles. If the
number is very large, a finite system stays in a dynamical
equilibrium for a long time. However, it is not true equi-
librium, and the scattering among the discrete particles
transforms the state gradually from the dynamical equi-
librium to the thermal equilibrium. We call this tran-
sition the macroscopic relaxation, in contrast with the
microscopic relaxation, which leads the system to the
equipartition of the individual energy. We summarize
briefly the results of Paper I.

In Paper I, we introduced three quantities to analyze
the evolution of the systems: the equipartition and the
power spectrum density of fluctuation of individual par-
ticle energy, and the maximum Lyapunov exponent. The
combination of these quantities revealed the microscopic
evolution of the system. As a result, we can distinguish
the two different time scales from the variation of the de-
viation A(t) from equipartition. The definition of A(t)
is shown below.

The specific energy (energy per unit mass) €;(t) of the
ith particle is given by

i(t) = 502(0) +2mGm Yl () — wi()]. (7)

i=1

If the evolution of the system is ergodic in the I" space,
the long time average of the specific energy takes a unique
value for all 1, i.e.,

T—o0

1 T
g; = lim ﬁ‘/ Ei(t)dt=€OE5E/3. (8)
0

The degree of deviation from equipartition is measured
by the quantity

1 N
A(t) = 661 N Z[E(t) — Eo]za (9)

where £;(t) is the averaged value until ¢. In the numerical
scheme, €;(t)’s are sampled at every crossing time t., and
the average is defined simply by the summation of the
samples divided by the number of the samples.

The variation of A(t) of the system with the water-
bag initial distribution for N = 64 is shown in Fig. 3.
The plateau at the beginning represents the collisionless
phase, because in the collisionless phase the individual
energies are conserved. After ¢t ~ 100, A(¢) begins to de-
crease as t~1/2, which means that the fluctuation behaves
in the same manner as thermal noise. The transition from
const A(t) to the power law, A(t) o t~'/2, determines
the microscopic relaxation. If the water-bag distribution
is thermal equilibrium, then no more change is expected
and A(t) goes to zero as t increases. However, it was
found that A(t) increases at some 10®t.. In Paper I, we
studied what happens at the change. Not only A(t) but
also the maximum Lyapunov exponent increased at that

TOSHIO TSUCHIYA, NAOTERU GOUDA, AND TETSURO KONISHI 53

10° F - !

macroscopic
relaxation

107

microscopic
relaxation

t/1,

FIG. 3. The variation of the deviation from the equiparti-
tion [A(t)] for N = 64. Time is measured by the dynamical
time. Two dashed lines are A(t), which is constant and pro-
portional to t"1/2. The bends of-the A(t) correspond to the
microscopic and the macroscopic relaxation time.

time and approached the value of the isothermal distri-
bution. Further, the cumulative energy distributions and
the power spectrum densities became that of the isother-
mal distribution. In this way, we concluded that the
water bag is transformed into the isothermal distribu-
tion at that time. This increase of A(t) means that the
dispersion of the energies averaged over the same time
(~ 5 x 108¢.) is bigger in the isothermal distribution
than in the water-bag distribution. The reason is that
the isothermal distribution contains more high energetic
particles so the amplitudes and the periods of the fluc-
tuation are larger. In fact, we found that some particles
stay at the highest energy for 10°¢,. From these facts,
the macroscopic relaxation is estimated by the increase
of A(t).

After the increase, A(t) begins to decrease again. Al-
though we did not follow the evolution long enough after
that, it seems that the decrease is proportional to t~1/2.
This is rather natural because the isothermal distribution
is the true thermal equilibrium.

III. MICROSCOPIC RELAXATION
A. Numerical results

The microscopic relaxation means that the individ-
ual particle energies mix well so the system attains the
equipartition. In Paper I we demonstrated that the diffu-
sion of the individual energies are similar to random walk
processes that yield the power spectrum density (PSD)
of the Lorentz distribution, P(f) o< (2 +~2)~!, where v
is a constant. One way to determine the time scale of mi-
croscopic relaxation is to get the frequency f ~ ~, where
the distribution changes its gradient. The reciprocal of ~y
gives the relaxation time scale. We chose another way to
determine the time scale for the transition of variation of
A(t) from a constant to t~1/2. The relaxation time is sim-
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FIG. 4. The microscopic relaxation time for the systems
with various number of the particles. The dotted line is
T =2N.

ply estimated by the crossing of two lines in Fig. 3: one is
the constant A(t) and the other is A(t) o< t71/2. We ex-
amined 100 different initial states; all have the water-bag
distribution macroscopically but are created from differ-
ent random seeds at the initial time. The all 100 initial
states are different only in the microscopic distribution.
We found all runs gave almost the same microscopic re-
laxation time. Therefore, the time scale is universal for
the water-bag distribution. Figure 4 shows the micro-
scopic relaxation time for various N, the number of par-
ticles. We calculated N = 64, 128, 256, 512, and 1024.
The dotted line in the figure is the line of T = 2Nt..
The result tells us that the microscopic relaxation time
T, increases linearly as N increases;

T ~ Nt.. (10)

Recently Reidl and Miller [13] found the same depen-
dence of the time scale on which clustered initial states
break into a quasiequilibrium. This correspondence is
strong evidence that the microscopic relaxation is not
special to the water-bag distribution, but rather general.
Next we consider the physical mechanism of the relax-
ation.

B. Physical mechanism of the relaxation

The microscopic relaxation is the diffusion process that
the energy of individual particles varies from the initial
value. This variation causes the mixing of the energies
and leads the system to equipartition. The Lorentz dis-
tribution of the PSD guarantees that the variation is
the same as Brownian motion. The relaxation driven by
Brownian motion in a stellar system is studied by Chan-
drasekhar [14-16] and several authors elaborated on the
stochastic diffusion [17,18]. They suggest that the time
scale becomes ~ N t., and our results confirm the idea.
Here, it seems instructive to illuminate the simple picture
of the mechanism.

Consider a particle located near the center at rest. The
gravitational acceleration of the particle is proportional
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to the difference between the number of particles at the
left side, Nies, and the right side, Nyigh¢, of the particle,

0 = 20G'm [Nyight — Niegt] - (11)

The field particles travel across the system and the num-
bers of particles in both the left and the right sides fluc-
tuate in time around their average. If we assume the
fluctuation of the distribution of field particles is random
and independent, the particle at the center has a random
force,

o ~ 2rGmV/'N. (12)

Since this fluctuation is created by the motion of field
particles, the typical lifetime of the fluctuation should be
the crossing time,

(13)

c

_ [4rGNm —1/2
== ,

where L is the length of the system.
The fluctuation of velocity, dv, caused by the random
force is

dov ~ VrGmL (14)

and if the fluctuations of field particle distribution occur
independently, statistical theory asserts that the disper-
sion of the velocity fluctuation increases linearly in time,

(sv)zi . (15)

Relaxation is accomplished when the dispersion grows as
much as the typical value of velocity, V, in the system

V2 ~4nGmNL. (16)
Thus we get a time scale,
t ~ Nt.. (17)

This time scale quite agrees with the numerical result
[Eq. (10) and Fig. 4].

IV. MACROSCOPIC RELAXATION

Macroscopic relaxation occurs when the distribution is
transformed from that of a dynamical equilibrium to that
of the thermal equilibrium. The time scale of the transi-
tion from the water bag to the isothermal distribution is
much larger than the microscopic relaxation time.

At the transition the distribution in the energy space
becomes wider. The appearance of high energy particles
causes an increase in the amplitude of the fluctuations.
In order to examine this change, we introduce the locally
averaged energy, which is defined by

€O =77 [ e (18)

—At

We took At ~ 20000, which is much longer than the mi-
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croscopic relaxation time in the water-bag distribution.
By analogy with A(t), we introduce the deviation of the
energy fluctuation from the equipartition value

1 N
5(t)=¢ep! N Z[<€i>(t) —&of?, (19)

which gives the time variation of the energies averaged
over At. The sudden increase of A(t) in Fig. 3 corre-
sponds to the beginning of violent variation of 6(t) at
t ~ 5 x 10%t, in Fig. 5.

In the case of the microscopic relaxation of the
water-bag distributions, different microscopic distribu-
tions (created by different random seeds) yield a definite
relaxation time scale. For the macroscopic relaxation,
however, we found a distribution of relaxation times that
has a range over an order of magnitude. Therefore the
mechanism of the macroscopic relaxation is surmised to
be different from that of the microscopic relaxation. In
this case, the distribution of the relaxation time is a big
clue to finding the mechanism.

Figure 6 shows the probability distribution of the re-
laxation time of the system with N = 64. We took a
statistical ensemble of 100 different initial states, as fol-
lows: As described in Paper I the initial states are re-
alized by random distributions of particles which form
uniform averaged phase density. Different seeds of the
random number generator yield different random distri-
butions microscopically but all gives the water-bag distri-
bution macroscopically. The relaxation time of each run,
T, is determined by the figure of §(¢), but there are wide
variations within the ensemble. The relaxation times are
divided into bins with the interval of 2 x 108 t.. The solid
diamonds represent the results of the numerical simula-
tions. The vertical axis is scaled such that P(Tas) dTn
gives the fraction of the number of runs, which fall into
the interval dTps. It is clear from the figure that the
distribution has a exponential distribution,

P(Ty) = e Tm/(Tae) | 20
(Tw) = s (20)
T
0.4} -
0.3
b3
0.2
0.1
[t pamrerdnd i i i
0 2 4 6 8 10x10°
time

FIG. 5. The deviation of the locally averaged energies from
the value of the equipartition. Individual energies are aver-
aged over 20000t. around the given time t.

TOSHIO TSUCHIYA, NAOTERU GOUDA, AND TETSURO KONISHI 33

10° P
]
-7 Te

107 s .
P o N 3
o B . 4
100 L -2 . J
: Tl

10°° I .

0 2 4 6 8 12x10

relax

FIG. 6. The probability distribution of the macroscopic re-
laxation time of the system with N = 64. The relaxation
times are calculated from the macroscopically same water-bag
distribution but microscopically different random distribution
realized by different seeds of random number generator.

where,

(Tar) = 2.8 x 105, for N = 64, (21)

and this gives the expectation value of the relaxation
time. )

Before we proceed to speculate on the mechanism it is
useful to recall the phase space dynamics of the system:
Any state of the system with NV particles can be described
by a certain point in the 2N dimensional phase space ("
space). Each point yields some macroscopic distribution,
such as the water bag or the isothermal. In I' space, there
is a region where all phase points yield the water-bag dis-
tribution. At the beginning the phase point is located in
this region and then it moves out of the region as the
system evolves. The macroscopic distribution is the wa-
ter bag while the phase point stays in the region. When
the point escapes from the region, the macroscopic dis-
tribution is transformed from the water-bag distribution
into the isothermal because it is defined as the maximum
entropy state, which means that it occupies the largest,
and usually most of the region in the I' space. Now we
should explain the following facts.

(1) The water bag exhibits several properties of ther-
mal equilibrium, such as convergence of Lyapunov expo-
nents, and equipartition of energy, which suggest ergod-
icity. ’

(2) The probability distribution of the macroscopic re-
laxation time is an exponential function.

One possibility to explain these facts is that there ex-
ists a barrier which is an obstacle for a phase point to
go out from the water-bag region. Due to this barrier
a phase point is restricted in the region for a long time,
where it travels all over the region as if the water-bag
region is ergodic. However, the barrier is not perfect
and there is a small gate from which a phase point in
the water-bag region can escape. A phase point travels
in the region in a very complicated way and is almost
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FIG. 7. The macroscopic relaxation time for the systems
with various number of the particles. For N = 512, the en-
semble of 50 water-bag distributions shows no relaxation until
T = 10%,.. The statistical analysis gives the true relaxation
time which lies in the region restricted by the arrow in the
90% confidence level. The dashed line is 7' = 4 x 10* N.

ergodic, thus the point finds the gate and escapes at ran-
dom. Now we show a simple model which might well
explain the numerical results as follows: as the simplest
case, we assume that the escape probability is uniform
in the region. Suppose that we have an ensemble of the
phase points in the region. At the beginning the ensem-
ble contains n(0) points, but they escape from the region
with constant rate 1/(Tas), then the number of points
which stay in the region at ¢ decreases as n(t). It is well
known that n(t) has the same form as Eq. (20). There-
fore, this simplest model can explain the facts obtained
by the simulations.

Next, in order to investigate the dependence of the
time scale on the number of particles, the same procedure
was applied to the system with different N; N = 16, 32,
128, and 512. Figure 7 shows the results. Especially for
N = 512, we observed that 50 runs of the maximum inte-
gration until the time T' = 10%¢. did not relax. Thus we
cannot determine the time of the relaxation for N = 512,
but by assuming the exponential probability distribution,
we can restrict the region where the true relaxation time
probably lies. The arrow indicated the region of 90%
confident level. These data are approximated by a linear
relaxation

(Tar) =4 x 10* N t,., (22)

which is shown by the dashed line.

V. CONCLUSIONS AND DISCUSSIONS

The numerical simulations of the one-dimensional self-
gravitating many-body systems revealed the existence of
two different kind of relaxations. One is the microscopic
relaxation where the system attains the equipartition of
individual energies though the macroscopic distribution
shows no change. The other is the macroscopic relaxation
where the macroscopic distribution is transformed into
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that of the thermal equilibrium.

We have shown the dependence of the microscopic and
the macroscopic relaxation times on the number of the
particles for the water-bag initial distributions. Our con-
clusions are summarized as follows.

(1) For the water-bag initial distributions, the micro-
scopic relaxation time T}, is about N times the crossing
time, T3, ~ N t..

(2) The physical mechanism of the microscopic relax-
ation is the diffusion of the energies of individual parti-
cles. Its driving force is the gravitational force of random
fluctuation as a random force.

(3) The macroscopic relaxation time, where the tran-
sition of the macroscopic distribution from the water bag
to the isothermal occurs, depends linearly on the number
of the particles, Thy ~ 4 x 10* N t..

(4) The macroscopic relaxation time Tjs depends on
initial conditions. It has exponential distribution as

L ~Ta/(Tar),

P(Ty) = Tod)

(23)

(5) From the above facts, it is inferred that there is
a region in I' space where the macroscopic distribution
yields the water bag, and a phase point is confined to the
region for a long time, then it escapes through a small
gate to the isothermal region at random. This hypoth-
esis naturally explains why the water-bag behaves as if
it is the thermal equilibrium, and why the macroscopic
relaxation time has the exponential distribution.

The microscopic relaxation time 7T,, ~ Nt. corre-
sponds to the time scale found in Refs. [4,5,19], which
concerned initial dynamical phase started from dynami-
cally nonequilibria (the virial ratio is not unity). In such
cases, both microscopic and macroscopic relaxations oc-
cur at the same time scale, thus the two relaxations were
believed to be equivalent. The water-bag distribution
had been known as one of the counterexamples of the
relaxation of Nt., because the water bag did not show
the transformation of the macroscopic distribution to the
isothermal distribution even after N2¢t. (for N = 200)
[7,8]. We found, however, that the water-bag distribution
does relax to the thermal equilibrium at the time scale
much longer than the previous calculations. Luwel and
Severne [8] already pointed out the existence of the col-
lisionless mixing, which is equivalent to the microscopic
relaxation in our papers. We determine the time scale as
a function of the size of the system, which agrees that the
relaxation time of the system evolved from dynamically
nonequilibria.

In our hypothesis, the water-bag region is enclosed by
some barrier, but what the barrier is, or how the motion
of the phase point is restricted, is unknown. It could be
that the water bag is the special case. However, if these
properties are general for any stable dynamical equilibria,
then the similar barriered regions are present outside the
water-bag region. For instance, there is a fact that in
the smaller systems (/N < 10) the phase space is divided
into segments [20]. Thus it is easy to surmise that the



2216 TOSHIO TSUCHIYA, NAOTERU GOUDA, AND TETSURO KONISHI

barriered regions are the ruins of the segmentation.

The studies of individual orbits during the quasiequi-
librium of the water bag and the transition to the isother-
mal will reveal the mechanism. We are working on the
issue and will report it in the next paper.

ACKNOWLEDGMENT

The computation was carried out on Hewlett-Packard
HP730 of the theoretical astrophysics division, National
Astronomical Observatory.

[1] F. Hohl and D. T. Broaddus, Phys. Lett. A 25, 713
(1967).

[2] F. Hohl and M. R. Feix, Astrophys. J. 147, 1164 (1967).

[3] F. Hohl and J. W. Campbell, Astron. J. 73, 611 (1968).

[4] M. Luwel, G. Severne, and P. J. Rousseeuw, Astrophys.
Space Sci. 100, 261 (1984).

[5] G. Severne, M. Luwel, and P. J. Rousseeuw, Astron. As-
trophys. 138, 365 (1984).

[6] C. J. Reidl, Jr. and B. N. Miller, Astrophys. J. 371, 260
(1991).

(7] H. L. Wright, B. N. Miller, and W. E. Stein, Astrophys.
Space Sci. 84, 421 (1982). ’

[8] M. Luwel and G. Severne, Astron. Astrophys. 152, 305
(1985).

[9] G. Severne and M. Luwel, Astrophys. Space Sci. 122, 299
(1986).

[10] D. Lynden-Bell, Mon. Not. R. Astron. Soc. 136, 101

(1967).
[11] T. Tsuchiya, T. Konishi, and N. Gouda, Phys. Rev. E
50, 2607 (1994).
[12] J. Binney and S. Tremaine, Galactic Dynamics (Prince-
ton Univ. Press, Princeton, 1987).
[13] C. J. Reidl, Jr. and B. N. Miller, Phys. Rev. E 51, 884
(1995).
[14] S. Chandrasekhar, Astrophys. J. 93, 285 (1941).
[15] R. E. Williamson and S. Chandrasekhar, Astrophys. J.
93, 305 (1941).
] S. Chandrasekhar, Astrophys. J. 93, 323 (1941).
] G. Severne and M. Luwel, Phys. Lett. A 104, 127 (1984).
] B. N. Miller, J. Stat. Phys. 63, 291 (1991).
] C. J. Reidl, Jr. and B. N. Miller, Phys. Rev. A 46, 837
(1992).
[20] C. J. Reidl, Jr. and B. N. Miller, Phys. Rev. E 48, 4250
(1993).



