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We show analytically that the dynamical equations for an underdamped ladder of coupled small
Josephson junctions can be approximately reduced to the discrete sine-Gordon equation. As numer-
ical confirmation, we solve the coupled Josephson equations for such a ladder in a magnetic field. We
obtain discrete-sine-Gordon-like IV characteristics, including a flux flow and a “whirling” regime
at low and high currents, and voltage steps that represent a lock-in between the vortex motion and
linear “phasons,” and which are quantitatively predicted by a simple formula. At sufficiently high
anisotropy, the fluxons on the steps propagate ballistically.

PACS number(s): 05.45.+b, 74.40.+k, 03.20.+i, 74.50.4r

I. INTRODUCTION

The discrete sine-Gordon equation has been used by
several groups to model so-called hybrid Josephson lad-
der arrays [1-3]. Such an array consists of a ladder of
parallel Josephson junctions that are inductively cou-
pled together, e.g., by superconducting wires [4]. The
sine-Gordon equation then describes the phase differ-
ences across the junctions. In an applied magnetic field,
this equation predicts remarkably complex behavior, in-
cluding flux-flow resistance below a certain critical cur-
rent, and a field-independent resistance above that cur-
rent arising from so-called “whirling” modes [2]. In the
flux-flow regime, the fluxons in this ladder propagate as
localized solitons, and the numerically determined IV
characteristics exhibit voltage plateaus arising from the
locking of solitons to linear “spin wave” modes.

In this paper, we show numerically that most of this
behavior is to be found in a model in which the lad-
der is treated as a network of coupled small junctions
arranged along both the edges and the rungs of the lad-
der. To confirm our numerical results, we derive, within
certain approximations, a discrete sine-Gordon equation
from our coupled-network model. Kardar [5] has pre-
viously carried out such a derivation in the limit of no
applied current, but the present work appears to be the
first to extend this derivation to the dynamical proper-
ties, and to confirm it numerically.

The remainder of this paper is organized as follows.
Section II describes the model used, which is followed
by our numerical results presented in Sec. III. A brief
discussion of the results follows in Sec. IV.

II. MODEL

The ladder consists of coupled superconducting grains,
the ith of which has order parameter ®; = ®¢e’®:. Grains
1 and j are coupled by resistively shunted Josephson junc-
tions (RSJ’s) with current I;;, shunt resistance R;;, and
shunt capacitance C;;, with periodic boundary conditions
(see Fig. 1).

The phases #; are assumed to evolve according to the
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coupled RSJ equations [6] ho;/(2e) = V;, ¥ M,JVJ =
I 1= 30, (R/Rij) (Vi = V5) = 30, (I / L) sin(6s5 — Aij)-
Here the time unit is to = A/(2eRI.), where R and I, are
the shunt resistance and critical current across a junc-
tion in the = direction (see Fig. 1); If** is the external
current fed into the ith node; the spatial distances are
given in units of the lattice spacing a, and the voltage
V; in units of I.R. M;; = —4weCI.R?/h for i # j, and
M;; = —ZJ-# M;;, where C is the intergrain capaci-

tance. Finally, A;; = (27/®) [} A - dl, where A is the
vector potential. We assume N plaquettes in the array,
and postulate a current / uniformly injected into each
node on the outer edge and extracted from each node
on the inner edge of the ring. We also assume a uni-
form transverse magnetic field B = f¢o/a?, and use the
Landau gauge A = —Bzy.

We now show that, within certain approximations, this
model can be reduced to a discrete sine-Gordon equation
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FIG. 1. Calculated IV curves for various values of f in an
8 x 1 ladder ring. f = Ba?/¢o = 1/8 is the number of flux
quanta per plaquette. We use 8 = 33 and 7y = 0.71. Plotted
voltages are divided by f. Inset: schematic of ring topology
used in simulation. A uniform current is injected into the
inner grains and drawn out from the outer grains.

2190 ©1996 The American Physical Society



53 DYNAMICS OF AN UNDERDAMPED JOSEPHSON-JUNCTION LADDER

for the phase differences. A similar derivation has been
given by Kardar [5] in the static case (no applied cur-
rent). Label each grain by (z,y) where z/a =0,...,N—1
and y/a = 0,1. Subtracting the equation of motion
for 6(z,1) from that for 6(z,2), and defining ¥(z) =
:[0(=,1) + 0(z,2)], x(z) = [0(z,2) — 8(z,1)], we obtain
a differential equation for x(z) that is second order in
time. This equation may be further simplified using the
facts that A; y;z+1,y = 0 in the Landau gauge, and that
Az 1,22 = —Az 2.21, and by defining the discrete Lapla-
cian x(z+1) —2x(z) +x(z—1) = V2x(z). Finally, using
the boundary conditions, I***(z,2) = —I*%(z,1) = I,
and introducing ¢(z) = x(z) — Az 2;,1, Wwe obtain

1 —n2V?Bg =i—[1—n2V3]p —sin(p) + 213
X Z cos{¥(z)—¥(z +n)}

n==+1
xsin{lp(e)—p( +m)/2}. (1)

Here we have defined a dimensionless current ¢ = I/1.,,
and anisotropy factors 2n? = R,/R,, 2n? = C,/Cy, and
202 = I,/ 1.y.

We now neglect all combined space and time deriva-
tives of order three or higher. Similarly, we set the cosine
factor equal to unity (we have checked numerically that
this approximation is valid a posteriori in several cases).
Finally, we linearize the sine factor in the last term, so
that the last summation can be expressed simply as V2.
If these approximations are valid, Eq. (1) reduces to the
discrete driven sine-Gordon equation with dissipation:

Bé + ¢ +sin(p) — 75 V3 =, (2)

where 8 = 4mel., R2C, /h.

Mathematically, the reduction that leads to Eq. (2)
should be accurate so long as the following inequalities
hold true:

IV2¢| < |l (3)
V28| < |él, (4)
|¥(z) — U(z +n)| < 1, (5)
lp(2) — p(z +n)| < 1. (6)

In general, these equalities should be valid whenever both
% and 9 are slowly varying along the ladder, i.e., in the
x direction. In practice, it is difficult to confirm ana-
lytically that these conditions will be satisfied, without
actually carrying out the numerical calculations. The
numerical results, however, suggest that this reduction is
quite accurate over most of the parameter range we have
investigated. Also, note that even though we are assum-
ing that ¢ and ¥ are slowly varying, we still retain many
effects arising from lattice discreteness, as discussed fur-
ther below.

III. NUMERICAL RESULTS

To confirm the accuracy of this reduction, we have nu-
merically solved the coupled Josephson equations on an
8 x 1 (N = 8) ring, using a fourth-order Runge-Kutta
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algorithm. In general, we find numerically that the phe-
nomena seen in our solutions of the Josephson ladder
equations closely resemble previous simulations of the
discrete sine-Gordon equation for comparable parame-
ters [1-3].

A. Overview: Flux-flow and whirling regime

Before presenting the numerical solutions, we give a
brief overview of what will be displayed. In all cases, we
find two distinct voltage regimes: a “fux-flow” regime,
characterized by the motion of one or more solitonlike
solutions, and a “whirling” regime, dominated by single-
junction behavior. The second, but not the first, is a
consequence of the discrete nature of the ladder. Within
the flux-flow regime, there are also a series of steps, which
are caused by locking of the solitons to phasonlike modes
of the individual junctions; they are related to the fi-
nite length of the array, and secondarily to the fact that
the ladder is a discrete rather than a continuum system.
Finally, there is a “depinning” current for the solitons,
which is nonzero only because one has a discrete, rather
than a continuum sine-Gordon-like system.

Figure 1 shows our calculated IV characteristics with
B =33 n5 = 1/\/5 = 0.71, and several values of f.
(V) denotes the space- and time-averaged voltage differ-
ences across the y junctions. There are two regimes, as
mentioned above, both of which are also seen in simula-
tions of the discrete sine-Gordon chain. The first is the
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FIG. 2. Calculated IV curves for f = 1/8, 8 = 61, and sev-
eral values of the anisotropy parameter n;. The inset shows
the voltages of steps corresponding to locking number n deter-

mined from our numerical result compared to those calculated
from Eq. (4) (solid lines).
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flux-flow regime where (V)(I, f) is roughly proportional
to f (up to about f=3/8) and to I. In this regime, for
each f, (V)(I, f) exhibits a series of voltage steps. The
second regime corresponds to “resistance steps” in which
(V) = RI independent of f, and is dominated by the
whirling modes.

Figure 2 shows an expanded low-current regime for f =
1/8, B = 61, and several ns’s. The voltage steps are
very prominent. The I'V characteristics are hysteretic on
each of the steps, as shown with broken lines for 7% =
1.25. Similar hysteretic steps are well known in numerical
studies of the discrete sine-Gordon equation [1,2]. The
critical current for the onset of voltage varies from about
0.21. at ny = 0.71 to = 0 for n; > 1, in the less discrete
regime, similar to results obtained in [3].

B. Soliton behavior

In the absence of damping and driving, the continuum
version of Eq. (2) has, among other solutions, the sine-
Gordon soliton [7], given by

or(e,t) ~ dtant [exp { (@~ v/ -] @

where v, is the velocity. The phase in this soliton rises
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FIG. 3. Local phase difference ¢;(t) (solid lines) and volt-
age V;(t) (broken lines) for i = 0, f = 1/8, n5 = 1.25, 8 = 61,
and three values of the applied current: I/I. = 0.22 and 0.41,
corresponding to currents on voltage plateaus with n = 3,2;
and I/I. = 0.8, corresponding to a current in the whirling
regime. Note the different scales in the axes for the whirling
regime.
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from ~ 0 to ~ 27 in a width dy ~ /1% — Bv2. We will
now show that, in the flux-flow regime, ¢(x,t) behaves
much like such a soliton, but with characteristic modifica-
tions arising from coupling to local “phason” excitations,
and from the discreteness of the lattice.

Figures 3(a) and 3(b) show the local phase difference
¢(z,t) for the Josephson ladder at two currents in the
flux-flow regime (“region I”): I/I. = 0.22 and 0.41. The
other parameters are f = 1/8, 8 = 61, and n% = 1.25.
Both curves show clear solitonlike behavior, namely, an
increase of ¢(x,t) in steps of = 27 over a time interval
dy /v, as suggested by the sine-Gordon equation. The
passage of the kink is accompanied by ripples arising
from phason excitations. Typically, an integer number
of ripple periods is found between successive kink pas-
sages. The local voltage ¢(0,t) (shown as broken lines)
in the flux-flow regime is due to such sine-Gordon soli-
tons, modified by coupling to phasons. The larger peaks
in the local voltage correspond to passage of the soliton
or vortex (we have confirmed this by snapshots of the
soliton motion in our simulations), while the decaying
smaller peaks correspond to the phasons that couple to
the vortex.

The step positions in Fig. 2 are determined by a
locking of the vortex motion to these phasons. The
phason dispersion relation is determined by linearizing
the left-hand side of Eq. (2) with ¢ = 0. The re-
sult is m(x,t) oc exp(—t/28)elkm==wmt) " where w,, =
:!:\/1 + 4n% sin® (k. /2)/+/B, as obtained previously by
several groups [1,2]. The allowed wave vectors k,, are
determined by periodic boundary conditions: k,, =
2rm/N,m = 0,1,2,3,4,.... To obtain the locking con-
dition, note that the vortex circulates the ladder with
frequency w, = 27v,/(INa). A resonance will occur if
there are an integer number of phason cycles per vortex
cycle. This condition gives w,, = nw,withn =1,2,3,...,
or

1 n

VBV \/1 + 4n3 sin?(rm/N)

(8)

All the voltage steps we have found in Fig. 2 satisfy this
condition. At 1y = 0.71, for example, we were able to
identify resonances in the range 3 < n < 15, m = 1, from
a high-resolution IV characteristic and its derivatives.
Presumably, the resonances corresponding to higher n
are weaker because the phasons are damped, relaxing
over a time 23. At larger ns, we can identify only a
few values of n. The values of n for each step can also be
found by enumerating the number of phason wavelengths
between successive vortex passages, as in Figs. 3(a) and
3(b). In the inset of Fig. 2 we compare the positions of
the steps thus located to the predictions of Eq. (7). In
all cases, only the m = 1 mode is necessary to account
for the resonances.

Figure 3(c) shows ¢(z,t) for the same ladder at a cur-
rent in the “whirling” regime, I/I. = 0.8 (“region II”).
The other parameters are as in Figs. 3(a) and 3(b). In
this regime, (V) o I, and the local voltage oscillates
sinusoidally in time. Each oscillation period again cor-
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responds to the passage of a “vortex” through a given
junction, as can be confirmed by the fact that the v,
thus found is consistent with the independently com-
puted (V), via the Josephson relation.

The transition into the whirling regime occurs at
Nmin = 4,2,2,1 for n% = 0.5,1.25,2.5,5. This can also
be understood from the kink-phason resonance picture.
To a phason mode, the passage of a kink of width d; will
appear like the switching on of a steplike driving cur-
rent over a time of order di/v,. The kink will couple to
the phasons only if di /v, > 7/w;, the half-period of the
phason, or equivalently

2
i 33 ©
VB, ns nJ

This condition agrees very well with our numerical ob-
servations, even though it was obtained by considering
soliton solutions from the continuum sine-Gordon equa-
tion, rather than the discrete sine-Gordon equation that
we expect to apply here.

The fact that the voltage in the flux-flow regime is ap-
proximately linear in f can be qualitatively understood
from the following argument. Suppose that ¢ for Nf
fluxons can be approximated as a sum of well-separated
solitons, each moving with the same velocity and de-
scribed by ¢(z,t) = Z;.V:fl @j, where p; = p,(z — z;,t).
Since the solitons are well separated, we can use following
properties: sin[zj ;] = Z]. sinp; and [ @;pdx o 8;5.
By demanding that the energy dissipated by the damping
of the moving soliton be balanced by the driving current
providing [ox [ dzi¢(z)] one can show that the N f flux-
ons should move with the same velocity v as that for a
single fluxon driven by the same current. This will lead
to a voltage that is linear in f.

In the “whirling” regime, the f independence of the
voltage can be understood from a somewhat different

argument. Here, we assume a periodic solution of the
form ¢ = Z;v'f ¢w(x — Ut — j/f) moving with an un-

known velocity ¥ where ¢,,(§) describes a whirling so-
lution containing one fluxon. Then using the property
e(x+m/f) = p(z) +2mm, one can show after some alge-
bra that sin[3 7 @y, (z — 5t — 5/ f)] = sin[N fo,, (z —5t)].
This means that N fo,,(z — 0t) is a solution to Eq. (2)
as is @, (¢ — vt). Finally, using the approximate property
©w (&) ~ & of the whirling state, one finds & = v/(Nf),
leading to an f-independent voltage.

C. Ballistic soliton motion and soliton mass

A common feature of massive particles is that they can
move “ballistically.” That is, they continue to move un-
der the influence of inertia even after the driving force
has been turned off. Such propagation has been reported
experimentally in certain novel geometries, such as a pair
of square arrays linked by a narrower array [8]. As yet,
however, to our knowledge, no such propagation has been
found in numerical simulations in either square or trian-
gular lattices [9-11].
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We have sought such ballistic motion in the flux-
flow regime of our ladder arrays. In isotropic ladders
(n = 0.71), we again found no ballistic propagation, pre-
sumably because of the large pinning energies produced
by the periodic lattice at this anisotropy. (The criti-
cal current for soliton depinning at ny = 0.71 is about
0.21.,, about twice that calculated for a square lattice
[12].) However, at ny > 1, we do observe ballistic motion
in the flux-flow region I. As an example, Fig. 4 shows V (t)
and dV/dt at junction 0, for n% =5, I/I. = 0.41 (on the
n = 1 voltage step), after the driving current is switched
off at t = 0. The washboard-like ridges of V' on a decreas-
ing background, and perhaps more clearly, the spikes in
dV/dt, correspond to a vortex passing through this junc-
tion. The increasing distance between peaks indicates
that the vortex is slowing down. The vortex circulates
at least five times around the ring before stopping—a
fact that is also verified by direct observation of the vor-
tex motion in real time. Qualitatively similar behavior
was also observed for slower vortices on the lower current
steps so long as 7y > 1. This behavior can be under-
stood by noting that increasing n; increases the width
of the kink dj, and thereby effectively makes the ladder
seem less discrete. The fluxon at large ns therefore has a
much lower depinning current (as can also be seen from
the curves in Fig. 2). Because of this lower depinning
current, it can propagate ballistically.

We can define the fluxon mass in our ladder by equat-
ing the charging energy E. = C/23,; V2 to the kinetic
energy of a soliton of mass M,: Ey, = %Mvvf, [10].
Since E. can be directly calculated in our simulation,
while v, can be inferred from the calculated (V'), this
gives an unambiguous way to determine M,. For the
isotropic case n3 = 0.5, we find E./C ~ 110((V) /I.R)?,
in the flux-flow regime (region I of Fig. 1). This gives
M] ~ 3.4C¢Z%/a?, more than six times the usual es-
timate for the vortex mass in a two-dimensional (2D)
square lattice [13]. Similarly, the vortex friction coeffi-
cient v can be estimated by equating the rate of energy
dissipation, Eg = %E” ‘/;%/Rij, to %71;12,. This esti-

Vo 0

172
t/ (B ty
FIG. 4. Plot of Vy(t) and dV,(t)/dt at z = 0 after driving
current is turned off at time ¢t = 0. We use % = 5, and I/I.
= 0.41, corresponding to an n = 1 voltage plateau.
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mate yields 47 ~ 3.4¢2/(Ra?), once again more than six
times the value predicted for 2D arrays [10]. This large
dissipation explains the absence of ballistic motion for
this anisotropy [10,11]. At larger values n% = 5 and 2.5,
a similar calculation gives M! ~ 0.28, and 0.34¢2/(Ra?),
4! ~ 0.28 and 0.34¢%/(Ra?). These lower values of v,
but especially the low pinning energies, may explain why
ballistic motion is possible at these larger values of 7.

IV. DISCUSSION

We have presented numerical evidence showing that a
Josephson ladder has dynamical properties very similar
to those previously noted in a discrete sine-Gordon chain.
Among the features we find in common are two distinct
regions in the I'V characteristics—a flux-flow regime and
a “whirling” regime—and a series of steps arising from
the locking of the sine-Gordon fluxons to “phason” or
spin-wave-like modes of the individual junctions, which
are quantized by the finite length of the ladder. We
have also given an analytical argument that strongly sug-
gests that the Josephson ladder should have discrete-sine-
Gordon-like characteristics, provided certain inequalities
are satisfied. The condition is basically that the sine-
Gordon soliton should have a width substantially larger
than the distance between junctions, so that the phase
difference should vary slowly with coordinates along the
ladder. Our argument is a dynamical generalization of
one previously given by Kardar [5] for the energetics of
a Josephson ladder.

Although the analytical argument that reduces the dy-
namics of the Josephson ladder to that of a discrete sine-
Gordon chain involves a small-angle expansion of a phase
difference [cf. Eq. (2)] the resulting equation still re-
tains effects of discreteness, which can clearly be seen in
our numerical results. The most obvious of these are (i)
the existence of a finite depinning current for the flux-
ons (this depinning current would vanish in the contin-
uum limit) and (ii) the existence of the ‘whirling” regime
(which would not occur in the continuum sine-Gordon
equation, as already noted in [2]).

Because of the analogy between Josephson ladders and
discrete sine-Gordon systems, one can draw interesting
connections between corresponding parameters in the
two models. For example, the anisotropy parameter n
is equivalent to the inverse of a discretization parameter
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used in discrete sine-Gordon systems. This suggests that
a Josephson ladder with high anisotropy should behave
more nearly like a continuum sine-Gordon system than
one with low anisotropy. Indeed, we can see that this
is true, especially as regards the magnitude of the vor-
tex depinning current Iy. Although we have no good
analytical theory for I; at present, our numerical re-
sults show that it is nearly zero for anisotropies > 1,
while it is very substantial (> 0.2I.,) for isotropic lad-
ders (n = 0.71). In this case, the appropriate continuum
sine-Gordon system for comparison is a long Josephson
junction, which indeed is intuitively the natural limit of
an anisotropic ladder.

Although the anisotropy parameter n might appear to
be an unnecessary complication to the already complex
physics of a Josephson ladder, it is clearly a useful means
for tuning the transition from discrete to continuum be-
havior in a ladder. Thus it might be viewed by experi-
mentalists as worth varying in the laboratory [14]. For
example, one interesting experimental possibility would
be to control the vortex depinning current and effective
mass by manipulation of the anisotropy in the Josephson
coupling.

Finally, we comment briefly on the possible rele-
vance of these results to two-dimensional Josephson net-
works. Clearly, Josephson ladders and discrete sine-
Gordon chains are unique, as well as extraordinarily rich
and complicated systems; most of their properties cannot
be extrapolated to two-dimensional systems. Nomnethe-
less, it is intriguing that several features of Josephson
ladder dynamics also show up in simulations of under-
damped two-dimensional arrays [9-11,15]. These are the
flux-flow regime, initiated by a finite critical current;
the locking of vortices (the analogs of solitons) to pha-
sons, and the existence of resistance steps (the analogs
of whirling modes). It remains to be seen whether this
connection has more than accidental significance.
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