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Dynamics of an underdamped Josephson-junction ladder
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(Received 21 September 1995)

We show analytically that the dynamical equations for an underdamped ladder of coupled small
Josephson junctions can be approximately reduced to the discrete sine-Gordon equation. As numer-
ical confirmation, we solve the coupled Josephson equations for such a ladder in a magnetic field. We
obtain discrete-sine-Gordon-like IV characteristics, including a Aux How and a "whirling" regime
at low and high currents, and voltage steps that represent a lock-in between the vortex motion and
linear "phasons, " and. which are quantitatively predicted by a simple formula. At sufFiciently high
anisotropy, the Quxons on the steps propagate ballistically.

PACS number(s): 05.45.+b, 74.40.+k, 03.20.+i, 74.50.+r

I. INTRODUCTION

The discrete sine-Gordon equation has been used. by
several groups to model so-called hybrid 3osephson lad-
der arrays [1—3]. Such an array consists of a ladder of
parallel 3osephson junctions that are inductively cou-
pled together, e.g. , by superconducting wires [4]. The
sine-Gordon equation then describes the phase diKer-
ences across the junctions. In an applied magnetic field,
this equation predicts remarkably complex behavior, in-
cluding flux-flow resistance below a certain critical cur-
rent, and a Beld-independent resistance above that cur-
rent arising from so-called "whirling" modes [2]. In the
flux-flow regime, the fluxons in this ladder propagate as
localized solitons, and the numerically determined IV
characteristics exhibit voltage plateaus arising from the
locking of solitons to linear "spin wave" modes.

In this paper, we show numerically that most of this
behavior is to be found in a model in which the lad-
der is treated as a network of coupled small junctions
arranged along both the edges and. the rungs of the lad-
der. To conBrm our numerical results, we derive, within
certain approximations, a discrete sine-Gordon equation
from our coupled-network model. Kardar [5] has pre-
viously carried out such a derivation in the limit of no
applied current, but the present work appears to be the
Brst to extend this derivation to the dynamical proper-
ties, and to confirm it numerically.

The remainder of this paper is organized as follows.
Section II describes the model used, which is followed
by our numerical results presented in Sec. III. A brief
discussion of the results follows in Sec. IV.
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coupled RSJ equations [6] ho, /(2e) = V, , P M;st
I;"'/I. 2, (R—/R*s)(V Vs) ——2, (IV/I. )» (nable

—A'i).
Here the time unit is to ——A/(2eRI, ), where R and I, are
the shunt resistance and critical current across a junc-
tion in the x direction (see Fig. 1); I;"is the. external
current fed into the ith node; the spatial distances are
given in units of the lattice spacing n, and the voltage
V, in units of I,R. M;s = 4rreCI, R—/h for i g j, and
M;; = —g.&,. M,s, where C is the intergrain capaci-

tance. Finally, A;s ——(2rr/4o) I A.d/, where A is the
vector potential. We assume N plaquettes in the array,
and postulate a current I uniformly injected into each
node on the outer edge and extracted from each node
on the inner edge of the ring. We also assume a uni-
form transverse magnetic field I3:—fPo/a2, and use the
Landau gauge A = —Bxy.

We now show that, within certain approximations, this
model can be reduced to a discrete sine-Gordon equation
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The ladder consists of coupled superconducting grains,
the ith of which has order parameter 4; = @0e' '. Grains
i and j are coupled by resistively shunted Josephson junc-
tions (RSJ's) with current I;s, shunt resistance R;s, and
shunt capacitance C;~, with periodic boundary conditions
(see Fig. 1).

The phases 0; are assumed to evolve according to the

I/I,
FIG. 1. Calculated IV curves for various values of f in an

8 x 1 ladder ring. f—:Ba /$0 ——1/8 is the number of Iiux
quanta per plaquette. We use P = 33 and rjz = 0.71. Plotted
voltages are divided by f Inset: schem. atic of ring topology
used in simulation. A uniform current is injected into the
inner grains and drawn out from the outer grains.
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h h d'j~~ rences. A similar derivation has been
lied cur-given by Kardar [5] in the static case (no applie cur-

rent). Label each grain by (x, y) where x/n = 0, . . . , ItI 1—
0 1. Subtracting the equation o motion

0 x

a di8'erential equation for y(x)
time. This equation may be further simplified using the
facts that y. ~g y

——A . = 0 in the Landau gauge, and that
A~ q. ~ 2

——A 2. i and by defining the discrete Lapla-
~ ~

and introducing &p(x) = y(x) —4~ 2.~ t, we obtain

[1 — 7' ]P" = i —[1 —g V ]p —sin(p) + 2@1
x ) cos{@(x)—@(x+n) j

n=+1
xsin([Ip(x) —rp(x + n)]/2).

Here we have e neh d fined a dimensionless current z = I I »
and anisotropy factors 2'„= R&/R» 2g, = ~/ „,an

~ ~We now neglect all combined space and time deriva-
tives of order three or higher. Similarly, we set the cosine
factor equa to uni y ~we a

that the last summation can be expressed simply as
If these approximations are va.i, Eq. ,l d E . ~1~ reduces to the
discrete driven sine-Gordon equation with dissipation:

algorithm. In general, we find numerically that the phe-
nomena seen in our so u ionlutions of the Josephson ladder
equations c ose y rl l resemble previous simu ations of t e
discrete sine-Gordon equation for comparable parame-
ters [1—3].

A. Overview: Flux-flow and wharlxng regime

brief overview of what will be displayed. In all cases, we
find two distinct voltage regimes: a "Aux-flow" regime,
characterize y ed b th motion of one or more so i onlike
solutions, an a w ir ingl ng" regime dominated by sing e-

0 n ' The second but not the first, is a
ithinconsequence of the discrete nature of the ladder. Wit in

are caused by locking of the solitons to phasonlike modes
of the individual junctions; they are related to t e
nite length of the array, and secondarily to the fact t at
the ladder is a discrete rather than a continuum system.
Fina y, t ere is a ell, n "d i inning" current for the solitons,
which is nonzero only because one aw ic i s a discrete rather
than a continuum sine-Gordon-like system.

Figure 1 shows our calculated IV characteristics with

(V) denotes the space- and time-averaged voltage differ-
ences across e y jth 'unctions. There are two regimes, as
mentioned above, both of which are also seen in simula-
tions of the discrete sine-Gordon c ain.

~ ~ ~

he first is t e

p(p + (p + sin(p) —rPzV (p = i, (2)

where P = 47reI,„B„C„/h,.
Mathematically, the reduction that leads to Eq. ~2j

should be accurate so long as the following inequalities
hold true:

I&'&I « IPI

l@(x) —C(x+n)l «1,
lv(*) —

v (*+~)l «1.

(3)
(4)

(5)
(6)

III. NUMERICAL RESULTS

To confirm the accuracy of this reduction, we have nu-
merically solved the coupled Josephson equations on an
8 x 1 (N = 8) ring, using a fourth-order Runge-Kutta

In general, these equalities should be valid whenever both
p and @ are slowly varying along the ladder, i.e. , in e
x direction. n pracd t' . I ctice it is diKcult to con rm ana-

ed wit outlytically that these conditions will be satisfied, wit ou
actually carrying oull t the numerical calculations. e

~ ~ ~numerical results, however, suggest that this reduction is

investigated. Also, note that even though we are assum-

eÃects arising from lattice discreteness, as discussed fur-
ther below.
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FIG. 2. Calculated IV curves for f = 1 8 = 61 and sev-

eral values of the anisotropy parameter gz. TThe inset shows
the voltages of steps corresponding to lockin number n deter-g
mined from our numerical result compare to those calculated
from Eq. (4) (solid lines).
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flux-flow regime where (V)(I, f) is roughly proportional
to f (up to about f=3/8) and to I. In this regime, for
each f, (V)(I, f) exhibits a series of voltage steps. The
second regime corresponds to "resistance steps" in which
(V) = BI independent of f, and is dominated by the
whirling modes.

Figure 2 shows an expanded low-current regime for f =
1/8, p = 61, and several il~'s. The voltage steps are
very prominent. The IV characteristics are hysteretic on
each of the steps, as shown with broken lines for gJ
1.25. Similar hysteretic steps are well known in numerical
studies of the discrete sine-Gordon equation [1,2]. The
critical current for the onset of voltage varies from about
0.2I, at gJ ——0.71 to —0 for qg ) 1, in the less discrete
regime, similar to results obtained in [3].

B. Seliten behavior

In the absence of damping and driving, the continuum
version of Eq. (2) has, among other solutions, the sine-
Gordon soliton [7], given by

p, (T, t) 4 tan exp ( (x —v o/„~~
—Pv2, , (7)

where v is the velocity. The phase in this soliton rises
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FIG. 3. Local phase difference rp, (t) (solid lines) and volt-
age V, (t) (broken lines) for i = 0, f = 1/8, qz ——1.25, P = 61,
and three values of the applied current: I/I„= 0.22 and 0.41,
corresponding to currents on voltage plateaus with n = 3, 2;
and I/I = 0.8, corresponding to a current in the whirling
regime. Note the difFerent scales in the axes for the whirling
regime.

43(V) 1+ 4g~2 sin (~m/%)

All the voltage steps we have found in Fig. 2 satisfy this
condition. At gJ ——0.71, for example, we were able to
identify resonances in the range 3 ( n ( 15, m = 1, from
a high-resolution IV characteristic and its derivatives.
Presumably, the resonances corresponding to higher n
are weaker because the phasons are damped, relaxing
over a time 2P. At larger gJ, we can identify only a
few values of n. The values of n for each step can also be
found by enumerating the number of phason wavelengths
between successive vortex passages, as in Figs. 3(a) and
3(b). In the inset of Fig. 2 we compare the positions of
the steps thus located to the predictions of Eq. (7). In
all cases, only the I = 1 mode is necessary to account
for the resonances.

Figure 3(c) shows p(x, t) for the same ladder at a cur-
rent in the "whirling" regime, I/I, = 0.8 ("region II").
The other parameters are as in Figs. 3(a) and 3(b). In
this regime, (V) oc I, and the local voltage oscillates
sinusoidally in time. Each oscillation period again cor-

from 0 to 2m in a width dp gi12& —Pv2 W. e will
now show that, in the flux-flow regime, y(x, t) behaves
much like such a soliton, but with characteristic modi6ca-
tions arising from coupling to local "phason" excitations,
and from the discreteness of the lattice.

Figures 3(a) and 3(b) show the local phase difFerence
p(x, t) for the Josephson ladder at two currents in the
flux-flow regime ("region I"):I/I = 0.22 and 0.41. The
other parameters are f = 1/8, P = 61, and q&2

——1.25.
Both curves show clear solitonlike behavior, namely, an
increase of y(x, t) in steps of —27r over a time interval
dI, /v„, as suggested by the sine-Gordon equation. The
passage of the kink is accompanied by ripples arising
from phason excitations. Typically, an integer number
of ripple periods is found between successive kink pas-
sages. The local voltage p(0, t) (shown as broken lines)
in the Aux-Bow regime is due to such sine-Gordon soli-
tons, modified by coupling to phasons. The larger peaks
in the local voltage correspond to passage of the soliton
or vortex (we have confirmed this by snapshots of the
soliton motion in our simulations), while the decaying
smaller peaks correspond to the phasons that couple to
the vortex.

The step positions in Fig. 2 are determined by a
locking of the vortex motion to these phasons. The
phason dispersion relation is determined by linearizing
the left-hand side of Eq. (2) with i = 0. The re-
sult is p (2:, t) oc exp( —t/2P)e'(" '), where cu

1+ 4i12J sin (k /2)/~p, as obtained previously by

several groups [1,2]. The allowed wave vectors k are
determined by periodic boundary conditions: A:

2vrm/1V, m = 0, 1, 2, 3, 4, . . .. To obtain the locking con-
dition, note that the vorte~ circulates the ladder with
frequency a„= 27rv„/(Ka). A resonance will occur if
there are an integer number of phason cycles per vortex
cycle. This condition gives ~ = n~„with n = 1, 2, 3, . . .,

or
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responds to the passage of a "vortex" through a given
junction, as can be confirmed by the fact that the v„
thus found is consistent with the independently com-
puted (V), via the Josephson relation.

The transition into the whirling regime occurs at
n~;„= 4, 2, 2, 1 for g&

——0.5, 1.25, 2.5, 5. This can also
be understood from the kink-phason resonance picture.
To a phason mode, the passage of a kink of width d~ will
appear like the switching on of a steplike driving cur-
rent over a time of order dI, /v„. The kink will couple to
the phasons only if di, /v„) vr/wi, the half-period of the
phason, or equivalently

1 Ql + m2)
V Pv„

This condition agrees very well with our numerical ob-
servations, even though it was obtained by considering
soliton solutions from the continuum sine-Gordon equa-
tion, rather than the discrete sine-Gordon equation that
we expect to apply here.

The fact that the voltage in the Aux-How regime is ap-
proximately linear in f can be qualitatively understood
from the following argument. Suppose that p for Nf
fluxons can be approximated as a sum of well-separated
solitons, each moving with the same velocity and de-
scribed by y(x, t) = Q, f, p, , where p, = y, (x —x, , t).
Since the solitons are well separated, we can use following
properties: sin[+ &pz] = P. sing~ and I @~p,dx oc 8;~. .
By demanding that the energy dissipated by the damping
of the moving soliton be balanced by the driving current
providing [oc jdxz j(x)] one can show that the Nf flux-
ons should move with the same velocity v as that for a
single fluxon driven by the same current. This will lead
to a voltage that is linear in f

In the "whirling" regime, the f independence of the
voltage can be understood from a somewhat diferent
argument. Here, we assume a periodic solution of the
form p = g. p (x —vt —j/f) moving with an un-
known velocity v where p (() describes a whirling so-
lution containing one Huxon. Then using the property
p(x+ m/ f) = p(x) + 2vrm, one can show after some alge-
bra that sin[+. y (x —vt j/f)] = sin[N—fp (x —vt)].
This means that Nf&p (x —vt) is a solution to Eq. (2)
as is p (x —vt). Finally, using the approximate property
&p (() ( of the whirling state, one finds v = v/(Nf),
leading to an f-independent voltage.

We have sought such ballistic motion in the Hux-
How regime of our ladder arrays. In isotropic ladders
(il = 0.71), we again found no ballistic propagation, pre-
sumably because of the large pinning energies produced
by the periodic lattice at this anisotropy. (The criti-
cal current for soliton depinning at gJ ——0.71 is about
0.2I „, about twice that calculated for a square lattice
[12].) However, at gg ) 1, we do observe ballistic motion
in the Hux-How region I. As an example, Fig. 4 shows V(t)
and dV/dt at junction 0, for gz

——5, I/I = 0.41 (on the
n = 1 voltage step), after the driving current is switched
oK at t = 0. The washboard-like ridges of V on a decreas-
ing background, and perhaps more clearly, the spikes in
dV/dt, correspond to a vortex passing through this junc
tion. The increasing distance between peaks indicates
that the vortex is slowing down. The vortex circulates
at least five times around the ring before stopping —a
fact that is also verified by direct observation of the vor-
tex motion in real time. Qualitatively similar behavior
was also observed for slower vortices on the lower current
steps so long as gg & 1. This behavior can be under-
stood by noting that increasing gJ increases the width
of the kink dA, , and thereby efFectively makes the ladder
seem less discrete. The Huxon at large gJ therefore has a
much lower depinning current (as can also be seen from
the curves in Fig. 2). Because of this lower depinning
current, it can propagate ballistically.

We can define the Huxon mass in our ladder by equat-
ing the charging energy E, = C/2 P, . V, to the kinetic
energy of a soliton of mass M„: Ek;„= 2M„v„[10].
Since E can be directly calculated in our simulation,
while v„can be inferred &om the calculated (V), this
gives an unambiguous way to determine M . For the
isotropic case gz ——0.5, we find E,/C 110((V) /I, B)~,
in the Hux-How regime (region I of Fig. 1). This gives
MI 3.4Cpu/a, more than six times the usual es-
timate for the vortex mass in a two-dimensional (2D)
square lattice [13]. Similarly, the vortex friction coeffi-
cient p can be estimated by equating the rate of energy
dissipation, Eq;, =

2 g, V; /B, ~, to zpv„. This esti-
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C. Ballistic soliton motion and soliton mass

A common feature of massive particles is that they can
move "ballistically. " That is, they continue to move un-
der the inHuence of inertia even after the driving force
has been turned oK Such propagation has been reported
experimentally in certain novel geometries, such as a pair
of square arrays linked by a narrower array [8]. As yet,
however, to our knowledge, no such propagation has been
found in numerical simulations in either square or trian-
gular lattices [9—11].
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FIG. 4. Plot of Vo(t) and dVO(t)/dt at x = 0 after driving

current is turned off at time t = 0. We use g~ = 5, and I/I
= 0.41, corresponding to an n = 1 voltage plateau.
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mate yields p 3.4$o/(Ba2), once again more than six
times the value predicted for 2D arrays [10]. This large
dissipation explains the absence of ballistic motion for
this anisotropy [10,11]. At larger values g& ——5 and 2.5,
a similar calculation gives M„0.28, and 0.34$o/(Ra ),

0.28 and 0.34qg/(Ba ). These lower values of p,
but especially the low pinning energies, may explain why
ballistic motion is possible at these larger values of gJ.

IV. DISCU SSION

We have presented numerical evidence showing that a
3osephson ladder has dynamical properties very similar
to those previously noted in a discrete sine-Gordon chain.
Among the features we find in common are two distinct
regions in the IV characteristics a flux-flow regime and
a "whirling" regime and a series of steps arising from
the locking of the sine-Gordon fluxons to "phason" or
spin-wave-like modes of the individual junctions, which
are quantized by the finite length of the ladder. We
have also given an analytical argument that strongly sug-
gests that the 3osephson ladder should have discrete-sine-
Gordon-like characteristics, provided certain inequalities
are satisfied. The condition is basically that the sine-
Gordon soliton should have a width substantially larger
than the distance between junctions, so that the phase
difFerence should vary slowly with coordinates along the
ladder. Our argument is a dynamical generalization of
one previously given by Kardar [5] for the energetics of
a Josephson ladder.

Although the analytical argument that reduces the dy-
namics of the Josephson ladder to that of a discrete sine-
Gordon chain involves a small-angle expansion of a phase
difference [cf. Eq. (2)] the resulting equation still re-
tains efFects of discreteness, which can clearly be seen in
our numerical results. The most obvious of these are (i)
the existence of a finite depinning current for the Hux-
ons (this depinning current would vanish in the contin-
uum limit) and (ii) the existence of the 'whirling" regime
(which would not occur in the continuum sine-Gordon
equation, as already noted in [2]).

Because of the analogy between 3osephson ladders and
discrete sine-Gordon systems, one can draw interesting
connections between corresponding parameters in the
two models. For example, the anisotropy parameter g
is equivalent to the inverse of a discretization parameter

used in discrete sine-Gordon systems. This suggests that
a Josephson ladder with high anisotropy should behave
more nearly like a continuum sine-Gordon system than
one with low anisotropy. Indeed. , we can see that this
is true, especially as regards the magnitude of the vor-
tex depinning current Id. Although we have no good
analytical theory for Id at present, our numerical re-
sults show that it is nearly zero for anisotropies g ) 1,
while it is very substantial () 0.2I,&) for isotropic lad-
ders (g = 0.71). In this case, the appropriate continuum
sine-Gordon system for comparison is a long Josephson
junction, which indeed is intuitively the natural limit of
an anisotropic ladder.

Although the anisotropy parameter g might appear to
be an unnecessary complication to the already complex
physics of a Josephson ladder, it is clearly a useful means
for tuning the transition from discrete to continuum be-
havior in a ladder. Thus it might be viewed by experi-
mentalists as worth varying in the laboratory [14]. For
example, one interesting experimental possibility would
be to control the vortex depinning current and efFective
mass by manipulation of the anisotropy in the Josephson
coupling.

Finally, we comment briefly on the possible rele-
vance of these results to taboo-dimensional Josephson net-
works. Clearly, Josephson ladders and discrete sine-
Gordon chains are unique, as well as extraordinarily rich
and complicated systems; most of their properties cannot
be extrapolated to two-dimensional systems. Nonethe-
less, it is intriguing that several features of Josephson
ladder dynamics also show up in simulations of under-
damped two-dimensional arrays [9—11,15]. These are the
flux-flow regime, initiated by a finite critical current;
the locking of vortices (the analogs of solitons) to pha-
sons, and the existence of resistance steps (the analogs
of whirling modes). It remains to be seen whether this
connection has more than accidental significance.

ACKNOW LEDGMENTS

We are grateful for valuable conversations with A. V.
Ustinov. This work has been supported by NSF Grant
No. DMR94-02131 and by the Midwest Superconduc-
tivity Consortium through DOE Grant No. DE-FG02-
90ER-45427. S.R. received financial support from Ohio
State University.

[1] A. V. Ustinov, M.Cirillo, and B.A. Malomed, Phys. Rev.
B 47, 8357 (1993); A. V. Ustinov et aL, ibid. 51, 3081
(1995).

[2] S. Watanabe, S. H. Strogatz, H. S. J. van der Zant, and
T. P. Orlando, Phys. Rev. Lett. '74, 379 (1995).

[3] H. S. J. van der Zant, Terry P. Orlando, Shinya Watan-
abe, and Steven H. Strogatz, Phys. Rev. Lett. 7'4, 174
(1995).

[4] K. Nakajima et aL, J. Appl. Phys. +6, 949 (1989); K.
Likharev and V. Semenov, IEEE Trans. Appl. Suppl.
AS-l, 3 (1991); J. H. Miller et al. , Appl. Phys. Lett.

59, 3330 (1991).
[5) Mehran Kardar, Phys. Rev. B 33, 3125 (1986).
[6] See, for example, S. R. Shenoy, J. Phys. C 18, 5163

(1985); A. Falo et al. , Phys. Rev. B 41, 10983 (1991);
R. Bhagavatula et aL, ibid. 45, 4772 (1992); W. Y'u et
aL, ibid. 45, 12624 (1992).

[7] R. Rajaraman, Solitons and Instantons (North-Holland,
Amsterdam, 1982).

[8] H. S. J. van der Zant et aL, Europhys. Lett. 18, 343
(1992).

[9] P. A. Bobbert, Phys. Rev. B 45, 7540 (1992).



53 DYNAMICS OF AN UNDERDAMPED JOSEPHSON-JUNCTION LADDER 2195

[10] U. Geigenmuller, C. J. Lobb, and C. B. Whan, Phys.
Rev. B 47, 348 (1993).

[11] Wenbin Yu and D. Stroud, Phys. Rev. B 49, 6174 (1994).
[12] C. J. Lobb, D. W. Abraham, and M. Tinkham, Phys.

Rev. B 27, 150 (1983).
[13] H. S. J. van der Zant et aL, Phys. Rev. B 47, 295 (1993).
[14] Indeed, many laboratory-prepared Josephson ladders,

nominally isotropic, will undoubtedly have random

anisotropy as a result of random variations in both I
and I,„, which would probably produce a variety of un-
usual behaviors.

[15] H. R. Shea, M. A. Itzler, and M. Tinkham, Phys.
Rev. B 51, 12690 (1995) have shown numerically that
overdamped, hybrid 2D arrays can be modeled as an
anisotropic network of coupled RSJ's.


