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I. INTRODUCTION

In time series analysis, the question of whether two sets
of delay vectors have the same underlying multidimen-
sional probability distribution is relevant in many situa-
tions that are encountered. For example, if a model time
series is to be compared with the original time series, ob-
jective criteria for the quality of the model are desirable,
if not necessary. Also, in examining the stationarity of a
time series it is important to be able to detect slow
changes in its behavior. These changes may not be mani-
fest in the linear properties of the time series, usually
determined with power spectra or estimated parameters
of linear models. Usually, in the analysis of time series
from spatiotemporal dynamics systems that may be
nonhomogenous in space, the first step consists of com-
paring time series measured at different sites. With these
applications in mind, the aim of this paper is to propose a
test for the hypothesis that two time series have the same
delay vector distributions, a necessary condition for two
stationary time series to be generated by the same mecha-
nism.

The characterization of time series by their delay vec-
tor distributions is by now standard in the linear and non-
linear time series literature; see, e.g. , Grassberger,
Schreiber, and Schaffrath [I] for a review. Most of the
methods are based on the assumption that the time series
can be described by a member from a specific class of
models such as the class of linear models or low-
dimensional chaotic models. Two relatively new methods
that do not explicitly depend on the mechanisms generat-
ing the time series but use delay vector distributions only
are described by Wright and Schult [2] and Kantz [3].
Wright and Schult have proposed a method for identify-
ing the presence of a time series with known delay vector
distribution within a given time series. Kantz has intro-
duced. a method for comparing the delay vector distribu-

tions of two time series. The remark that one of his
statistics under certain conditions and in a certain limit
could be interpreted as a distance between two delay vec-
tor distributions has motivated the present paper.

Our method is based on a general distance concept be-
tween multidimensional distributions. A consistent esti-
mator of the square of this distance is constructed, and
the variance of the estimator is calculated conditionally
on the set of observed vectors, assuming independence of
all vectors. This provides a consistent test for the null
hypothesis that two sets of independent vectors are
drawn from the same probability distribution.

The paper is organized as follows. In Sec. II, the
squared distance Q is defined. It contains a parameter d
that may be identified as a bandwidth and is the length
scale at which the two sets are compared. A small value
of d will take into account differences between the distri-
butions at small scales. However, taking d too small will
lead to poor statistics. A natural unbiased estimator Q
for Q is given, and the variance V, (Q ) of Q under the
null hypothesis is calculated conditionally on the ob-
served vectors given their independence. The distribu-
tion of S=Q/QV, (Q) is examined numerically for a
fixed value of the bandwidth d. Section III describes the
application of the test to delay vector distributions. For
the comparison of delay vector distributions obtained
from time series, some heuristic modifications have to be
made in order to reduce the effect of dependence present
among the vectors. The choice of the bandwidth parame-
ter d is discussed in Sec. IV. The results are summarized
and discussed in Sec. V.

II. A DISTANCE BETWEEN
MULTIDIMENSIONAL DISTRIBUTIONS

In this section a distance between two probability dis-
tributions, p, (r) and p2(r), in R is defined. It is shown
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pk(r ) =jds p&(s )tt(r, s ) for k E I 1,2]

where t-(r, s ) is a Gaussian kernel defined by

&( r S ) ( i/2ird )™e—Ir gs /(2d )— (2)

with
~ ~

denoting the Euclidean distance in R and d & 0
being a fixed length scale, or bandwidth. The motivation
for introducing the smoothed distributions pk(r ) is that
unbiased estimators in terms of the sampled vectors can
be easily given for p&(r) at each point in IR . An un-

biased estimator p', (r ) of p', (r ) is

that the square of this distance can be estimated in an un-
biased manner from two sets of vectors sampled indepen-
dently from pi(r ) and pz(r ), respectively. We will consid-

er the case of N, vectors, IX, ], ' „with probability distri-
N2

bution pi(X, ), and Nz vectors, I Y, I; 'i, with probability
distribution pz( Y; ). Realizations of these vectors will be
denoted by their lowercase analogs, i.e., x, and y, .

We define the smoothed distributions pk as the convo-
lution of p& and ~, viz. ,

we obtain

Qk(
=jjds dt p„(s )h (s, t )p((t )

with

h(s t)=e I' '-I "'-""

(9)

(10)

h(X;,X) )
1 ~i &j~Nl

+ . . gg h(Y Y)
+2 1 ~ &j&Nz

2

2 N& N

g h(X, , Y))
%1%2,.

We have N, (N, —1)/2 different pairs of vectors (x;,x ),
Nz(N2 —1)/2 different Pairs (y;,y ), and N(Nz different
pairs (x, ,y~). With the use of (6) and (9), the statistic Q
defined by

Ni

p', (r)= g a(r, x;),
1 i=1

since the expected value of ts(r, X, ) is

jdX p, (X, )tt(r, X, ) =p', (r )

(3)

(4)

can be easily seen to be an unbiased estimator of Q.
The variance V, (Q ) of Q under the null hypothesis and

conditionally on the set of %1+%2 observed vectors is a
function of Xl, N2 and the set of %1+%2 vectors. If we

define %=%1++&and

for all i.
We define the quantity Q as

Q =(2d(/~) jdr [p', (r )
—pz(r )] (5)

x; for 1 ~i ~N1

y; N fOr Nl &i ~X, (12)

For every d & 0, the square root of Q defines a distance
between the probability distributions pl and p2, based on
the inner product of (pi —pz) with itself. We thus have

Q =0 if and only if pi(r )=pz(r ). Since the kernel func-
tion ~ is bounded, absolutely integrable, and has a
Fourier transform that does not vanish on any interval,
the stronger result follows that Q=0 if and only if
pi(r)=pz(r); cf. Anderson, Hall, and Titterington [4].
By determining whether a consistent estimator of Q is
significantly larger than zero, we have a test for the null
hypothesis p, =p2 that is consistent against all alterna-
tives pi&pz.

To find an unbiased estimator Q for Q, it is convenient
to rewrite Eq. (5) as

XX
1~i &j~N

2

(13)

in which

g,, =H, —
g,

—g

where

(14)

the variance under the null hypothesis conditionally on
z. i=l is

&,(Q)= 2(N —1) (N —2)
N, (N, —1)N2(N2 —1)(N —3)

Q=Qii+Qzz —2Qiz

where

Qk(=(2«~) jdr p'k(r) I(r) .

By substituting (1) into (7) and performing the outer in-
tegral, using the property that the convolution of two
Gaussian distributions is Gaussian,

d )
—2m jd

—t,r gs /(zd ) —pr gt /(2d )— —

and

H, =h(z, ,z )— h(z;, zj )
1 ~i & j&N

2

(15)

( i/r2d ) ]
—m —Is gt /(4d )— We give a derivation of this result in the Appendix. We

remark that an expression for the unconditional variance
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in terms of X& and X2 and p& and p2 is more easily de-
rived. However, since p, and p2 are not completely
known, we would have to estimate the unconditional
variance from the observed vectors. Working condition-
ally on the set of vectors, however, we obtain an exact
value for the variance. The quantity S defined by

is a random variable with zero mean and standard devia-
tion equal to 1 under the null hypothesis.

III. APPLICATION TO DELAY
VECTOR DISTRIBUTIONS

In this section we will develop a procedure to test the
null hypothesis that the underlying delay vector distribu-
tions of two time series are identical. For a scalar time
series [s;];,the set of m-dimensional delay vectors with
delay r consists of the L =M —(m —1)r vectors

xi [ i& i+r& ' '
& i+(m —1)7]

The distribution

(19)

where 6( ) is the Dirac delta function, is referred to as the
empirical delay vector distribution of the time series.
The major problem for the application of virtually all sta-
tistical methods in the field of time series analysis is the
presence of dependence among delay vectors. Therefore,
the effect of dependence will be examined first.

In the previous section, the properties of S under the
null hypothesis, i.e., mean zero and standard deviation 1,
were derived under the assumption of independence of
the delay vectors. This is an oversimplification, even if
both time series consist of independent, identically distri-
buted (IID) data. The mere construction of the sets of
delay vectors from the two time series introduces depen-
dence among the delay vectors. Dynamical structure in
the time series will introduce additional dependence. Us-
ing examples, we will demonstrate the deterioration of
the test if dependence is not taken into account. A
modification of the test then is shown to reduce the effect
of dependence to a level at which it can be ignored. Be-
fore each analysis, both time series are rescaled by the
same factor o.o/o. . Here o.

o is the standard deviation of a
uniform distribution between —0.5 and 0.5, and o. is the
sample standard deviation of the scalar data (i.e. , the
overall standard deviation of the scalar data of both time

series). We choose to normalize the standard deviation
rather than the range (i.e., the difference between the
largest and the smallest value observed), since for some
types of time series the expected range depends on the
length of the time series. For example, in the case of IID
Gaussian data, the expected range grows as the square
root of the time series length. The parameters for the
construction of the delay vectors are fixed at m =3 and
~= 1, and we perform the test with the bandwidth param-
eter d =2.5X10

The distribution of S under the null hypothesis is not
necessarily normal. In general, it depends on X& and X2,
the bandwidth d, and the distribution p, =p2. Here the
null distribution is examined numerically by Monte Carlo
simulations. Three different processes are considered.
For each process, the calculation of S is performed 10
times. Each time, two independently generated time
series are used, and from the results the mean S and the
standard deviation o.(S) are calculated. The processes we
consider are uniformly distributed random data, logistic
map data, and Henon map data. All time series have a
length of M =200 samples. The results are summarized
in Table I. For independent vectors, the expected value
of S is 0 and the standard error in S is (10 )

'~ =0.03.
The expected value of o(S) is 1. The standard error in
cr(S) depends on the fourth moment of the distribution of
S. We expect it to be of the order of 2'~ (10 )

'~ =0.04,
the value that is obtained for the standard normal distri-
bution. The values found for the uniformly distributed
random data [S=0.05, o.(S)= 1. 15] are close to their ex-
pected values. The dependence introduced by the con-
struction of delay vectors appears to be of minor
influence on the null distribution. Dynamical depen-
dence, on the other hand, has a severe effect. The results
for the two chaotic maps [S=—0. 12 and o(S)=1.93 for
the logistic map, and S= —0.46 and cr(S)=2.23 for the
Henon map] clearly indicate that dependence introduced
by the dynamics cannot be ignored.

The problem of dependence among delay vectors has
been investigated in a different context by Theiler [5]. In
this work it has been shown that a bias due to depen-
dence can be removed from an estimator of the same type
as Q by leaving out the contributions of (i,j) pairs of in-
dices for which ~i

—j ~

is smaller than 1. Here 1 is some
fixed number larger than the largest typical time scale of
the time series. We note that this procedure still does not
allow the use of the expression for the variance of our es-
timator as derived for independent vectors. Strongly
dependent delay vectors will give rise to a different vari-
ance in the estimator than independent delay vectors, re-
gardless of whether a bias has been removed or not. In

TABLE I. Mean value S and standard deviation cr(S) for the distributions of S estimated by per-
forming the test 10 times on independent realizations of uniform random data, logistic map data, and
Henon map data. The results are given for the naive method and the segment method.

S+cr(S)

Uniform random data
Logistic map data
Henon map data

Naive method (l =1)

0.05+1.15
—0.12+1.93
—0.46+2.23

Segment method (l =18)

0.05+ 1.06
—0.01+1.22
—0.03+1.12
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other words, the (i,j) pairs that have ~i
—j ~

~ I are pair-
wise independent, but the contributions from (i,j) and
(i,j +k) for k ( l manifest themselves in the estimated
variance. A method based on the approach of Theiler,
but which also takes into consideration this effect of
dependence in the estimated variance, is the following.

We divide the (i,j) plane of indices in squares of size
l X l and use the average value

I

h'(i', j') =—g g h(z, (+„,z;i+ )
I p

—] q
—]

in each of these squares rather than the individual values.
By using h instead of h in the definition of Q in (11), the
conditional variance in terms of h' is analogous to (13),
with h

' substituted for h. The idea behind this procedure
is that for l large enough, nonoverlapping pieces of length
l within the multidimensional series of delay vectors can
be considered as independent for all practical purposes.
Heuristically, in this way one can approximately take
into account short-range (within a time scale I) depen-
dence among delay vectors. As in the work of Theiler [5]
the parameter l needs to be chosen larger than a typical
time scale of decay of dependence in the time series. In
th.e following, the method with I & 1 will be referred to as
the segment method.

For time series of length M=200, and ~=1, m =3,
there are L =M —(m —1)r=198 delay vectors for each
time series. For the discrete time dynamical systems dis-
cussed in this paper, the dependence within the time
series has a typical decay time of a few iterations. The re-
sults obtained by the segment method with l = 18, which
is su%ciently large because of the short-range depen-
dence, are given in Table I. The values of S and cr(S)
found with the segment method for the three processes
considered are close to the values expected for indepen-
dent delay vectors. We found S=0.05 and o(S)=1.06
for the uniform random data. For the logistic map the
values are S= —0.01 and o (S)= 1.22, and for the Henon
map they are S=—0.03 and o(S)=1.12. For the three
models, the segment method gives better results than the
naive (i =1) method.

In applications of the test, one will need a rejection cri-
terion. As argued in the previous section, the null hy-
pothesis can be rejected when estimated values of S are
large. We choose to reject the null hypothesis at values
of S larger than 3. Assuming a zero mean, a standard de-
viation of 1, and a unimodal distribution for S, the proba-
bility of finding a value of S larger than 3 is smaller than
0.05; see Pukelsheim [61. Since the latter inequality ap-
plies to the two-sided test case, this inequality will be
conservative when used in the one-sided case. In the nu-
merical simulations with the segment method, the num-
ber of rejections of the null hypothesis were 12, 22, and
11 out of 10 for the uniform random data, the logistic
data, and the Henon data, respectively. These values
indeed indicate a probability of rejecting the null hy-
pothesis well below 0.05 if the null hypothesis holds.

Example 1. As an example for which the null hy-
pothesis does not hold, we compare the delay vector dis-

IV. BANDWIDTH

In this section, we briefly discuss the choice of the
bandwidth parameter d, which sets the length scale of the
smoothing. By choosing it relatively small, Q will pick
up local differences in p& and pz. Taking it too small,
however, leads to poor statistics, as can be seen from the
behavior of Q in the limit d —+0. In this limit, the sums
in (11) are dominated by one term only: the term corre-
sponding to the smallest distance in the set of vectors.
For large d, the delay vector distributions p'i(r ) and pz(r )

are smoothed to such an extent that they become almost
indistinguishable. We expect to find an optimal value for
the bandwidth at the tradeoff of these two effects. It is
known that the optimal bandwidth for density estimators
depends on the number of observations and decreases for
larger numbers of data. The problem we address here is
not that of optimally estimating densities but rather that
of finding the bandwidth for which the test is most
powerful. Suppose the two distributions p& and p2 are
different. We are interested in the question of how the
optimal value of the bandwidth parameter d depends on
the number of observations X. In general, for a fixed
value of the bandwidth d, the expected value (S ) will de-
pend on p =N, /N and N as

(S)-p(1 —p)N for N large . (21)

This result is obtained by considering the large
behavior of Q and Q V, (Q ). The estimator Q for large N
becomes sharply distributed around the true value Q,
which depends on p„p2, and d, and by (13) we have

1/QV, (Q)-p(1 —p)N for N large .

Taking into account the dependence on d, we have

(S)-p(1 p)NF (d) f—or N large,

(22)

(23)

where F (d) is some function of d that depends on pi
and p2. Thus for large N and given p„pz, and p, the
value of d for which the optimum expected value (S )
occurs is independent of X.

Next we would like to consider the d dependence of the
three different terms in the estimator Q defined by (11).
The first term contains distances within the delay vector
distribution of the first time series; the second term is a
function of the second time series only; and the third
term contains the cross terms, which involve both time
series. For two time series generated with Henon's model
at different parameter values (cf. example 1 in the previ-
ous section), we calculated (with the segment method,

tributions of time series generated with Henon s model,
X„+&=1—aX, +bX„&, at slightly different model pa-
rameters. For each first time series we choose a =1.35
and b =0.31; for each second series we take the standard
parameter values a =1.4 and b =0.3; cf. Kantz [3]. The
results found for d =2.5 X 10 with the segment method
are S=3.59 and o.(S)=1.17. Using the rejection cri-
terion S & 3.0, we found that there were 667 rejections of
the null hypothesis out of the 10 simulations.
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I = 18) the separate contributions I I I I I I I I I I I I II[

Qii= (24)

h(Y;. , Y ),
N2 1&i & j&N2

2

(25)

and

N) N2

Qt2= g g h(X;, E. )
2 i=1 j=1

(26)

as a function of d.
Figure 1 shows a log-log plot of the estimates versus

the bandwidth parameter d. For large d the curves of the
three estimators practically coincide, while for small d
the curves diverge from one another. We emphasize that
the smoothness of the curves is the result of using the
same two sets of delay vectors for all d values. In Fig. 2,
S is given as a function of d for the same two time series.
The function clearly has a pronounced maximum value
near d =7.5 X 10,where the value of S indicates a devi-
ation from the expected zero value of about 6.2 standard
deviations. It cannot, however, be concluded that the
curve differs from the expected curve by 6.2 standard de-
viations. By considering only the optimum value, one is
selecting the largest value in a realization of a random
function. One way of dealing with this problem is to de-
velop a theory concerning the fluctuations of S. Howev-
er, there is a simple method to overcome this problem.
The function F (d) appearing in (23) can be estimated
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FIG. l. Estimated values (dimensionless) of Q» (solid line),

Qz2 (dotted line), and Q, z (dashed line) as a function of the
bandwidth parameter d (dimensionless) for two time series of
length M =200, generated by slightly different Henon models.

0
0.001 0.01 0.1

FIG. 2. Number of standard deviations S (dimensionless) as a
function of d (dimensionless) corresonding with Fig. 1.

using a relatively small number of the available vectors,
for example, those obtained from two small initial seg-
ments of both time series. This estimated function can be
used together with (23) as a guide for the determination
of a value of d for which the method is most powerful
given the type of data under consideration. The last seg-
ments of both time series can then be used to obtain an
independent value of S for this estimated optimal length
scale parameter d.

Example 2. Again, we compare the delay vector distri-
butions of time series generated with Henon's model with
different parameters. The model parameters used are
identical to those in example 1 in the previous section.
The test parameters are the same, except for the band-
width. The estimated optimal bandwidth d =7.5 X 10
is used. The results with the segment method are
5=6.00 and o(S)=0.70. With the rejection criterion
S)3.0, there were 10 rejections of the null hypothesis
out of the 10 simulations. This is an improvement over
the first example, where the test was performed with
d =2.5 X 10 and where the null hypothesis could be re-
jected only 667 out of 1000 simulations.

We have discussed the bandwidth dependence of the
estimators here in the context of the optimal choice for
statistical inference. However, the bandwidth depen-
dence of Q», Qz2, and Q, 2 may contain some additional
information. As done in Ref. [3], one may search for the
bandwidth above which the two delay vector distribu-
tions are the same within a given accuracy e. This band-
width d, is defined as the minimum bandwidth above
which one has both logg» —log g, z (e and

logg22 —logg, z (e. The physical interpretation of this
bandwidth is clear in some cases. For example, in com-
paring clean and noisy time series, d, has a close
correspondence to the noise level.
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V. DISCUSSIDN

In this paper we have proposed a test for the null hy-
pothesis that two multidimensional probability distribu-
tions are identical. The test is based on the statistic Q,
which is an unbiased estimator of the square of a distance
between the two probability distributions. This approach
is similar to that followed in [7], where a distance based
test statistic has been used to detect differences in for-
ward and time-reversed delay vector distributions. The
standard deviation of Q under the null hypothesis, and
under the condition of statistical independence of the vec-
tors, is calculated conditionally on the set of vectors. The
effect of dependence in empirical delay vector distribu-
tions is examined. For applications to delay vector distri-
butions, a procedure is proposed that turns out to be rela-
tively robust with respect to dependence. The generaliza-
tion of the method to multivariate time series is straight-
forward. Once delay vectors have been constructed from
the multivariate time series, the test statistic can be cal-
culated.

The test statistic contains a characteristic length scale
parameter d, which can be used to detect differences be-
tween the distributions at a length scale d. The power of
the test depends on this para."-neter. A two-step method is
suggested in which an optimal value for d is estimated by
using only a part of the available data before the test is

performed on the remaining part of the data. Examples
demonstrate that only a few hundred data points are
necessary to distinguish two Henon time series with
slightly difFerent parameters (the attractors of which look
the same as judged by the naked eye; see [3]).

The properties of the kernel h appearing in Eq. (9) is
determined by the choice made for x. In [3], the starting
point has been (9) with the kernel h =8(d —lr —sl),
where 0( ) is the Heaviside step function. In this case,
we can And the conditional variance in a way completely
analogous to the method used for our estimator. Howev-
er, this kernel does not define as estimator with an ex-
pected value that may be interpreted as the square of a
distance between two distributions. This is the case only
in the limit d ~0, assuming smoothness of the distribu-
tions. Therefore, this kernel cannot be used for one-sided
testing, and the test based on this kernel is not consistent
against all alternatives p, Apz. There is, however, a quali-
tative correspondence between the behavior of the curves
in Fig. 1 and of the estimators of the correlation integrals

C~„=f f ds dt pk(s)O(d —s tl )p„(t)—
for k H [1,2] (27)

then Q„„obeys
D2Q&k-d ' for d~O. (30)

By construction, our test statistic is unbiased. The test
statistic discussed by Anderson et al. [4] is

T= dx ) x (31)

where f &
and fz are kernel density estimates of p, and p2,

respectively. Because of this definition, this test statistic
is biased if the number of observations is Anite. The
problem of estimating the bias is overcome by using
bootstrap techniques [4].

The test can possibly be used to compare time series
with their surrogates, e.g. , phase randomized time series
[8]. However, this will require further investigations. So
far, we have applied our test only to pairs of time series
that were mutually independent. It should be checked
whether the method can still be applied if the series de-
pend on each other. For example, a phase randomized
surrogate time series and the corresponding original time
series are strongly dependent since they are constructed
to have their sample power spectra identical. Another
possible application is a test for the stationarity of a time
series. We expect that the comparison of different seg-
ments of a given time series with the proposed test is
promising for the study of the stationarity of a time
series.

We end with a few remarks on the choice of the pa-
rameters m and ~ used for the construction of the delay
vectors. For the delay ~ we expect good results using the
optimality criteria proposed in the nonlinear time series
analysis literature. For example, the first minimum in the
mutual information criterion of Fraser [9] can be used.
Unfortunately, there is not always a minimum in the mu-
tual information function. If so, we suggest an examina-
tion of two-dimensional delay vector distributions for a
range of delays. Too small delays will give a phase plot
with all points close to the diagonal line, whereas struc-
ture within a time series will not be seen in phase plots
with too large delays. The optimal choice of m, usually
referred to as embedding dimension, will probably be
strongly coupled with the choice of d. For small m there
will be more small distances than for large m. We thus
expect a relatively high performance at small values of d
for small m. Until the effect of dependence as a function
of m and d hns been investigated in more detail, it ap-
pears safe to use small m together with small d. The in-
dependent distance hypothesis of Theiler [10] implies that
the delay vectors in the limit d ~0 may be treated as if
they are independent.

and the cross-correlation integral [5]

C„=f fdsdt p, (s)p, (t)8( —d ls tl) . —(28)
APPENDIX

Ckg d for' d ~0D2
(29)

The scaling behavior of correlation integrals of the delay
vector distribution of low-dimensional dynamical systems
is also present for Q» and Qz2. It can be proved that if
pk(r ) has a correlation dimension D2, i.e.,

In this appendix we will derive expressions for the un-
conditional and the conditional variance of Q. The
derivation of the unconditional variance (which is not
used in the test) is included for completeness. We will
closely follow the methodology of Van Zwet [11].



53 DETECTING DIFFERENCES BETWEEN DELAY VECTOR. . . 2175

1. Unconditional variance

Ni N~The random vectors {XiI, i and {Y, I, i are assumed
to be independent and to have identical probability distri-
butions p(X; ) =p( Y; ). We have

h(X, ,X, )
»&i&j&N,

2. Conditional variance

We introduce N=N, +Nz and define

x; for 1&i &N»

y, N for N»&i N .
1

(A10)

+ . . gg h(Y Y )

2

2
N, N2

h(X;, Y).
N»N2

(A 1)

Given the vectors {z,I,. i, we consider random divisions
of the set of vectors into two groups of sizes, N, and N2.
We obtain

- ggh(z, ,z,
1

i,JeD

H(x, y ) =h (x,y ) —E(h(X„Xz )) (A2)

Denoting expected values by E( ), we define the functions h(z;, z ),2

2 iEDj&D~
(Al 1)

and

g(x)=E(H(X, ,X2) X, =x) .

Now Q can be expressed in terms of

t/i(x, y )=H(x, y )
—g(x ) —g(y )

by substituting

h (x,y ) =P(x,y )+g(x )+g(y )+E(h (x,y ) )

(A3)

(A4)

(A5)

Q=ggh(z, ,z )A, (A12)

with

1D(01D(j)+ . . 1,(i)1D,(j)1

D D

where D is a set of N» indices randomly selected without
replacement from {1,2, . . . , N I and D' is the comple-
mentary set of indices. We write (A 1 1) as

into (Al). Since the contributions g( ) and E(h(, )) sum
to zero, we obtain

Q=, . gg g(X, ,X )
N» «;J &N,

2

+, . gg P(YY)
N2» &i &j &N2

2

1D (i)1D,(j)— 1D,(i)1D(j),
1 2 1 2

where 1D(i) is the indicator function defined by

1 if i ED
0 ifi ED.

(A13)

(A14)

2 N& N

g(X;, Y ) .
2 i=» j=1

(A6)

The A," in (A12) can be identified as random variables,
while the h(z, ,z ) are constants. The conditional expect-
ed value E, (Q ) of Q is zero since

Now, by construction we have

E(P(X;,XJ)~X;=x)=0 for all x,
E,(A, 1D(j))=E,(A, ~1D(i))=0

for all i and j. We define the constants

(A15)

V(Q)= 2 2 4
N, (N, —1) N~(N2 —1) N, N2

so that the right-hand side of (A6) consists of a sum of
terms that are all uncorrelated. By denoting variances by
V( ), the variance of Q can be written as

Hi=h(z;, z )— , ggh(z;, z, ),1

2

(A16)

(A17)

X V(g(X;,X2)) .

We can express V(g(Xi, X2)) as

V( g(X„X2) ) = V(h (X„X2) )—2 V(g (X, ) ),

(A8)

(A9)

and

P,"=H,"—g; —g (A18)

using the definitions (A2) —(A4). Since A, - is symmetric in i' and j and
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gA, =0 for all j, (A19) 2
1i'

the statistic Q remains unchanged by replacing h(z;, zj)
with lfj... and we can express Q as

Q=ggltj; A;; . (A20)
i(j

The calculation of the conditional variance V, (Q ) that is
the conditional expected value of Q, E, (Q ), is straight-
forward. By counting the terms in Q we obtain

V, (Q)= ,'N(N ——1)E,(A )lf

2 $2
(N —2)(N —3)

The conditional expected values of the products of ran-
dom variables (i.e., their averages with respect to the pos-
sible choices of D) can be found by straightforward calcu-
lation, involving the relative number of times the indices
in the products are within D and D'. The results are

2 2(N —1)(N —2)
N(N —1) N, N~(N, —1)(N~ —1)

(A26)
+N(N —1)(N —2)E, (A,2323)g, g/i k. .

+ —,'N(N —l)(N —2)(N —3)E,(A, A )p, gkj,
(A21)

where the bars denote taking averages (with i, j, k, and l
all difFerent). For g;j gjk we obtain

1
1j~jk N(N I )(N 2) XXX 1 V~jk

i j ki', iWk,j Wk

and

2
N(N —1)(N —2)

X 2(N —1)(N —2)
N, N2(N, —1)(N2 —1)

E, ( A )q 334)=
N (N —1)(N —2)(N —3)

X 2(N —1)(N —2)
N, N2(N, —1)(Nj —1)

(A27)

(A28)

1

N(N —1)(N —2) After substitution of these expected values into (A21), the
final expression for the conditional variance reads

X . ggg p,,g,„—gg p„,g,k (A22)
i j ki',j Xk

j k
jXk V, (Q)= 1+ +

(N —2) (N —2)(N —3)
It can be readily checked that the g,j have the property 2(N —1)(N —2)

N, N~(N, —1)(N2 —1)
gg, =0, for all j, (A23)

2(N —1) (N —2) $2
NiN2(N, —1)(N2 —1)(N —3)

Using this relation, we can verify that the sum over k in
the first term within the curly braces in (A22) equals zero.
We have We can write 1'; as

(A29)

21

N —2~"

Similarly, we can derive the expression

(A24) tf;=H, —2 g~X —2

using (A16)—(A18).

(A30)

[1]P. Cxrassberger, T. Schreiber, and C. Schaffrath, Int. J. Bi-
furcation Chaos 1, 521 (1991).

[2] J. Wright and R. L. Schult, Chaos 3, 295 (1995).
[3] H. Kantz, Phys. Rev. E 49, 5091 (1994).
[4] N. H. Anderson, P. Hall, and D. M. Titterington, J. Mul-

tivar. Anal. 50, 41 (1994).
[5] J. Theiler, Phys. Rev. A 34, 2427 (1986).
[6] F. Pukelsheim, Am. Stat. 48, 88 (1994).
[7] C. Diks, J. C. van Houwelingen, F. Takens, and J. De-

Goede, Phys. Lett. A 201, 221 (1995).

[8] J. Theiler, B.Galdrikian, A. Longtin, S. Eubank, and J. D.
Farmer, in nonlinear Modeling and Forecasting, edited by
M. Casdagli and S. Eubank (Addison-Wesley, Reading,
MA, 1992).

[9] A. M. Fraser and H. L. Swinney, Phys. Rev. A 33, 1134
(1986).

[10]J. Theiler, Phys. Rev. A 41, 3038 (1990).
[11]W. R. van Zwet, Z. Wahrscheinlichkeitstheorie verw. Ge-

biete 66, 425 (1984).


