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General analysis of instabilities in erbium-doped fiber lasers
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A detailed analysis of a general model of erbium-doped fiber laser dynamics is investigated. Depend-
ing upon the parameters the same model describes single-mode cw or self-pulsing lasers, dual-wavelength
or bipolarized two-mode lasers. A summary of previous works concerning self-pulsing behavior and an-
tiphase phenomena is presented. The basic physics responsible for the instabilities is the existence of ion
clusters in heavily doped 6bers. A thorough investigation of the bimode laser equations is performed.
Approximate solutions for the steady states and for the second threshold are obtained. The influence of
ion-pair concentration (x) on dynamical behavior is studied. In particular, it is demonstrated that opti-
cal bistability occurs between 2T- and 3T-periodic orbits versus the pumping rate in the case of inter-
mediate pair concentrations (where T is the fundamental period of the system). The route to chaos is
found to be x dependent and of codimension 2.

PACS number(s): 42.65.Sf, 42.60.Mi, 42.55.—f, 42.50.Lc

I. INTRODUCTION

The field of rare-earth-doped fiber lasers is actually an
expanding area of investigation [1—4]. This growing in-
terest is essentially due to the large number of possibili-
ties given by this new kind of coherent sources. Indeed,
in addition to their applications to telecommunications or
to visible solid-state laser engineering (ZBLAN-doped
fibers are very attractive for the development of up-
conversion lasers), fiber lasers are excellent candidates for
dynamical studies, in particular in the frame of mul-
timode lasers [S—8]. In spite of their very large degree of
freedom (some thousands of longitudinal modes can typi-
cally coexist), fiber lasers can be theoretically described
by very low-dimensional systems [1,2,8,9]. This is al-
lowed because a clustering effect occurs between hun-
dreds of modes [2,9]. The physics of this collective
behavior is actually not well understood.

Among the different dopants which can be incorporat-
ed in silicate fibers, neodymium and erbium have been the
subject of particular attention. Nd-doped fiber lasers
have revealed interesting polarization properties under
pump modulation conditions [2,8, 10]. Spontaneous
trains of pulses can also be obtained (for a cw operating
fiber laser) under specific experimental conditions (tilt of
the output coupling mirror); this dynamical behavior is
not yet physically understood [10].

Er-doped fiber lasers (EDFLs) are, in some sense, more
interesting due to the large variety of dynamics which
can be obtained spontaneously. Self-pulsing operation
was reported in EDFLs; this behavior was found to be in-
dependent of the pumping wavelength, the fiber length,
and the photon lifetime in the cavity [11]. The self-
pulsing suggested the existence of a saturable absorber,
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distributed within the doped fiber, which has been
identified as ion pairs (or ion clusters) [12]. The physical
effect leading to the saturable absorption is a fast nonra-
diative energy transfer between two excited neighboring
ions [12]. A simple modeling of EDFL dynamics has
been proposed and investigated in [1] assuming the am-
plifying medium as a mixture of isolated ions and ion
pairs. More recently, similar results have been reported
[13]; nevertheless, the saturable absorber is not clearly
identified. A more complex dynamics (antiphase effects
and chaotic behavior) has been reported [3,14] for dual-
wavelength operation of EDFLs. An extension of the
single-mode model [1] to a two-mode laser was proposed
and investigated [9]. the numerical analysis was, howev-
er, restricted to the intermediate ion-pair concentration
case.

The aim of this paper is to present a general theoretical
analysis of EDFL instabilities under autonomous condi-
tions (without pump or other external modulation). A
synthesis of previous works is included in the paper to-
gether with a great amount of new results. This article is
organized as follows. Section II is devoted to the single-
mode model. A summary of the results developed in [1]
is given first. Then an approximate solution for the
steady-state intensity is derived using a method which
takes advantage of the saturation of the gain. The two-
mode model is presented in Sec. III. This model is gen-
eral enough to be used for bipolarized or dual-wavelength
EDFL operations. In addition, it can be reduced to the
single-mode model under some conditions. A thorough
investigation of the stationary states (off state, single-
mode states, and bimode state) and their stability is per-
formed in Sec. IV. In particular, we give approximate
solutions for the intensities leading to a closed form ap-
proximate expression for the second threshold. The ap-
proximate solutions allow a simple experimental evalua-
tion of the anisotropic pumping parameter. In Sec. V we
investigate numerically the dynamical behavior obtained
for different ion-pair concentrations (x). This analysis
was performed in [9] in the particular case where
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x = 10%. We are particularly interested in both routes to
chaos and bistability between periodic orbits. Conclud-
ing remarks and perspectives are given in Sec. VI.

II. THE SINGLE-MODE MODEL
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In this section we briefly recall the results presented in
[1,11,12] and give our results concerning the approximate
solution for the steady-state intensity in EDFLs. In the
simplest experimental configuration (two-mirror cavities
with fiber ends directly butted on the mirrors) EDFLs
can operate spontaneously in a self-pulsing or cw regime
around A, =1.55 pm (corresponding to the Ii3/2 + I,5~—2
transition). This behavior has been attributed to the ex-
istence of ion clusters (ion pairs) which act as saturable
absorbers [12]. The basic effect responsible for this satur-
able absorption is the quenching effect which occurs be-
tween two neighboring ions. This is illustrated in Fig. 1:
when two neighboring ions are in the I&3/2 excited state,
there occurs a fast (r= some ps [1]) energy transfer re-
sulting in one ground-state ion and one up-converted ion
which quickly spontaneously relaxes towards the I,3 /2
state. The consequence of this energy transfer is the loss
of one excited ion and therefore of one potential stimulat-
ed photon. This explains why long and weakly doped
fibers are preferred to short and heavily doped fibers in
Er3+-doped fiber amplifiers [15,16].

As reported in [12], for low ion-pair concentration
(x & 5% ) a cw regime occurs, while a self-pulsing
behavior is observed for high x (x ) 10%), for any pump-
ing rate in both cases. For intermediate x values
(x =7.5% ), the laser is self-pulsing in the range r = 1 —5
(r is the pumping ratio defined as r =A/A, h, where A,h is
the threshold pump power). Basically, as the Er + con-
centration increases, x increases [12,17—19]. It has been
theoretically demonstrated [1] that the dynamics of
EDFL depends on the ion-pair concentration and the
pumping ratio. More recently, the spontaneous emission
factor has been found to inhuence the stability of the
laser [20]: spontaneous emission stabilizes the system
near threshold.

In [1] the amplifying medium (the doped fiber) is con-
sidered to be a mixture of isolated ions and ion pairs.
Isolated ions are described as two-level systems and ion
pairs as three-level systems (Fig. 2). The dynamics of the
laser is modeled with the following nonlinear differential
normalized system [1]:

(b)

FIG. 2. Energy levels of (a) isolated ion and (b) ions pairs.

Bd =A —
a 2 (1+d) 2Id,—

at
'Bd + =a&(1—d+ ) —a2z(d++d )/2+yI(2 —3d+ ),

Bt

=A —a2(1 —d+ )
—a~2(d+ +d )/2 yId—

aI= I+ A (1—2x)Id + Ax—yId
at

A —a2d=
a2+ 2I

—2a2a~2+A(a22+2a2) —
2( y~ a+a223+)AI

2(a2a22+y(a2+2a22)I+3y I )

2aza2z —az2A+2y(a2+a22)I+4y I2 2

2(aqaq2+y(a2+2a22)I+3y I )

(2)

where d = n 2
—n, is the population inversion for isolated

ions, d+ =nzz+n» with n2z and n&& are the populations
of levels 22 and 11 (see Fig. 2), I is the laser intensity, A is
the pumping parameter, y =o &/cr& where the crs are the
absorption cross sections (see Fig. 2) A:O'I N p~i,
a2 =r&lr2, a22 =rI/rz2, where Np is the erbium concen-
tration, ~I is the photon lifetime in the cavity, and ~2 and

72p are, respectively, the lifetimes of level 2 and 22. The
time is normalized versus the photon lifetime. For our
purpose, noise due to spontaneous emission is neglected
here.

The steady state is easily obtained for the population
terms [1]
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FIG. 1. Quenching efrect in ion pairs.
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where the bars stand for the steady-state values.
In [1], the steady-state intensity is one of the solutions

of a third order polynomial equation and has been calcu-
lated numerically. %'e use here a method which allows us
to obtain an approximate closed form expression for the
intensity. The starting point is the fact that the gain sat-
urates to its value at laser threshold (whatever the pump
above threshold, one always has gain plus losses equal to
0). In these conditions, one can write the following con-
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servation relation:

Bd
(1—2x) +xy (3)

In fact, the last relation is a direct consequence of (1) at
steady state. Relation (3) gives an equation for BI/BA
which can be estimated at laser threshold leading to the
slope of the laser characteristic at threshold:

A [2azz(1 —2x)+xy (azz+2az)]
8azz(1 —2x)+23 (azz 2az)(1 —2x)xy(2azz —yaz)+2(2az+2azz —azazz)xy +22 (2az —3azazz+azz)x y

(A4)

An approximate solution for the steady-state intensity
can thus be written assuming a linear characteristic
versus the pumping parameter:

I(A)=— (A —A ) .BI
th

In fact, it can be easily demonstrated that the evolution
of the intensity versus the pumping rate is slightly non-
linear in single-mode EDFL, the di6'erence with linearity
remaining very weak in the range r =1-3. The lasing
threshold is [1]

2a za zz 1+( 1 —2x ) A +xy A&a=
2azz( 1 x)+xy (2a2+azz )

The linear stability analysis of (1) around its steady
state leads to the following characteristic equation for the
eigenvalues [1]:

(A, —A, , )(A, —Az)(A. —A3)(A, —A3 ) =0,
where A, &, X2 are real negative numbers for any pumping
ratio (r =A/A, b) and A3= a+i co, The .damping
coeKcient a is negative for any r at low pair concentra-

tions (stability of the steady state) and positive in some
range of pumping rates for higher x (unstable steady
states: in this case stable self-pulsing solutions are ob-
tained). co is the eigenfrequency of the system and varies
as QA —A,z. It is convenient to represent the dynamical
behavior in a stability diagram which gives for any x the
particular r values for which a vanishes (Hopf bifurcation
[21]). The theoretical results are given in Fig. 3; open
circles correspond to experimental data from [12]. This
representation clearly shows the cw and self-pulsing
domains. Figure 4(a) shows an example of the self-
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FIG. 3. Stability diagram: theory {with ~i = 10 ns) and exper-
iment.

FIG. 4. {a) Example of self-pulsing operation obtained by nu-

merical integration of system {1)for x =10%, r =1.5. {b) Ex-
perimental self-pulsing obtained with an erbium. -doped fiber
having x = 1g%% at two times threshold (from [12]).
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III. THE TWO-MODE MODEL

Antiphase dynamics and chaos have been reported
when erbium-doped fiber lasers operate simultaneously
on two modes or two clusters of modes around A, = 1.55
and 1.536 pm [3,14] (similar results have also been re-
ported for resolved polarization eigenstates in EDFLs
[13]). The antiphase states correspond to the two mode
intensities related to the two wavelengths. In [14],exper-
imental results obtained with a fiber having a pair con-
centration x = 18.5% was reported. The dynamical
behavior was typically chaotic (spontaneous train of ir-
regular pulses) with particular periodic windows (2T and
3T) depending on the experimental conditions. Anti-
phase dynamics occurred between the two modes. In [3],
the same experiment was performed with a doped fiber
with intermediate pair concentration (x =7.5%). In this
case, starting from a stable cw state achieved at high
pumping level, it is possible to follow the evolution for
decreasing r. The scenario is typically cw —+T periodic
~2T periodic —+3T periodic ~ chaos ~T periodic. A
simple modeling of this behavior is achieved with a classi-
cal two-mode laser model including population dynamics
of ion pairs. This theory is developed in Refs. [3,9] and
investigated numerically for intermediate pair concentra-
tions and only above the second threshold. In the follow-
ing, we present an in-depth study of the bimode model.
In particular, the linear stability analysis is presented for
all the stationary states: off state, single-mode states, and
two-mode state. Moreover, the derivation of approxi-
mate solutions for the intensities leads to a closed form
expression for the second threshold, allowing a simple
evaluation of the anisotropic pumping parameter.

The dynamics of two-mode EDFLs is monitored by the
following equations [3]:
'Bd ] =A —a z( 1+d, ) —2d, (I, +PIz ), (8a)

pulsing operation obtained by numerical integration of
system (1) in the case x =10% and for a pumping ratio
r = 1.5. Note that the pulse period is about 80 ps, which
is in very good agreement with experimental data from
[11]. Figure 4(b) shows the experimental periodic self-
pulsing operation in the case x =18% and r =2.0. The
period is 60 ps in this particular case.

where y is the anisotropic pumping parameter and p the
cross-saturation parameter. Equations (8a), (8b), (Sc), and
(Sf) correspond to a classical two-mode laser and Eqs.
(Sc) and (8d) to the dynamics of ion pairs. In the follow-
ing we consider (without loss of generality) y ( 1. In such
conditions the first lasing mode is always I, .

This model includes the single-mode model with
the following adaptation of the parameters:
y = 1,P=O, d =(d, +d ) l2, I =I,+I .

IV. STATIONARY STATES
AND THEIR STABILITY

This section is devoted to the study of the stability of
the different stationary states. Approximate solutions for
the intensities and the second threshold are derived and
lastly compared to exact solutions.

A. Off state

d+ =1—,d =AA

2Q2

1 1

Q22 2Qp

The linear stability analysis leads to the following eigen-
values:

'A, ,
= —az (threefold degenerate),

Q22

'A3= —1+ A (1—2x)(di+Pdz)+ Axyd

associated to I, ,

'A4= —1+A (1—2x)(dz+Pd, )+ Axyd

associated to I&. All are real and negatives below the first
laser threshold 'A, h. For A='A, h, 'A,

3 vanishes and be-
comes positive up to the first threshold (instability of the
off'state above the first lasing threshold). This allows the
derivation of 'A, h.

The off state is characterized by Ij =O, I2=0 and is
stable for 0 ~ A ~ 'A, h. The steady state is easily obtained
from system (8):

1 d2=f 1
A — A

Q2 Q2

Bd2 =yA —az(1+ dz )
—2dz(PI i +Iz ),

c}d+ =a, (1—d+ ) —a,z(d+d )/2
at

+y (I, +Iz )(2—3d+ ),

(8b)

(8c)

2azazz 1+A (1 2x)(1+P)+ Axy
A 2azz(1+Py )(1—2x)+xy(2az+azz )

B. Single-mode states

(10)

ad-
=A—az(1 —d+ ) —azz(d+ +d )l2 —y (Ii +Iz )d

at

BI) =[—1+A (1—2x)(di+Pdz)+ Ad xy]Ii,
at

BI2 = [ —1+ A (1—2x)(dz+Pd, )+ Ad xy]Iz,at

(Sd)

(Se)

The only single-mode state of interest is characterized
by I,%0,Iz =0 and is stable for 'A, h

~ A ~ A, i,. With the
usual terminology, Ij is the strong mode. The other
single-mode state is unstable due to the choice of y & 1

and its threshold is greater than the other. The steady
state is easily derived for the populations
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A —'A, hI,(A)=, I( A,„).
A,h

—'A, h

(12)

Relation (12) is simply the equation of the straight line
connecting the point ('A, h,'Ii =0) to ( A,h', Ii( A,h)), in
order to obtain a continuous characteristic versus pump-
ing rate using the approximate solutions above the
second threshold.

The linear stability analysis leads to the characteristic
equation

(A, —'A5)P (A, ) =0,
where P (k) is a polynom of fifth degree and

(13)

'A, ~= —1+3 (1—2x)(d2+Pdi )+ Axyd

The second threshold is reached when 9.5 vanishes (insta-
bility of the single-mode solution). P (A, ) can be written in
the form

A —a2

a 2+2I )

yA —a2
d2=

a2+ 2I)
(11)—2a~a22+ A(a22+ 2a2 ) —2y (a~+ a 22 +3A)I,

2( a 2a ~ 2 +y ( a 2 +2 a 22)I i+ 3y I i )

2a2a~~ —a2~A+2y(a~+ a22)I i+4y I,
2(a2a22+y (a2+2a&2 )Il +3y'Il )

An approximate solution for the strong mode can be
written

With these new variables, system (7) becomes

aD = —2a2 a—zD +A(1+ y ) d—(1 —P)i D—(1+P)I,

ad = —azd +A(1 —y ) D(1——P)i —d(1+P)I,

ad+
=a2(1 —d+ )

—a22(d +d+ )/2+(2 —3d+ )Iy,
at

ad

at
aI
at

=A —a2(1 —d+ ) —a2z(d +d+ )/2 d I—y, (16)

Ad
2

(1—P)(1 2x—)i

+ —1+ (1+P)(1—2x)+ Ad xy I,AD
2

ai Ad
(1—P)(1 2x)I—

at 2

+ —1+ (1+P)(1—2x)+ Ad xy i .AD
2

d=o,

—2az+ A(1+ y )

a 2+I+pI

The steady-state values of the populations and i can be
expressed as functions of I [9]:

P(k) =(A, —'l. , )(A, —'A. ~)(A, —'A, 3)

X (A, —9.4)(A, —'A, f, ), (14)

—2a 2a 22+ 2a 2A+ a 22A
—2a 2Iy 2a 22Iy +6AIy

2(a2a~2+a2Iy+2a~2Iy+3I y )

where 'A,
&, 9,2, 9,3 are real negative numbers for any

pumping ratio and 'A,4=ex, +ice, . Depending on the ion-
pair concentration, a, can be positive, leading to a stable
self-pulsing operation. co, is the eigenfrequency of the
system and is responsible for the relaxation oscillations.
As in the case of the sin&le-mode model, the frequency
evolves according to QA —'A, i, .

C. Bimode state

2a2a22 —a22A+2a2Iy +2a22Iy+4I y

2(aza22+azIy+2a22Iy+3I y )

A(1 —y )(a@+I+PI )

(
—1+P)(2a& —A —Ay )

(17)

The bimode state is characterized by I,AO, Iz& aOnd

is stable for A ~ A,h. In order to derive the steady state,
let us introduce the more convenient variables defined by
I:9)

Using the same procedure as that used for the single-
mode model, we can write the following conservation re-
lation in order to derive an approximate solution for the
total intensity I:

D =(d, +d2),
d =(d, —dq),

I =(I,+I2),
i =(I, I2) . —

(15)

(1+P)(1—2x) +2xy

This equation leads to the slope of the total intensity es-
timated at its extrapolated threshold:
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BI &z&zz [azzPy(1 —2x) +xy(a~~+2a~ ) ]

A,'q[a~~yP (1—2x)+xy (2a~ —a~a~~+2a~~)] —2a~a~~[P (1—2x)+xy ]
(19)

with the notations p= p+ 1 and y =y+ 1. A,'z is the threshold for I (very close to the first laser threshold [9]) [3]:
2+2+22 1 + A ( 1 —2x )p+ Axy

azz(1 —2x)Py+xy(2az+azz )

An approximate solution for the total intensity is therefore obtained:

(20)

(21)

The difference intensity is related to the total intensity through the relation

a&+ (1+P)I
(1 —P) 2az —A(1+y)

The approximate solution at first order in A is

y) aza~zP[azzy/3(1 —2x)+xy(2az+azz)]l=
y(2 —P) A,'„[xy(2a~ —a~a~~+2a~~)+a~~P y(20~+a~~)] —2a~a~~[xy +P (1—2x)]

(22)

(23)

The threshold for the second mode A,& is achieved when
I=i, which leads to an approximate expression for the
second threshold:

(A, —bA, , )(A, —bA, )(A.—"A,, )(A, —"A,,*)

X (A, —A4)(A, —A4 ) =0, (26)

(24)

where A,„kzare real negative numbers for any pumping
rate and

A closed form expression is finally obtained:

b
X3—

CX) + l CO)

b
Ah +l cob

(27)

(1—/3)( 1+y )
A,„= A,„. (25)

1.0—

0.8—
2

O)g

The stability analysis around the steady state yields the
following characteristic equation [9]:

The damping coeKcient a& is negative for any pumping
ratio while a& is positive in some range of pumping rates
for intermediate or high ion-pair concentrations. ~& and
cu& are, respectively, the low and high frequency of the
system. The first one is characteristic of a bimode system
(cross saturation) and the second one is associated with
the classical relaxation oscillations. The low frequency
can be observed in the transient regime provided the two
modes are resolved while the higher frequency is always
visible in transient regimes (even for the total intensity).
The frequencies evolve according to the following rules:

x 0

s 04—

0.2—

~ ~ ~ ~00

0

4

0)l ~ ~ ~ ~ ~
~ ~ ~ ~ ~

~ ~ ~ ~ ~
~ ~ ~ ~

~ g ~ ~ ~

co& QA —'A,„. (28)

D. Discussion

This is demonstrated in Fig. 5, which gives the theoreti-
cal evolution of cu versus r.

2 3 4 5 6 7

FIG. S. Evolution of the square of the eigenfrequencies for
the bimode state.

In this section, we first use the approximate expres-
sions derived previously to fit the experimental values of
P and y which will be used in the numerical analysis.

The cross-saturation parameter (p) can be experimen-
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FIG. 6. Experimental evolution of the two eigenfrequencies
of an erbium-doped fiber laser with x =7.5% (from [3]).

FIG. 8. Exact (solid lines) and approximate (dashed lines)
evolution of the steady-state intensities.

2
1 —P
'+p (29)

The squares of the frequencies are linear functions versus
the pump parameter. With the experimental data given
in Fig. 6, we obtain P =0.5.

The anisotropic pumping parameter (y) can be experi-
mentally obtained using relation (25). Indeed, as previ-
ously mentioned, the first lasing threshold is very close to
the threshold for the total intensity: 'A,h——-A,'h. Under
these conditions, (25) leads to

At (1—p)(1+@)
2(y —P)

(30)

The knowledge of the cross-saturation parameter allows
us to estimate y. Typically, depending on the experimen-

1.8—
C0

ll
1.6—

1.4—

1.0 I
I

0.0 0.1 0.2 0.3 0.4 0.5

FICx. 7. Exact (solid line) and approximate (dashed line) evo-
lution of the thresholds.

tally determined with the evolution of the two eigenfre-
quencies of the laser versus the pumping ratio (see Fig. 6).
For a two-mode laser these frequencies are related one to
the other through the relation [2]

'2

tal conditions, the ratio of the thresholds ranges from
unity to 2 [3,14], leading to y =0.7—1. In the numerical
analysis, we shall take y=0 85. The other parameters
used in this paper are [1] ran=10 ms, r22=2 p,s, r& =200
ns, %0=5X10' cm, crI =1 6X10 ' cm s ', and

y =0.2.
Figure 7 gives the evolution of the thresholds versus

the ion-pair concentration. The solid lines correspond to
the exact solutions (obtained numerically), while the
dashed line corresponds to the approximate expression
for the second threshold [Eq. (25)]. The thresholds are
normalized with 'A,h(x =0). These results demonstrate
that for x ~0.2S there is a very good agreement between
the exact and approximate thresholds. Typically, the
available doped fibers present ion-pair concentrations
x ~ 25%%uo [12]. Note that in the case of perfect symmetry
between the two modes, i.e., y=1, both thresholds are
equal: A,h

= 'A, h
=A,'h.

Let us now compare the exact and approximate solu-
tions for the intensities. Figure 8 shows the evolution of
I, and I2 versus r. The solid lines are the exact solutions
obtained by numerical resolution of a third order po-
lynom, and the dashed lines are the approximate solu-
tions [Eqs. (12), (21), and (23)]. A small discrepancy ap-
pears, due to the slight nonlinearity of the exact charac-
teristics: obviously, this discrepancy increases when r in-
creases. Although the approximate solutions do not fit
the exact solutions very well, they permit a very good es-
timation of the second threshold value. The experimental
aspect of this point has been reported in [14].

V. NUMERICAL RESULTS

In this section system (8) is numerically solved using a
fifth order Runge-Kutta method with an adaptive in-
tegration step. %'e consider difFerent cases of interest:
weakly doped fibers (low x) operating in a cw regime and
heavily doped fibers (intermediate or high x) operating in
a self-pulsing regime. In the second case, the inhuence of
the ion-pair concentration on the dynamics is studied; in
particular, the route to chaos (when it occurs) is investi-
gated.
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A. %'eakly doped 6bers: stable steady states
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For low x values (x ~ 5%), a cw regime occurs whatev-
er the pumping ratio (stable steady-state solution. In
fact for the particular value x =0, system (8) reduces to

the model investigated in [2] which, in turn, corresponds
to a classical two-mode laser model [22]. In that case, it
is instructive to investigate the transient regime towar s
the cw operation. This is done in Fig. 9(a) for the two
modes and their sum in the case x =5%. This represen-
tation allows the visualization of the eigenfrequencies o
the system: the oscillations at the high frequency co&

period of about 30 ps) are in phase between the two
modes and the oscillations at the low frequency co&

(
'

d f b t 100 ps) are in antiphase between the two
modes. Similar results are typically obtained in wea y
doped fibers. These results confirm the predictions of the
linear stability analysis.

The values of the periods obtained numerically are typ-
ically two times lower than those measured in wavelengt

behavior is the same in both cases: the two eigenfrequen-
cies have been observed in either wavelength or polariza-
tion resolved experiments. An examp

~ ~

le of a transient re-
gime in a polarization resolved experiment is given in
Fig. 9(b) [23]. The two modes correspond here to the two
polarization eigenstates of a weakly doped fiber (x =5% .
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B. Heavily doped 6bers:
from simple to complex dynamics

We call heavily doped fibers those for which the ion-
pair concentration is greater than about 6% (unstable
steady state). Under such conditions, a great variety of
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FIG. 9. Transient regime towards the cw opo eration. (a) Nu-
merical results and (b) experimental data in polarization
resolved experiment (from [23]).

FIG. 10. Time evolution of the two modes fofor x =8%: (a) T
periodic for r =2.25 and (b) 2T periodic for r =1.7. The lower
(respectively, upper) curve represents I, (respec ive y,
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the chaotic regime, the first return map (not shown here
shows a two-dimensional distribution [9,24], suggesting
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b
that the correlation dimension of th te s range attractor
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FIG. 11. Bifurcation diagram for x =8%.
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dynamical behavior can be obser d d d'rve epen ing on the
values of x and r. In thhe following, we investigate some
difFerent t ical

' ' - '
ncen ra-yp' cases for increasing ion-pair concentra-

tions (i.e. x =0.08i.e., x = . ,0.082, 0.010, . . . ), leading smoothly
'

s, e pumping ra-from simple to more complex dynamic th
tio being the external control parameter in each case

I. Case x =8%
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Figure 10 shows two examples of the tern oral
behavior of theo the two modes for two pumping rates. A T-

o e temporal

periodic self-pulsing regime occurs from r =2 25 dr= . an a
ese period--periodic regime is obtained for r =1.7. The

ic orbits are stable. Note in the case of Fi . 10(b) h
'p p enomenon which occurs between the two

modes I,3 14 In terms of eigenfrequencies, this period
doubling can be interpreted as a frequency locking of the
low frequency on the subharmonic two of the hi h fre-

q y. t is more convenient to represent the dynamica
scenario on a bifurcation diagram h' h hw ic gives the maxi-
ma o the intensity as a function of th e pumping rate.

is is given in Fig. 11 for the first inode (I, ) in the case
x =8%. For decreasing pumping rates, the system fol-
lows the evolution cw ~T periodic +2T ' d'—

eriodic. The s o
periodic ~T

perio ic. The slope breaking appearing near r =1.35 is
due to the extinction of the second mode (the k

~ ~

e e wea
he transition from a stable cw state to a self-

pu sing operation occurs through a Hopf bifurcation [21]0

2. Case x =8.2%

For x =8.2%, chaotic behavior appears. This is illus-
trated in Fi . 12g. , which gives the time evolution of the
two modes for difFerent pumping rates: a T-periodic re-
gime is obtained for r =2.25 [Fig. 12(a)], for r =2.0 the
system is 2T periodic [Fig. 12(b)], 4T orbit
r = . [ ig. 12(c)], and finally a chaotic behavior is ob-
served for r = 1.75 [Fig. 12(d)]. The corresponding bifur-

n t is case, thecation diagram is shown in Fig 13 I h
ynamical scenario is cw ~T~2T~4T 8T h

~ ~ ~ ~

~ c aos
(with 4T-periodic window) ~4T~2T T. Th he chaos is
therefore reached through subharmonic bifurcations In
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FIG. 12. Time eevolution of the two modes for x =8.2%%uo. (a)
T periodic r =2.25, (b) 2T periodic r =2.0, (c) 4T periodic
r =1.81, and (d) chaotic r =1.75 Th le ower (respectively,
upper) curve represents I

&
(respectively, I~ ).
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ion-pair concentrations. No bistability is obtained for
this range of x. The bifurcation diagram is presented in
Fig. 16. The dynamical scenario for decreasing r values
is cw ~T~2T~4T~8T~ QP ~ chaos ~ QP
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FIG. 13. Bifurcation diagram for x =8.2%.

3. Case x =8.5% to x =11.5%

Similar results occur for x ranging from 8.5% to
11.5%. The bifurcation diagrams corresponding to the
particular case x =8.5% and 10% are given in Fig. 14
for increasing and decreasing pumping rates. The
dynamical scenarios are cw ~T~2T~4T~8T
~3T~ chaos ~T, for decreasing r and T—+ chaos
3T +QP (qua—siperiodic motion) ~2T~T cw, for in-
creasing r values. As shown in the diagrams, a general-
ized bistability occurs between the 2T- and the 3T-
periodic orbits. The range of pumping ratio for which
this bistability is observed decreases while x increases.
The calculated correlation dimension of the chaotic at-
tractor around r =1.75 is about 2.8 in the case x =10%
[9]. the QP regime is easily pointed out with the help of a
erst-return map which exhibits a closed one-dimensional
curve (with several possible branches); the attractor is a
torus T in the phase space [26]. An example is shown in

Fig. 15 for the ion-pair concentration x = 10% and
r =2.8.

From the experimental point of view, we have observed
the evolution cw ~T~2T~3T~ chaos ~T for de-
creasing r values in the case x =7.5% [3] (the same
behavior was observed for increasing r) The QP r.egime
has also been observed experimentally in [3] between the
2T and 3T regimes in a narrow range of pumping rates.
Nevertheless, no attention was given in this work to any
bistability. The predicted 4T- and 8T-periodic regimes
seem difficult to observe because they are localized in
very small pumping rate ranges. Note that the results
presented here for x = 10% complement those in Ref. [9]:
the periodic orbits 4T and 8T have not been previously
reported, nor has the bistability been obtained versus r.

4. Case x ~ 12%
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In this paragraph we investigate the case where
x =12/o and the results obtained are similar for higher

FIG. 14. Bifurcation diagram for (a) x =8.5% and (b)
x = 10% for increasing and decreasing pumping rates.
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sity is derived using the fact that the gain saturates to its
value at threshold. Numerical sim. ulations show that a
self-pulsing regime occurs for heavily doped fibers. This
instability is due to the quenching effect between two ex-
cited neighboring ions resulting in a fast saturable ab-
sorption.

A two-mode model has been presented and investigat-
ed with respect to the ion-pair concentration and the
pumping ratio. The stationary states (off state, single-
mode state, and bimode state) are derived and a linear
stability analysis has been performed. In the same way as
for the single-mode model, approximate solutions for the
intensities have been analytically obtained, leading to a
very good approximate expression for the second laser
threshold (associated to the weak mode). These results
lead to a simple experimental determination of both the

anisotropic pumping and the cross-saturation parame-
ters.

The numerical simulations had revealed a great variety
of dynamical behaviors. For weakly doped fibers
(x ~ 5% ), stable steady states are obtained and the results
are similar to those of a classical two-mode laser model.
A self-pulsing instability (T periodic and 2T periodic)
occurs in some range of pumping rates for x ranging from
about 6% to g%%uo. In the particular case where x =8%%uo,

the dynamical scenario for decreasing r is cw —+ T period-
ic —+2T periodic —+T periodic. The 2T orbits can be
viewed as a frequency locking of the low frequency on the
subharmonic 2 of the high frequency.

For slightly higher pair concentrations, a chaotic dy-
namics appears. For x =8.2%%uo, the chaos is reached
through successive subharmonics bifurcations. In the
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case where x ranges from about 8.5%%uo to 11.5%, a bista-
bility between 2T- and 3T-periodic orbits occurs versus r.
This implies the coexistence of two stable periodic attrac-
tors. For example, when the system is in a 3T orbit and r
is increased, the system evolves towards a stable T torus
which, when it becomes unstable, leads to a sudden
switch towards the stable 2T orbit. In the opposite case,
where r is decreased, a sudden switch occurs between the
8T orbit (which leads to chaos) and the stable 3T-periodic
orbit. Lastly, the case x =12% has been studied with
particular attention. In that case, the system does not ex-
hibit bistability versus r. The scenario for decreasing
pumping rates is cw ~T~2T~4T~8T~ QP
chaos ~ QP ~3T~ chaos (with periodic windows)
~T. The first QP regime is localized in a very narrow
range of r values. We have observed the progressive de-
struction of the torus towards a strange attractor and
finally the reconstruction of a new torus. Numerical re-

suits also demonstrated an unusual route to chaos.
Some of the theoretical results presented here have

been experimentally observed [1,3,11—14]. Nevertheless,
some points remain which need supplementary experi-
mental work: the bistability between periodic orbits and
the different route to chaos. The practical problem here
is essentially to obtain the adequate fiber with particular
ion-pair concentration; this last parameter is difficult to
control during the elaboration process of the fiber. An
attractive method to overcome this problem will be the
use of two sliced erbium fibers, respectively weakly and
heavily doped. The resulting ion-pair concentration can
be monitored by adjusting the respective lengths of the
fibers. From the theoretical point of view, it will be in-
teresting to investigate in the phase space (three dimen-
sional) the evolution of the attractors, in particular, the
transformation of a periodic or quasiperiodic attractor
into a strange attractor.

[1]F. Sanchez, P. Le Boudec, P. L. Fran9ois, and G. Stephan,
Phys. Rev. A 48, 2220 (1993).

[2] S. Bielawski, D. Derozier, and P. Glorieux, Phys. Rev. A
46, 2811 (1992).

[3] F. Sanchez, M. Le Flohic, G. M. Stephan, P. Le Boudec,
and P. L. Franqois, IEEE J. Quantum Electron. QE-31,
881 (1995).

[4] D. Pureur, M. Douay, P. Bernage, P. Niay, E. Delevaque,
S. Boj, J.-F. Bayon, and H. Poignant, J. Phys. (France) III
5, 237 (1995).

[5] K. Wiesenfeld, C. Bracikowski, G. James, and R. Roy,
Phys. Rev. Lett. 65, 1749 (1990).

[6] M. Georgiou, and P. Mandel, IEEE J. Quantum Electron.
QE-30, 854 (1994).

[7] K. Otsuka, Phys. Rev. Lett. 67, 1090 (1991).
[8] R. Leners and G. Stephan, Quantum Semiclass. Opt. 7,

757 (1995).
[9] F. Sanchez, M. Le Flohic, P. Besnard, P. L. Franglais, and

G. M. Stephan, J. Phys. (France) III 5, 281 (1995).
[10]S. Bielawski and D. Derozier, J. Phys. (France) III 5, 251

(1995).
[11]P. Le Boudec, M. Le Flohic, P. L. Franqois, F. Sanchez,

and G. Stephan, Opt. Quantum Electron. 25, 359 (1993).
[12] P. Le Boudec, P. L. Franqois, E. Delevaque, J.-F. Bayon,

F. Sanchez, and G. Stephan, Opt. Quantum Electron. 25,
501 (1993).

[13]E. Lacot, F. Stoeckel, and M. Chenevier, Phys. Rev. A 49,
3997 (1994).

[14] P. Le Boudec, F. Sanchez, C. Jaouen, P. L. Fran9ois, J.-F.
Bayon, P. Besnard, and G. Stephan, Opt. Lett. 18, 1890
(1993).

[15]P. F. Wysocki, J. L. Wagener, M. J. F. Digonnet, and H. J.
Shaw, Proc. SPIE 1789, 66 (1992).

[16]F. Auzel, D. Meichemin, F. Pelle, and P. Goldner, Opt.
Mater. 4, 35 (1994).

[17]J. L. Wagener, P. F. Wysocki, M. J. F. Digonnet, H. J.
Shaw, and D. J. Di Giovanni, Opt. Lett. 18, 2014 (1993).

[18]J. L. Wagener, P. F. Wysocki, M. J.F. Digonnet, and H. J.
Shaw, Opt. Lett. 19, 347 (1994).

[19]E. Delevaque, T. Georges, M. Monerie, P. Lamouler, and
J.-F. Bayon, IEEE Phot. Tech. Lett. 5, 73 (1993).

[20] A. Kellou, H. Ladjouze, F. Sanchez, and G. M. Stephan,
Opt. Quantum Electron. 27. 741 (1995).

[21] G. Iooss and D. D. Joseph, Elementary Stability and Bi
furcation Theory, Undergraduate Texts in Mathematics
(Springer-Verlag, New York, 1990).

[22] H. Statz and G. DeMars, J. Appl. Phys. 35, 1377 (1964).
[23] B. Meziane, F. Sanchez, M. LeFlohic, P. L. Fran9ois, and

G. Stephan (unpublished).
[24] K. Tanii, M. Tachikawa, T. Tohei, F.-L. Hong, and T.

Shimuzu, Phys. Rev. A 43, 1498 (1991).
[25] P. Grassberger, and I. Procaccia, Phys. Rev. Lett. 50, 346

(1983).
[26] P. Berge, Y. Pomeau, and C. Vidal, Order Within Chaos

(Wiley, New York, 1984).


