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Finite-size scaling Casimir force function: Exact spherical-model results
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The excess free energy due to the finite-size contributions to the free energy of the system in a film

geometry characterizes a fluctuation-mediated interaction that is termed the Casimir force, or, in the

case of a fluid confined between two parallel walls, the solvation force (or the disjoining pressure). The

analog of these forces within the three-dimensional mean-spherical model with periodic boundary condi-

tions and geometry I.X ~ is investigated in the presence of an external magnetic field. The correspond-

ing analytical expressions for the finite-size scaling functions of the excess free energy and the Casimir

(solvation) force and their asymptotic behavior in the vicinity, below and above the critical temperature

T„are derived and evaluated numerically. In contrast to the Ising-like case the scaling functions of the

excess free energy and of the Casimir force below T, in zero magnetic field do not tend exponentially fast

with L to zero, but, tend to some universal constant. The last is supposed to be true for all 0(n), n & 2

models.

PACS number(s): 05.20.—y, 05.50.+q, 75.10.Hk

I. INTRODUCTION

A simple O(n)-symmetric (n ~ 1) system with a
geometry L X ~ (and under given boundary conditions r
imposed across the direction L) is a standard statistical
mechanical model for describing a magnet, or a fluid,
confined between two parallel plates of infinite area. One
important quantity which arises naturally in the thermo-
dynamics of these confined systems is

( )
(3f'"(T,L)

)

where f'"(T,L) is the excess free energy

f'"(T,L)=f (T L) Lfb(T) . — (2)

Here f (T,L) is the full free energy per unit area (and per
k~ T) of such a system and fb is the bulk free energy den-

sity.
In the case of a fiuid (then one actually has to consider

the excess grand potential per unit area and the deriva-
tive is performed at constant chemical potential p and
temperature T) f(. . .

~
is termed the solvation force [1,2]

f„„i( smoeti mes called the disjoining pressure) whereas
in the case of a magnet one speaks instead about the
Casimir force [3,4] fc„;;, (and the derivative is per-
formed at constant temperature and magnetic field h).

Depending on the boundary condition f '"( T,L ) may or
may not contain contributions independent of L. For the
Ising-like systems these can be the surface free energies

f, i( T) and f, 2( T), and the interface free energy f, ( T)
(for brevity we consider the dependence on the tempera-
ture T only). For the O(n) models these will only be the
contributions stemming from the surface free energies be-
cause the analog of the interface free energy is the helici-
ty modulus Y( T) and the corresponding contribution is
of the order Y( T)/L.

The solvation force in two-dimensional Ising strips has

been investigated recently by Evans and Stecki [2],
whereas the Casimir force in 0 (n) systems has been con-
sidered for T ~ T, by Krech and Dietrich [4] by means of
the field-theoretical renormalization group theory in 4 —e
dimensions. (For the Ising-like case they have also de-
rived some results for T (T, .) The most results available
at the moment are for two-dimensional systems at T = T,
(which can be treated by conformal-field theory methods)
where the Casimir force reduces to the so-called Casimir
amplitudes 6 . For d =3 the results for the Casimir am-
plitudes available in the Ising-like case have been ob-
tained by Migdal-Kadanoff renormalization-group calcu-
lations [5] and by some interpolation of the exact values
for d =2 and d =4 [4]. (For a general review on the
Casimir forces see [3]). For n ~ 2 the only existing results
are obtained by the e-expansion technique, where the cal-
culations are performed up to the first order in e and in
the final expressions e is set equal to 1 [4]. For the
periodic boundary conditions

~(]) 1
5 n +2

per per (3)

where 6„"„' is the one-loop calculation result. As is well

known, the infinite translational invariant spherical mod-
el is equivalent to the n ~ ~ limit of the corresponding
n-component system [6]. So, the direct investigations of
the spherical model will provide independent additional
information to these field-theoretical results. [As is clear
from Eq. (3) at e= 1 for n large enough (n )22) b, „and
5"„' will be even of different sign; therefore it makes no
sense simply to take the limit n —+ oo there. ]

In the present article we investigate the analog of the
Casimir (solvation) force within the three-dimensional
mean-spherical model. We focus only on the case of
periodic boundary conditions (then simply f, i=f, z=—0)
in the presence of an external magnetic field h. We recall
that within the standard finite-size scaling theory (see,
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f '"(t L)=L ' "X'"(atL', bhL '), (4)

e.g., [7] for a general review) near the critical temperature
T, (of the corresponding bulk, i.e., L = ~, system) the
behavior of f'" for periodic boundary conditions is given
by

pressions for investigation of the excess free energy and
the Casimir force. Section III contains the results show-
ing the finite-size behavior of these quantities in the
finite-size critical region, as well as above and below the
critical point. The paper closes with concluding remarks
given in Sec. IV.

where t = ( T —T, ) /T, is the reduced temperature, a and
b are nonuniversal scaling factors, X' is the universal
(usually geometry dependent) scaling function, and v and
b, are the corresponding (universal) scaling exponents.
This slow algebraic decay of f '" (and, therefore, of
fc„;;,) is, of course, associated with the bulk critical
fluctuations, i.e., with the divergence of the bulk correla-
tion length gb[g&(t)-t ', t)0]. In the Ising-like case
(n = 1) it is a well established fact that f" tends to zero
exponentially fast with t., when L, ~ ~ at fixed t and h.
The same is true both above (t )0) and below (t & 0) T, .
The fundamental fact connected with this behavior is
that away from the critical point the bulk correlation
length is finite (usually a few lattice spacings). But for the
O(n), n )2, models at h =0 this is true only above T, .
Below T„due to the existence of soft modes in the sys-
tem (spin waves) gb is identically infinite. So, it seems
conceivable that in such models f'" below T, will not
tend exponentially fast with t. to zero, which, in turn,
will lead to a much greater (in comparison with the
Ising-like case) Casimir (solvation) force Of cour. se, close
to the critical 'point the behavior of' fc„;;,will be given

by [see Eqs. (4) and (1)]

fcasim, r(t, h)=L Xcasimir(xi~x2) ~

where x, =atL ' ",x2 =bhL, , and

1 aXc„;;,(x i,x2 ) = (d —1 )X'"(xi,x2 )
——x i

X'"(xi, x2 )
v Bx 1

II. THE MODEL

We consider the ferromagnetic mean-spherical model
on a fully finite d-dimensional hypercubic lattice Ad of

~
A

~
sites and with block geometry L i XL2 X. . . XLd,

where L;, i = 1, . . . , d are measured in units of the lattice
spacing. The Hamiltonian has the form

P&~([o;],E~)= —
—,'K g J,'a, o +s g o, hg o—

, .
iEA i EA

(7)

Here o. , E-R, i EAd [o., =—o(r;)] is a variable, describ-
ing the spin on lattice site i (at r, ), s is the spherical field,
E is a dimensionless coupling, J; is a matrix with dimen-
sionless elements, so that (K/P) J,' is the exchange energy
between the spins at sites i and j (of course, J,' =J'; ), and
h is the external magnetic field. The dependence on the
boundary condition is denoted by a superscript ~.

In the mean-spherical ensemble the partition function
is given by

Zd"(K, h, s; L)

=f J gd, p[ —P&'([;]; )],
RieA

(8)

Fd"(K,h;L) =sup[ —lnZd'(K, h, s;L)—
s~A~ ] . (9)

where L—=(L„.. . , Ld). Then the canonical free energy
Fd"(K,h;L) is defined [in units of (kii T) '] by the
Legendre transformation

——x2 X'"(x,x ) .2 g 1 2

Note, that Xc„;;,will again be a universa/ function of x,
and x2. We note that for finite-size systems this means
that Xc„;,, will be the same for all systems of the same
universality class and geometry and boundary conditions.
It is be1ieved that if the boundary conditions ~ are the
same at both surfaces Xc„;;,will be negative. In the
case of a Auid confined between identical walls this im-
plies that then the net force between the plates will be at-
tractive for large separations. One of the goals of the
present article is to check this general expectation on the
example of one exactly solvable model.

The article is organized as follows. In Sec. II we briefly
describe the model and present convenient starting ex-

I

Let us now suppose that the periodic boundary condi-
tions are applied. Then, for the nearest neighbor interac-
tions (Jp~= 1, if i and j are the nearest neighbors under
the applied set of boundary conditions, and zero other-
wise) the eigenvalues J'~'(k) of the matrix Jt' are

2~k
J'~'(k) =2 g cos

i =1 L,-

(10)

Performing now the integration in (9) and taking the
limits L, —+ ~, for i =2, . . . , d, we obtain (L, —=L)

where k=(k„. . . , kd ); k; =0, . . . , L, —1; i =1, . . . , d.
It is convenient to replace the spherical-field s by

another field X, defined as

A, =2s/K —2d .

fL (K, h;d)=sup —' f exp( —x)——exp( —Ax )Sg(x) [exp( —2x)Io(2x)]
oo dX 1 h

o x I. 2 A,K

+—ln —2dE1 K
2 2' (12)
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where fI (K,h;d) is the free energy density and

2~kSg(x)= g exp —2x 1 —cos
~=o

The supremum on the right-hand side of Eq. (12) is attained at a value A, L that is determined by

(13)

dx exp —Lx S x exp —2x Io 2x " '+ =E .
0 A,LK

From Eqs. (12) and (14), taking into account that

lim —Sg (x)=exp( —2x)IO(2x),
1

~ I.
we obtain for the excess free energy

f'"(K,h;L, d)/L =
—,
' f [exp( —2x)IO(2x)]"

0 X

X [exp( —2 „x)exp( —2x)IO(2x) ——exp( —
A.L x)Sg (x)]+—h

1

(14)

+—K(A, „—XL ) . (16)
1 1

~L 2

Here A, (K, h) is the solution of the spherical-field equa-
tion for the corresponding bulk system

h 2

w„(x„)+ (17)
A, K

where

8'd(X) = f exp( —Ax )[exp( —2x)IO(2x))" (18)

is the d-dimensional Watson function. As is clear from
Eqs. (14), (17), and (18) the left-hand side of Eqs. (14) and
(17) are monotonously decreasing functions of A, L and

, respectively. Therefore, if its exists, the solution of
Eqs. (14) and (17) for a given K and h will be unique.

Equations (12)—(18) provide the basis of our further
analysis.

III. FINITE-SIZE BEHAVIOR OF THE EXCESS
FREE ENERGY AND THE CASIMIR FORCE

Up to now we have not specified the value of the space
dimension d. Therefore, the above expressions are quite

general. Since our main interest is concentrated on
three-dimensional systems, in the remainder of the paper
we will only consider the case d =3. As is well known,
the critical temperature of the system is then given by [8]

K, = f dx[exp( —2x)IO(2x)] =0.25273 . (19)

f'"(K,h;L) =L X'"(xi,xz), (20)

with

We will be interested in the region of thermodynamic pa-
rameters where A,l « 1 (and therefore A.„«1,too), i.e.,
in the behavior of the system close to the critical point
K =K„h =0 and when K )K, and ~h~ &&1. Using the
technique developed in [9] and having in mind that for
the three-dimensional spherical model v= 1 and 6=5/2,
it can be shown that in the vicinity of the critical pointf'" is

( 1 )k(yk+1 yk+1 )X'"(x„x~)=,'(4') ~ g—, i/4~ f dx—x [1+2R (41r x)]exp[ —yLx](k + 1)!(k—1/2)

—2 f dx x '~2R (1/4x)exp[ —yLx]+ f dx x exp( —y„x)
0 1

1 2 1 1 1+—xz —— + —x, (y„—yI ),
O'L

(21)

where

R(x)= g exp[ —xq ],
q=1

(22)

I

Here yL is the solution of the equation of the spherical
field for the finite system [see Eq. (14)] which can be writ-
ten in the form

yL = A.LI. , y =A. L

x, = (K —K, )L, x, =K "hI. '"
xp(4~)' - —x, + V(yL )=0,
3'L

where

(24)
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V(y) =2f x R exp( —yx)dx
1

0 4x

+&4mf'x [1+2R (4m' x)]exp( —yx)dx
1

2—2—Very —&y f x [exp( —x) —1]dx .

(25)

In order to obtain the above expression use has been
made of the identity
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( 1)k k+1

0 (k + 1)!(k—1/2)
4&7r

y

—y—'"f "x '"exp( —x)dx

FICx. 1. The finite-size scaling function of the excess free en-

ergy is given as a function of L {K,—E)/K, for h =0. The func-
tion is universal.

——', [1—exp( —y)] .

For the infinite system, by using the asymptotic expan-
sion of the Watson function (see, e.g., Ref. [8]; ~A,

~
&&1)

the corresponding equation of the spherical field can be
recast in the very simple form

fore in this case f '" (and, of course fc„;,, too) will tend
exponentially fast with L to zero. In the opposite case
when x, —woo (i.e., when T is fixed below T, and L~ oo)

one obtains y„=0 and yI «1[yI =exp( —4~x, )].
Then, as follows from Eqs. (29) and (21):

V'y . . (27) lim Xc„;;,(x „0)= ——g(3),1

—+ oo 7T
(31)

From Eqs. (1) and (20) it immediately follows that

~ca.hami, (K,h; L)=L Xcasimir(x i ~x2) ~

where

(28)

5 2 1Xc„;,,(x»x2) =2X'"(x»x2) ——x2

1——x, (y„—yI ) . (29)

As we see, the results for the spherical model [Eqs. (20),
(21), (28), and (29)] are in full agreement with the predic-
tions of the finite-size scaling theory [Eqs. (4) and (5)].
Now we will examine the behavior of the scaling func-
tions X"and Xc„;;,in different regimes of K, h, and L.
First, let us mention that if x, =0 (1) and x2 =0 (1) (i.e.,

in the "critical region" of the finite system) the solutions
of the spherical-field equations will be also y „=0 ( 1) and
yL=0(1) and, therefore, fc„;;,=0(L ). To proceed
with the other cases we need the asymptotics of the func-
tion V:

X'"(0,0)—:b, „=—0. 153 (32)

The corresponding value of the spherical field is

y, =0.926. Having in mind that according to Ref. [10]
in the vicinity of T, the finite-size correlation length gl
in the considered model system under periodic boundary

-0.05

where g is the Riemann's zeta function. For the inter-
mediate region x i

=0 (1) numerical calculations are una-
voidable. The corresponding results for the excess free
energy [Eq. (21)] are given in Fig. 1 and for the Casimir
(solvation) force [Eq. (29)] in Fig. 2. We see that the
Casimir force is negative in the whole temperature re-
gion, as is to be expected "generally" for systems with
"identical boundaries" [2]. At T = T, the relation

fc„;;,=—(d —1)b,~,g defines the universal finite-size
amplitude b „,commonly denoted as the Casimir ampli-
tude. The numerical estimation of X'"(0,0) gives

—2v'cry +0[exp( —v'y )], yahoo
&(y) = ' —&4@in(y)+ 0 (y), y ~0 . (30)
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Let us first consider the case of zero magnetic field.
Then, when x, ~—oo (i.e., T is fixed close above T, and
L ~ oo) it can be easily shown that the solutions of the
corresponding spherical-field equations are yL »1 and
y »1 and that both equations become identical up to
corrections exponentially small in &y (where y is either
yl or y ). Next, according to Eqs. (21) and (26) this
means that (up to functions which are exponentially small
in &y ) X'" is a function symmetric inyI andy . There-
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-0.35

FICi. 2. The universal finite-size scaling function of the
Casimir {solvation) force Xc„;;,as a function of L {E,—E)/E,
for h =0.
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[x2 ))x„' see case (a) above], when the magnetic field is
strong enough in order to suppress the efFect of the spin-
wave excitations. If the spin waves are essential [i.e.,
when hL =O(1) and T (T, ] the Casimir force is of the
same order as in the 6nite-size critical region. Further,
we have evaluated numerically the universal Casimir am-
plitude b,~„=—0. 153 [see Eq. (32)]. For comparison we
give the corresponding result for the Ising universality
class b, „=—0. 11 obtained by the e-expansion (up to the
first order in e) technique. In some sense the best avaii-
able alternative estimation of this amplitude is obtained
by some interpolation procedure [4], using the data from
the c expansion, but also the exact values for d =2 and

d =4. In this way one obtains 6 „=—0. II5, which is
surprisingly close enough to the value reported above for
the spherical model. Finally, we would like to mention
that it is worthwhile to obtain within the spherical model
the finite-size scaling functions of the Casimir force (and
the corresponding Casimir amplitudes) under other, e.g. ,
antiperiodic, boundary conditions also. We note that for
boundary conditions that are not identical at both
con6ning the system surface planes the Casimir force is
expected to be positive in the whole region of the thermo-
dynamic parameters. We hope to return to this problem
later.
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