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We introduce a measure of complexity in terms of the average number of bits per time unit nec-
essary to specify the sequence generated by the system. In dynamical systems with small random
perturbations, this indicator coincides with the rate K of divergence of nearby trajectories evolving
under two diAerent noise realizations. The meaning of K is discussed in the context of the informa-
tion theory, and it is shown that it can be determined from real experimental data. In the presence
of strong dynamical intermittency, the value of K is very di8'erent from the standard Lyapunov
exponent A computed considering two nearby trajectories evolving under the same realization of
the randomness. However, the former is much more relevant than the latter from a physical point
of view, as illustrated by some numerical computations for noisy maps and sandpile models.

PACS number(s): 05.45.+b

I. INTRODUCTION

In deterministic dynamical systems there exist well
established ways to define the complexity of a tem-
poral evolution in terms of Lyapunov exponents and
Kolmogorov-Sinai entropy. However, the situation be-
comes much more ambiguous in the presence of a random
perturbation, or more in general a randomness, which are
always present in physical systems as a consequence of
thermal fluctuations or uncontrollable changes of control
parameters and in numerical experiments because of the
roundoff errors [1].

In the literature, a first rough conclusion is that the
presence of a small noise does not change the qualitative
behavior of the dynamics [2]. In the case of a regular
(stable) system, the random perturbation just changes
the very long time behavior by introducing the possi-
bility of jumps among different attractors (stable fixed
points, stable limit cycles, or tori). A familiar example is
the Langevin equation describing the motion of an over-
damped particle in a double well.

Even in the opposite limit of chaotic dissipative sys-
tems, the presence of noise is expected not to change
the qualitative behavior in a dramatic way. The typical
situation is the following: (a) the strange attractor main-
tains the fractal structure at larger scales, although it is
smoothed at small scale O(o), if cr is the strength of the
noise; (b) the value of Lyapunov exponents difFers from
the unperturbed one of a quantity O(o).

However, the combined effects of the noise and of
the deterministic part of the evolution law can produce
highly nontrivial, and often intriguing, behaviors [3—8].
Let us mention the stochastic resonance where there is a
synchronization of the jumps between two stable points
[9—12) and the phenomena of the so-called noise-induced
order [7] and of the noise-induced stability [5,6].

In our opinion one of the main problems is the lack of a
well-defined method to characterize the "complexity" of
the trajectories. Usually [2,5,7], the degree of chaoticity

is measured by treating the random term as a usual time-
dependent term, and therefore considering the separation
of two nearby trajectories with the same realization of the
noise. In this way it is possible to compute the maximum
Lyapunov exponent A associated to the separation rate
of two nearby trajectories with the same realization of
the stochastic term.

Some authors thus argue that there exists a phe-
nomenon of noise-induced order [7], when at increas-
ing the strength 0 of the random perturbation, A

passes from positive to negative. Even the opposite phe-
nomenon (noise-induced instability) has been observed:
at increasing 0, A can pass from negative to positive
[5,6]

Although the Lyapunov exponent A is a well-defined
quantity, it is neither unique nor the most useful charac-
terization of complexity. In addition, a moment of reflec-
tion shows that it is practically impossible to extract A

from experimental data.
In this paper we introduce a more natural indicator

of complexity in random dynamical systems computing
the separation rate of nearby trajectories evolving in two
different realizations of the noise, instead of only one.
Let us stress that such a procedure exactly corresponds
to what happens when experimental data are analyzed by
the algorithm of Wolf et al. [13]. Basically, our measure
of complexity is related to the average number per time
unit of bits necessary to specify the sequence generated
by a random evolution law. Our proposal is obviously
inspired by the pioneristic contribution of Shannon [14].

We stress the fact that even in purely deterministic
systems, if many characteristic times are involved, e.g. ,
turbulence, the maximum Lyapunov exponent can have
a very limited physical relevance. In particular, the pre-
dictability time can be much larger than A i [15].

The outline of the paper is the following. In Sec. II
we introduce the simplest way to treat the randomness
by discussing two specific examples: the Langevin equa-
tion describing the motion of an overdamped particle in
a double well and the case of the so-called stochastic res-
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onance. These two examples provide a clear evidence of
the limitations that arise when the Lyapunov exponent
is computed by treating the noise term as a usual time-
d.ependent term as well as of the necessity of a better
characterization of the complexity of "noisy" systems.

Sections III and IV are devoted to the definition of an
appropriate indicator of complexity, respectively, for dy-
namical systems with noise and random dynamical sys-
tems. For this last case, where the randomness is not
simply given by an additive noise, we discuss two exam-
ples of systems which can be described. by random maps:
a two block earthquake model [16] and sandpile models
[17], an interesting example of self-organized criticality
[181

The basic features of random maps are discussed in a
one-dimensional map, which exhibits interesting behav-
iors, like the so-called on of/ inte-rmittency [19].

Section V discusses in detail the case of sandpile mod-
els with respect to the definition of complexity and to the
predictability problem. In Sec. VI we discuss the results
and we draw the conclusions.

II. NAIVE APPROACH: NOISE TREATED
AS A STANDARD FUNCTION OF TIME

The simplest information about the chaoticity of noisy
systems can be obtained by treating the random term as
a usual time-dependent term, and therefore considering
the separation of two nearby trajectories with the same
realization of the noise. Such a characterization can be
misleading, as illustrated in the following example.

= lim —ln[z(t)~
t—+oo g

1
llm

t —+oo g
0 V(x(t'))dt'

= —C O.'.V(z)e ~& i~ dz

(a.v( ))'.— ~.i~.d* & 0. (4)

This result is rather intuitive: the trajectory x(t)
spends most of the time in one of the "valleys" where
—02 V(x) & 0 and only short periods on the "hills"
where —0 V(x) ) 0, so that there is a decreasing of
the average of the logarithm of the distance between two
trajectories evolving in the same noise realization. Let-
us remark that in Ref. [20], using a wrong argument, an
opposite result is claimed. .

As matter of fact, A & 0 implies a fully predictable
process only if the realization of the noise is known. In
the more sensible case of two initially close trajectories
evolving in two difFerent noise realizations, after a certain
time T, the two trajectories will be very distant since
they will be in two different "valleys. " For o. m 0, by the
Kramer formula, one has T exp AV/o, where AV is
the difference between the values of V on the top of the
hill and on the bottom of the valley.

The result obtained for the one-dimensional Langevin
equation can be easily generalized at any dimension for
gradient systems if the noise is small enough.

Let us consider the system

OV
x; = — + v'2~n, ,Bx'

A. Langevin equation

dx BV(x) + V'2~g,
dt Ox

where V(x) diverges for ~z~ -+ oo and it has more than
one minimum, e.g. , the usual double well V = —x /2 +
x /4, and q(t) is a white noise.

The Lyapunov exponent A associated to the separa-
tion rate of two nearby trajectories with the same real-
ization of the stochastic term q(t), is

1= lim —ln ~z(t)~,
taboo g

(2)

where the evolution of the tangent vector [that should be
regarded as an infinitesimal perturbation of the trajec-
tory x(t)] is

dz BzV(x(t))
dt Bx2

Let us consider the one-dimensional (1D) Langevin
equation

where (g;(t)q~(t')) = 8; ~h(t —t'). Denoting with R
P ~z; ~' one has

1 dR2(t) B2V

2 dt - Oz, Bz

= —('(') A(')'(')) & —t(*(t))R (t)

where l(z) is the minimum eigenvalue of the matrix A
whose elements are

For the Lyapunov exponent A one obtains

lim —ln & —lim — l (z(t') )dt'1 R2(t) . 1
R2 (0)

1
l(x) exp ~ dx . (8)C

Since l(z) Is positive around the minimum it follows
that A & 0 for small values of o. From a more rigorous
discussion see [21].

B. Stochastic resonance with and without noise

Since the system is ergodic with invariant probability
distribution P(z) = Ce ~ i~, one has

Let us now discuss a deterministic system close to the
onset of chaos when the control parameter varies periodi-
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cally in time. We consider the set of difI'erential equations
which is a slight modification of the Lorenz model [22], 40—
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dx/dt = 10(y —x),
dy/dt = —xz + R(t)x —y,
dz/dt = xy —-,'z,

(9)

where the control parameter has a periodic time varia-
tion:

R(t) = Ro —A cos(2vrt/T) (10)
10—

In our case, the periodic variations of B roughly mimic
the seasonal changing on the solar heat inputs.

An interesting situation is when the average Rayleigh
number Ao is assumed to be close to the threshold
B „=24.74 for the transition from stable fixed points to
a chaotic attractor in the standard Lorenz model. The
value of the amplitude A of the periodic forcing should be
such that R(t) oscillates below and above R„. For very
large T, a good approximation of the solution is given by
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x(t) = y(t) = + -[R(t) —l]z(t) = R(t) —1,
which is obtained by the fixed points of the standard
Lorenz model by replacing R by R(t). The stability of
this solution is a rather complicated issue, which depends
on the values of Bo, A, and T.

If Bo is larger than B „ the solution is unstable. In
this case, for A large enough (at least Ro —A & R, ) one
observes a mechanism similar to that of the stochastic
resonance in bistable systems with random forcing. The
value of T is crucial: for large T the system behaves as
follows. Let us introduce

(12)

the times at which R(t) = R,„
For 0 & t & Tq, the control parameter R(t) is smaller

than B „so that the system is stable and the trajec-
tory is close to one of the two solutions [Eq. (9)]. For
Tq & t & T2, one has R(t) ) R,„and both solutions
[Eq. (9)] are unstable so that the trajectory in a short
time relaxes toward a sort of "adiabatic" chaotic attrac-
tor. The chaotic attractor smoothly changes at varying
B above the threshold B „,but if T is large enough, this
dependence can be neglected in a first approximation.
However, when R(t) becomes again smaller than R, , the
adiabatic attractor disappears and, in general, the sys-
tem is far from the stable solutions [Eq. (9)]. But, since
they are attracting, the system relaxes toward them; see
Fig. 1(a).

For a detailed analysis of this behavior see Ref. [23].
It is worth stressing that the system is chaotic, i.e., the

first Lyapunov exponent is positive, although the corre-
lation function of the variable z does not decay as a con-
sequence of strong correlation between the regular inter-
vals.

Let us now discuss the effect of a random forcing, of
strength o, in the case where R(t) R,„changes sign dur-—
ing the time evolution but the solutions [Eq. (9)], in the
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FIG. 1. (a) z(t) vs t/T for the system (9): Ro ——25.5,
A = 4, and T = 1600. (b) z(t) vs t/T for the system (13):
Ro = 20.0, A = 5, T = 1600, and ~2o = 0.15.

absence of the noise, are stable. In practice, we consider
the Langevin equation

dx/dt = 10 —(y —x) + v 2or1i,
dy/dt = —xz + R(t)x —y+ v'2og2,

dz/dt = xy —sz + v 20"gs

where q, (t) are uncorrelated white noises, i.e. ,

(I'(t)%(t )) = ~' ~(t —t ).
The numerical study of the model reveals a phe-

nomenology very close to the original stochastic reso-
nance. For small values of o. one has the same quali-
tative behavior obtained at 0. = 0, while for 0. slightly
larger than a critical value o „one has an alternation of
regular and irregular motions; see Fig. 1(b). Now the
Lyapunov exponent, computed treating the noise as an
usual time-dependent term, is negative, i.e., two trajec-
tories, initially close, with the same realization of the
random forcing do not separate but stick exponentially
fast.

Figures 1(a) and 1(b) show in a clear way how, if noise
is involved, one can obtain simulations rather close either
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in the case of a positive Lyapunov exponent [Fig. 1(a)]
or with a negative Lyapunov exponent [Fig. 1(b)].

The two above examples show the limitation of the
Lyapunov exponent computed treating the noise term as
a usual time-dependent term for the characterization of
the "complexity" of noisy systems.

III. COMPLEXITY IN DYNAMICAL SYSTEMS
%ITH NOISE

The main difBculties to define the notion of complex-
ity in an evolution law with a random perturbation al-
ready appear in 1D maps. In fact, the generalization to
N-dimensional maps or to coupled ordinary differential
equations is straightforward.

Let us therefore consider the model map

x(t + 1) = f [x(t), t] + cru) (t), (i4)

where t is an integer and io(t) is an uncorrelated random
process, e.g. , m are independent random variables uni-
formly distributed in [

—1, 1]. The maximum Lyapunov
exponent A defined in (2) is given by the map for the
tangent vector:

&(t+1) = f'[z(t) t]z(t) (15)

where f' = df/dx At o =. 0, Ap is the Lyapunov expo-
nent of the unperturbed map.

In order to introduce a more natural indicator of com-
plexity in noisy dynamics it is convenient to follow a quite
different approach, where two realizations of the noise,
instead of only one, are used [24].

Before discussing our alternative definition of chaos in
noisy systems, we must briefly recall what are the char-
acterization of intermittency in deterministic dynamical
systems. An efFective Lyapunov exponent [25,26] has
been introduced to measure the fluctuations of chaoticity

(i6)

1
p; = —ln —.

bo
(17)

However, we sample the expansion rate in a nonuniform

It gives the local expansion rate in the interval [t, t + ~].
The maximum Lyapunov exponent is thus given by a
time average along the trajectory x(t): Ap

——(pi) for
7 W 00.

Let us define the new indicator of complexity in the
framework of the deterministic map with no random per-
turbation where it coincides with Ap. Let z(t) be the tra-
jectory starting at x(0) and x'(t) be the trajectory start-
ing at x'(0) = x(0) +bz(0) with bp ——]bz(0)

~

and indicate
by ri the maximum time such that ~z'(t) —x(t)

~

Then, we put z'(wi + 1) = z(wi + 1) + bx(0) and define r2
as the maximum r such that ~z'(wi + r) —z(wi + r)

~

( 6,
and so on. In our context, we can define the effective
Lyapunov as

way, at time intervals 7;. As a consequence the probabil-
ity of picking p, is p; = w;/ P,. 7'; so that

1 ".
lim —)Nwoo N

This definition without any modification can be extended
to noisy systems by introducing the rate

bz(t+1) = f'[x(t), t]bx(t) + o~(t),
(2o)

For the sake of simplicity we discuss the case
~
f'[x(i), i]~ = const = exp Ap, where (20) gives the bound

on the error:

~bz(t)~ ( e"' (bp+ cr) with cr =
e o —1

(21)

This formula shows that bo and 7 = 7 are not indepen-
dent variables, but are linked by the relation

e"' (bp + cr) = A . (22)

As a consequence, we have only one free parameter, say
w, to optimize the information entropy K in (19), so that

which coincides with Ap for a deterministic system (o =
0). When o = 0 there is no reason to determine the
Lyapunov exponent in this apparently odd way, of course.
However, the introduction of K is rather natural in the
framework of the information theory [27]. Considering
again the noiseless situation, if one wants to transmit the
sequence x(t) (t = 1, 2, . . . , T „) accepting only errors
smaller than a tolerance threshold A, one can use the
following strategy:

(1) Transmit the rules which specify the dynamical sys-
tem (1), using a finite number of bits which does not
depend on the length T

(2) Specify the initial condition with precision bp using
a number of bits n = 1n2(A/bp) which permits us to
arrive up to the time v 1 where the error equals L. Then
specify again the new initial condition x(7i + 1) with a
precision bo, and so on. The number of bits necessary
to specify the sequence with a tolerance 6 up to T

i 7; is Nn and the mean information for time step
is Nn/T „=K /ln2 bits.

In the presence of noise, the strategy of the transmis-
sion is unchanged but since it is not possible to transmit
the realization of the noise io(t), one has to estimate the
growth of the error bz(t) = x'(t) —x(t), where x(t) and
z'(t) evolve in two difFerent noise realizations io(t) and
io'(t), and ~bx(0)~ = bp.

The resulting equation for the evolution of bx(t) is
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the complexity of the noisy system can be estimated by

G = min K = Ap+ O(o./A), (23)

where the minimum is reached at an optimal time w =
7 p$ from the transmitter point of view.

In the case of a deterministic system K does not
depend on the value of 7 (i.e. , it is equivalent to use
a long ~ and to transmit many bits a few times or a
short r and to transmit a few bits many times). On
the contrary, in noise systems there exists an optimal
time r ~i which minimizes K: using relation (21) one
sees that 4 = exp(AOT) (ho + o ) and K has a min-
imum for w ~i 1/A . I.et us stress that this corre-
sponds to transmitting the initial condition with a pre-
cision 60 (A —cr)/e. For small noise 80 )) o and it is
convenient to transmit rather often the initial condition
with a small accuracy. This result might appear trivial
but has a relevant consequence from a theoretical point
of view in the presence of noise; even if the value of the
entropy G changes only O(o/A), there exists an optimal
time for the transmission.

An interesting situation happens for strong intermit-
tency when there is an alternation of positive and nega-
tive p during long time intervals. In this case the exis-
tence of an optimal time for the transmission induces a
dramatic change for the value of G . This becomes par-
ticularly clear when considering the limit case of positive
pi in an interval Ti )) 1/pi followed by a negative p2
in an interval T2 )) I/lp2l, and again a positive effective
Lyapunov exponent, and so on. In the expanding inter-
vals, one can transmit the sequence using Ti/(pi in 2)
bits, while during the contracting interval one can use
only a few bits. Since in the expanding intervals the
transmission has to be repeated rather often and more-
over lbxl cannot be lower than the noise amplitude o,
contrary to the noiseless case, it is impossible to use the
contracting intervals to compensate the expanding ones.
This implies that in the limit of very large T, only the ex-
panding intervals contribute to the evolution of the error
Sx(t) and the information entropy is given by an average
of the positive effective Lyapunov exponents:

exp(p+T+) )) —,exp(lp lT ) )) —. (25)

In a similar way, K Ap holds. if

exp(l~- IT-) «— (26)

We report the results of some numerical simulations in
two difFerent systems, which are shown in Figs. 2 and
3, respectively. Let us stress that we have directly com-
puted K, and since r; = O(l/p;), we automatically are
very close to the optimal strategy so that K G
without performing a minimization. The random per-
turbation iU(t) is an independent variable uniformly dis-
tributed in the interval [

—2, 2].
The first system is given by periodic alternation of two

piecewise linear inaps of the interval [0,1] into itself:

axmodl if (2n —l)T & t & 2nT
bx if 2nT & t & (2n+ l)T, (27)

where a ) 1 and 6 ( 1. Note that in the limit of small
T, G i max[A, O] since it is a non-negative quantity
as shown in Fig. 2, where for 6 = 4, A is negative.

The second system is strongly intermittent without an
external forcing. It is the Beluzov-Zhabotinsky map [4,7]
related to a famous chemical reaction:

'
[(s —x)'~ + a]e + b if 0 & x & s~

f(x) =
& [(x ——) ~ +a]e +b if —&x& io

c(10xe *~ )' + b if —& x
(28)

with a = 0.506 073 57, 6 = 0.023 288 527 9, c
0.121205692. The map exhibits a chaotic alternation
of expanding and very contracting time intervals. Al-
though the value of T is very small because lp l

)) 1,
the first inequality (25) is unsatisfied because the expand-

0.4 I I I I I I I I I I I I I I I

the noise to be dominant with respect to the contracting
deterministic efFects. In practice one should require

G- = (~b(~)) .
o

c a
o

o

For the approximation considered above, G & A

(p). Note that by definition G ) 0 while A can be
negative. The estimate (24) stems from the fact that
8p cannot be smaller than o so the typical value of 7;.

is O(1/p;) if p, is positive. We stress again that (24)
holds only for strong intermittency, while for uniformly
expanding systems or rapid alternations of contracting
and expanding behaviors G

It is not difBcult to estimate the range of validity of
the two limit cases G A and G (p0(p)). De-
noting by p+ & 0 and p & 0 the typical values of the
efFective Lyapunov exponent in the expanding and con-
tracting time intervals of length T+ and T, respectively,
(24) holds if during the expanding intervals there are at
least two repetitions of the transmission and the dura-
tion of the contracting interval is long enough to allow

0.2

0.1

0.0

&00
Il

&0'
I I I I I I I I I

i02
I I I I I I I I

103

FIG. 2. K versus T with o = 10 for the map (27). The
parameters of map (27) are a = 2 and b = —(squares) or b =—
(diamonds). The dotted line indicates the Pesin-like relation
(24) while the dashed lines are the noiseless limit of K . Note
that for b = — the Lyapunov exponent A is negative.
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FIG. 3. A (squares) and G (crosses) versus o for map
(28).

ing time intervals are rather short. As a consequence
the asymptotic estimate G (p0(p)) cannot be ob-
served. In Fig. 3, one sees that while A passes froln
negative to positive values at decreasing o., G is not
sensitive to this transition to "order. " Another impor-
tant remark is that in the usual treatment of the ex-
perimental data, if some noise is present, one practically
computes G and the result can be completely different
&om A . Let us mention, for example, [6], where the au-
thor studies a one-dimensional nonlinear time-dependent
Langevin equation. A numerical computation shows that

is negative while the author claims to Gnd, using the
Wolf method, a positive "Lyapunov exponent. "

Our results show that, the same system can be regarded
either as regular (i.e. , A ( 0), when the same noise re-
alization is considered for two nearby trajectories, or as
chaotic (i.e. , G ) 0), when two difFerent noise realiza-
tions are considered. The situation is similar to what is
observed in fluids with Lagrangian chaos [28]. There, a
pair of particles passively advected by a chaotic velocity
Geld might remain closed following together a "complex"
trajectory. The Lagrangian Lyapunov exponent is thus
zero. However, a data analysis gives a positive Lyapunov
exponent because of the "Eulerian" chaos. We can say
that A and G correspond to the Lagrangian Lyapunov
exponent and to the exponential rate of separation of a
particle pair in two slightly different velocity fields, re-
spectively.

The relation G (p8(p)) is, in some sense, the time
analogous to the Pesin relation h P, A, O(A, ) between
the Kolmogorov-Sinai entropy h, and the Lyapunov spec-
trum [29], where the negative Lyapunov exponents do
not decrease the value of 6 since the contraction along
the corresponding directions cannot be observed for any
finite space partition. In the same way the contracting
time intervals, if long enough, do not decrease G

It is important to note that the limit cr ~ 0 is very
delicate. Indeed, for small o, say ~ ( o. , the inequality
(26) will be fulfilled and G A —i Ao for 0. m 0.
However, in strongly intermittent systems T can be very
long so that the noiseless limit G ~ Ao is practically
unreachable, as illustrated by Fig. 3.

In this section we discuss dynamical systems (mainly
maps) where the randomness is not simply given by an
additive noise, as in Sec. III. This kind of system has been
the subject of much interest in the past few years in rela-
tion to problems involving disorder [30,31], the character-
ization of the so-called on off i-ntermittency [19],and the
modeling of transport problems in turbulent 8ows [32].
In these systems, in general, the random part represents
an ensemble of hidden variables, that is, unknown observ-
ables, believed to be implicated in the dynamics: the tur-
bulent convection in the solar cycle or several economic
factors for the stock market prices are just two examples
of this situation. The random part can also mimic the
effect of a set of variables that vary in a chaotic way or
that vary on a time scale very small with respect to the
time scale of the phenomenon under investigation. Ran-
dom maps exhibit very interesting features ranging from
stable or quasistable behaviors to chaotic behaviors and
intermittency. In particular, on-off intermittency is an
aperiodic switching between static, or laminar, behavior
and chaotic bursts of oscillation. It can be generated by
systems having an unstable invariant manifold, within
which is possible to find a suitable attractor (i.e. , a fixed
point). The intermittency is linked, in the simplest case,
to the loss of stability of the fixed point. For further
details we refer to [19].

A random map can be defined in the following way.
Denoting with x(t) the state of the system at the discrete
time t, the evolution law is given by

( + ) = E(*( ), I( )), (29)

K = h,.+ Ale(AI), (30)

where 0 is the Heaviside step function. Strictly speak-

where I(t) is a random variable (RV). If the RV I(t)
is discrete with an entropy h„according to the general
ideas discussed in Sec. III, a measure of the complexity of
the evolution can be defined in terms of the mean number
of bits that must be specified, at each iteration, in order
to have a certain tolerance 4 on the knowledge of the
state 2;.

Of course, it is possible to introduce a Lyapunov ex-
ponent Al, which is the analogue of A, computed con-
sidering the evolution of the tangent vector of Eq. (29)
once given the realization I(1),I(2), . . . , I(t) of the ran-
dom process.

Therefore, there are two different contributions to
the complexity: (a) one has to specify the sequence
I(1),I(2), . . . , I(t) which implies h, /ln2 bits per itera-
tion; (b) if Al is positive, one has to specify the initial
condition x(0) with a precision 4 exp "', where T is
the time length of the evolution; it is necessary to give
Al ln 2 bits per iteration; if Al is negative the initial con-
dition can be specified using a number of bits which does
not depend on T.

Therefore, the complexity of the dynamics can be mea-
sured as
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ing, (30) holds just for the case with only one posi-
tive Lyapunov exponent. In general, it is possible to
write an analogous expression just replacing AI with the
Kolmogorov-Sinai entropy computed with the same real-
ization of the randomness.

We stress again that a negative value of Al does not
imply predictability.

A. Two examples of random maps
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As a specific example, we discuss a random map ob-
tained from the deterministic chaotic evolution of a sys-
tem of two sliding blocks [33] (see also [34]) on a rough
surface. Such a model provides a good description of the
dynamics of two coupled large segments of a fault.

The equations of the motion for the position of the two
blocks during a slip can be written as

0
0 2 3 4

M(n)

PIG. 4. Multivalued map of the seismic moments: M„+~
versus M generated by Eqs. (31) where P = 2.0, n = 1.2,
and p = 3.0.

d~Yj

dt
+ Yi+ n(Yi —Y2) = 1

dYi
I
1+'y

dt )
(31)

d Yj ( dY2

dt
+Y2+n(Y. —Yi) =P

I
1+~

dt

while when one of the two blocks sticks, one has

or

d'Yj d Yj=0, =v
dt dt

(32)

d2Y2 d Yp

dt ' dt
(33)

respectively, if ~Yi +n(Yi —Y2)
~

( 1 or ~Y2+n(Y2 —Yi)
~
(

P, where the Y;. are the rescaled displacements from the
equilibrium position, and o. and p are related to the cou-
pling constants and the friction dynamical coeKcient.
The quantity T = v is the natural (adiinensional)
time unit of the system. For details on the model see
Ref. [16].

Although there is no randomness in the starting model
one can obtain a random map in a new set of physically
relevant variables. In the model (31), the seismic moment
(proportional to the energy released) is the sum of the
sliding runs during a single seismic event, that is

2

M„= ) [Y,
""'—Y,'"'~, (34)

where Y;(n) is the position of the ith block before the
nth slip. As shown in Fig. 4, the map M +q versus M
of the seismic moment computed at subsequent events is
multivalued on the definition domain. This is a general
feature which must be taken into account when analyz-
ing realistic signals generated from dynamical systems
exhibiting low-dimensional chaos.

Since some points have more than one image, an appro-
priate description of the dynamics is through a random
map where a weight is assigned to each possible option.

E,+„„-+E,+„„+—',
2d

E; —+0,
(35)

where nn indicates the 2d nearest neighbors of the site i.
(c) We repeat point (b) until all the sites are relaxed.
(d) We go back to point (a).

A good approximation of the deterministic evolution is
obtained even considering the same weights for the two
options.

Another example of a system which can be treated
in the framework of random maps is represented by
the so-called sandpile models [17]. These models rep-
resent an interesting example of self-organized criticality
(SOC) [18,35—38]. This term refers to the tendency of
large dynamical systems to evolve spontaneously toward.
a critical state characterized by spatial and temporal self-
similarity. The original sandpile models are cellular au-
tomata inspired to the dynamics of avalanches in a pile of
sand. Dropping sand slowly, grain by grain on a limited
base, one reaches a situation where the pile is critical,
i.e. , it has a critical slope. That means that a further ad-
dition of sand will produce slidings of sand (avalanches)
that can be small or cover the entire size of the system.
In this case the critical state is characterized by scale-
invariant distributions for the size and the lifetime and it
is reached without the fine tuning of any critical param-
eter.

We will refer in particular to the so-called Zhang model
[39], a continuous version of the original sandpile model
(the BTW model) [17],defined on a d-dimensional lattice.
The variable on each site E, (interpretable as energy,
sand, heat, mechanical stress, etc.) can vary continuously
in the range [0,1] with the threshold fixed to E, = 1. The
dynamics is the following:

(a) We choose a site in random way and we add to this
site an energy 8' (rational or irrational).

(b) If at a certain time t a site, say i, exceeds the
threshold E, a relaxation process is triggered, defined as
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We can also define a deterministic version of this model
in which, at each addition time, we increase the variable
of every site of a quantity b and then follow the same
rules as above, updating all the sites over threshold in a
parallel way.

The dynamics of this model can be seen as described by
a piecewise linear map [40]. In fact, indicating with x =
(x;),&D the configuration of the system at a certain time,
where D C Z" is the bounded domain whose cardinality
is ~D~ = K" with K being the linear dimension of the
lattice, the operator 4; corresponding to a toppling at
site i is given by

B. Toy model: One-dimensional random maps

x(t+ 1) = aux(t)[1 —x(t)],

where at is a random dichotomic variable given by

(38)

4 with probability p
with probability 1 —p .

Let us discuss a random map which, in spite of its
simplicity, captures some basic features of this kind of
system:

1
(A;x), =x, —8;,x, + —) 8, ,,x;, (36)

It is easy to understand the behavior for x(t) close to
zero. The solution of (38), keeping the linear part is

where P* means the sum over the nearest neighbors site
of i.

Equation (36) shows that the single toppling is a linear
operator and acts as a local Laplacian. The evolution of
a configuration up to the time t can be written as [40]:

x(t) = T'x(0) = I gx(0) + 6) I,i .+i1y(.), (37)
s=1

where I t is a linear operator defined as a suitable prod-
uct of linear operator 4, x(0) is the initial configuration
and 1; is a vector in B whose component i is 1 and all
the others are 0. k(s) defines the sequence of site over
which there will be the random addition of energy at
the time s. Equation (37) shows as the evolution of the
Zhang model can be seen as the sequential application
of maps, chosen, time by time, in a random way. Sand-
pile models, thus, belong to the wide class of the random
IIlaps.

t —1

x(t) = a, x(0) .
J ««I

j=0
(40)

The long-time behavior of x(t) is given by the product

o az. Using the law of large numbers one has thatt—1

the typical behavior is

(41)

Since (lna) = p ln4+ (1 —p) ln — = (3p —1) ln2 one
has that, for p ( p, = s, x(t) —+ 0 for t i oo. On the
contrary for p ( p after a certain time x(t) is far from
the fixed point zero and the nonlinear terms are relevant.
Figure 5 shows a typical on-oK intermittency behavior for

p slightly larger than p, .
Let us note that, in spite of this irregular behavior, nu-

merical computations show that the Lyapunov exponent
Al is negative for p ( p 0.5: this is essentially due to
the nonlinear terms. For such a system with on-o8' inter-

I I I I I I 1 I I I I I I I I I I I I 1
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FIG. 5. x(t) vs t for the ran-
dom map (38) and (39) with

p = 0.35.
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mittency it is possible, in practice, to define a complexity
of the sequence which turns out to be much smaller than
the value given by the general formula (30).

Let us denote with lL, and ly the average lifetimes, re-
spectively, of the laminar and of the intermittent phases
for p close to p (li (( lL, ). It is easy to realize that the
mean number of bits per iteration one has to specify in
order to transmit the sequence is

lz(t) I

I ()I ' (45)

Zhang model can be seen as the sequential application
of maps, chosen, time by time, in a random way.

The Lyapunov exponent corresponding to a given tra-
jectory x(t) = T x can be defined, linearizing the dynam-
ics in the neighborhood of x(t), as

rh. ir h

(Ii + lL, ) ln 2 li, ln 2
(42)

V. CASE OF SANDPILE MODELS

In this section we discuss the problem of the pre-
dictability in sandpile models [17]. DifFerent authors [41]
suggested that self-organized critical systems occupy a
particular position among the dynamical systems, which
has been named weak chaos. This is because it has been
argued that the maximum Lyapunov exponent of these
systems is zero. From this it is deduced that two initially
close trajectories in the phase space will diverge just al-
gebraically in time and not in an exponential way, as do
the chaotic systems. From this point of view these sys-
tems would seem more predictable than chaotic systems
in that a better knowledge of the initial conditions would
considerably improve the predictability time T„,

The previous formula is obtained noting that on an in-
terval T one has T/(l~+ lL, ) intermittent bursts. Since
during the intermittent bursts, i.e. , x(t) far from zero,
there is not an exponential growth of the distance be-
tween two trajectories initially close and computed with
the same sequence of az. So, one has just to give the
sequence of aq on the intermittent bursts. Equation (42)
has an intuitive interpretation: in systems with a sort of
"catastrophic" events, the most important feature is the
mean time between two subsequent events.

A&—
N [R(D) + 1] (1/b + 1)(lil N + 1)

(46)

where z(t) represents the distance between two difFerent
configurations x and y at the time t. For example, in the
L norm z(t) = g,. /y;(t) —x;(t)], with i = 1,N". If the
two trajectories x(t) and y(t) make the same sequence of
toppling, Eq. (45) holds with the substitution y —x -+ z.
In fact, in this case, Tiy —T~x = Iqz(0) = z(t) holds.
Therefore the definition (45) for the Lyapunov exponent
fails when the two configurations begin to follow different
sequences of toppling. It is easy to see that such a sit-
uation occurs when, for one configuration, it holds that
x;(t) = 1 for some i and t. In this case a small difFer-
ence in the second configuration y, (t) = x, (t) + e will
produce a toppling just in the y configuration. Prom this
point onwards the two configurations will follow different
sequences and the definition (45) fails definitely.

It is easy to see that the Lyapunov exponent is not
positive. In fact, the dynamics in the tangent space, the
dynamics of a small difference between two configura-
tions, follows the same rules of the usual dynamics and
the "error" is redistributed to the nearest neighbors site.

It is then clear that the distance between two con6gu-
rations, being conserved in the toppling from the bound-
aries, can only decrease when a site of the boundary top-
ples. We can conclude that A & 0.

In [40] it has been obtained rigorously that, for the
maximum Lyapunov exponent A, as defined in (45), it
holds that

T„= (& ../bp)

where bo is the error on the determination of the initial
conditions, 4 is the maximum tolerance between the
real evolution and the simulation that makes any predic-
tion, and a is just the exponent of the algebraic diver-
gency of the error. We recall that for chaotic systems the
predictability time is given by

bp ) (44)

In this case an improvement in bo would increase Tz only
in a logarithmic way.

In this context we would like to discuss this problem on
the basis of some recent rigorous results [40] in order to
clarify the role of the Lyapunov exponents for this class of
systems and to address the problem of the predictability.
We will refer to the Zhang model defined in Sec. IV A.

The evolution of a configuration up to the time t is
given by (37), which shows that the evolution of the

where we indicate with R(D) the diameter of the domain
D, that is, that the Lyapunov exponent is strictly lower
than 0.

An immediate consequence of the above result is that
the dynamics, up to the time t (for t sufficiently large) is
given by a piecewise linear contractive map.

At first, one could think that the existence of a negative
Lyapunov exponent should assure a perfect predictabil-
ity. That is not true. What makes the situation complex
is the existence of a splitting mechanism in the configura-
tion space which affects the so-called snapshot attractor.
A snapshot attractor is obtained by considering a cloud
of initial conditions and letting it evolve forward in time
under a given realization of the noisy dynamics. We can
identify two different mechanisms which concur to the
formation of the snapshot attractor: (a) a volume con-
traction mechanism due to the effect of the negative Lya-
punov exponent; (b) a splitting mechanism which tends,
by virtue of the piecewise structure of the map, to map
single sets of configurations in two or more distinct sets
also far apart in phase space. The splitting mechanism
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(b) tends to create a partition of the configuration space
in regions which follow the same sequence of toppling,
whereas mechanism (a) tends to contract the volumes of
the elements of the partition.

It is worth it to stress how, in same cases, it hap-
pens that the evolution of all the possible configurations
shrink to the evolution of a single configuration (a point
in the configuration space) whose evolution corresponds,
at each time, to a snapshot attractor given by just one
point.

This happens, for example, in the case of a one-
dimensional (linear) chain of N sites driven with an ar-
bitrary b'. In [40] the case in which h =

2 has been
studied and it has been shown that in this case the par-
tition is time independent. Let us discuss, for the sake of
simplicity and without loss of generality, this last case.
A certain cloud of configurations, i.e., belonging to the
same element of the partition, will evolve in a cloud of
configurations, in principle smaller than the initial one
due to the contractivity of the map, belonging entirely
to another element of the partition; in its turn this cloud
will evolve in a smaller cloud of configurations belonging
to another element of the partition, and so on. This pro-
cess continues until all the configurations shrink to just
one that continues to evolve jumping between different
elements of the partition and evolving according to the
map corresponding to each element of the partition. The
Lyapunov exponent, in this case, gives information about
the rate of shrinking of the different clouds of configura-
tions, i.e., it gives the typical exponential contracting rate
of the radius of the snapshot attractor.

The rigorous study of the properties of the snapshot
attractors is out of the purposes of present work and it
will be treated elsewhere. Here we just want to note
how this situation does not change the problem of the
predictability in that, in order to forecast the system,
one should be able to know the random sequence which
drives it.

This puts the problem of the definition of predictability
in a wider perspective in which the Lyapunov exponent
is not the only relevant quantity. Since the Lyapunov ex-
ponent gives information only at very large time and for
infinitesimal perturbations the dynamical balance of the
two effects (a) and (b) represents a basis for the definition
of a predictability for such a system.

Let us consider initially the situation in which two dif-
ferent configurations are driven with the same realization
of the noise: that means that at each time the sand (en-
ergy) is added to the same sites for the two configura-
tions.

Up to the time in which two different configurations
make the same sequence of toppling, the error e (the
distance between the two configurations) will decrease.
When the configurations begin to follow a different se-
quence of toppling the error e becomes of order 1 in a
single time step, whatever e was before this time. Prom
this point onwards the evolution of the distance between
the two configurations seems far from being linked to
the Lyapunov exponent. The threshold mechanism, and
then the splitting mechanism, plays therefore a crucial
role in determining the predictability of such a system.
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FIG. 6. Evolution of the distance e between two con6gura-
tions driven with the same realization of the randomness and
with a starting distance of (a) 10 and (b) 10 . N = 30.

The system remains definitely predictable up to the time
in which two different configurations make the same se-
quence of toppling. This time can be defined as the pre-
dictability time. For a more complete treatment of this
point we refer to [42]. In particular, it is possible to show
how a predictability for such a class of models can be re-
lated to a threshold mechanism, in which the Lyapunov
exponent is not the only relevant quantity. The smaller
is the initial distance between the two configurations, the
smaller will be the probability of different toppling. The
threshold in the initial distance between the two configu-
rations, say eT, has, in this case, a probabilistic value. If
e(t = 0) ( eT we cannot exclude the possibility that the
configurations will follow different sequences of toppling,
but the probability associated with this event becomes
exponentially small as time goes on because, due to the
negative Lyapunov exponent, two different configurations
tend to converge to each other.

In order to confirm these predictions we simulated the
parallel evolution of two different configurations in the
random case (for a system with N = 30) with difFerent
starting error e and we plotted the distance (in the I,
norm) between the two orbits. Figures 6(a) and 6(b)
show the results, respectively, for e = 10 and 10
These results seem to confirm the existence of a proba-
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bilistic threshold in e which determines the divergence or
the asymptotic convergence of two orbits.

A. Predictability with different realizations
of the randomness
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FIG. 7. Evolution of the distance e between two initially
identical configurations driven with different realizations of
the randomness. N = 30.

It is very interesting to investigate what happens when
one considers the case, more relevant from the point of
view of the predictability, in which two con6gurations are
driven by different randomness. That means that at each
time the sand is added in different sites for the two real-
izations. Obviously we can imagine a situation in which
the uncertainty in the knowledge of the noise can be var-
ied. In fact, choosing a site for one con6guration, we can
drive the other con6guration by putting the sand in a
site which can be one of the nearest neighbors sites, or
one of the second nearest neighbors sites, etc. , of the site
of the 6rst configuration. In this way, due to the discrete
structure of the system, the uncertainty cannot be re-
duced at will. The minimum uncertainty is obtained by
putting the sand in one of the nearest neighbors of the
site chosen for the 6rst con6guration. In our simulations
we considered this last situation. The results are shown
in Fig. 7. As it is possible to see, the situation in this case
is much more involved and the threshold mechanism, de-
scribed above for the case of the same realizations of the
randomness, does not hold anymore. That is because, in
this case, the two configurations can start to follow dif-
ferent sequences of toppling at the 6rst toppling. From
this point onwards we return to the situation in which,
with the same realization of the noise, the two con6g-
urations start to follow different sequences of toppling;
the system becomes unpredictable. Also in this case, the
Lyapunov exponent does not play the role of the only
relevant quantity.

In order to better explain this point it is possible to
de6ne the complexity K for such a kind of system. In
this case we can use Eq. (30), where b, defines the com-
plexity relative to the choice of the random sequence of
addition of energy. In sandpile models, for example, since

each site has the same probability to be selected, one has
h, = in%, where N is the number of sites of the system
and the second term does not exist in that the Lyapunov
exponent is negative. We then obtain the result that
the complexity for sandpile models is just determined by
the randomness in the choice of the sequence of addi-
tion of energy; nevertheless, once this sequence is known,
the system could be, all the same, unpredictable, at least
for some initial conditions and nonin6nitesimal perturba-
tions, due to the splitting mechanism cited above. Once
more, let us emphasize that a negative Lyapunov ex-
ponent implies predictability only if the sequence which
drives the system is exactly known.

VI. CONCLUSIONS

In this paper we focus on the problem of an appro-
priate de6nition of the concept of complexity in random
dynamical systems. At 6rst, one could follow a naive ap-
proach where the randomness is considered as a standard
time-dependent time. In this way, the Lyapunov expo-
nent A is given by the rate of divergence of two initially
close trajectories evolving under the same realization of
the randomness.

Although well de6ned from a mathematical point of
view, such an approach leads to paradoxical situations.
For instance, in a system driven by the one-dimensional
Lyapunov equation, the existence of a negative Lyapunov
exponent does not imply the possibility to forecast the
future state of the system unless one exactly knows the
realization of the noise. Another paradox is represented
by the situation discussed in Sec. III 8, where two differ-
ent systems, one with positive Lyapunov exponent, and
the other with a negative one, appear practically indistin-
guishable. Last but not least, it is practically impossible
to extract A &om an analysis of experimental data.

The main result of the paper is the de6nition of a mea-
sure of complexity K in terms of the mean number of bits
per time unit necessary to specify the sequence generated
by the random evolution law. We have also shown that
&om a practical point of view, this definition corresponds
to considering the divergence of nearby trajectories evolv-
ing in different noise realizations. The great advantage
is that K can be extracted &om experimental data [13].
The two indicators K and A have close values and are
practically equivalent in systems with weak dynamical
intermittency. However, in the presence of strong inter-
mittency (say, irregular alternations of long regular peri-
ods with sudden chaotic bursts) K and A become very
different and in extreme situations it may happen that
K is positive while A negative. It is thus questionable
whether such a system is chaotic or regular and to speak
of noise induced order.

A special class of systems we11 described by our char-
acterization is random maps, where at each time step
different possible evolution laws are chosen according to
a given probabilistic rule. Sandpile models form an im-
portant group of systems that can be described in terms
of random maps. The existence of a negative Lyapunov
exponent does not allow one to capture the basic features
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of these spatially extended systems, while our measure of
complexity is able to describe in an appropriate way the
dynamical behavior.

It seems to us that the study of the complexity and
of the predictability is completely understood only in the
case of deterministic dynamical systems with few degrees
of freedom. We have just mentioned [15] the case of
systems with many characteristic times where the pre-
dictability time is not trivially related to the Lyapunov
exponent. Our work may be a step toward a deeper com-
prehension of these issues in systems with many degrees
of freedom or in interactions with many degrees of free-

dom represented by a noise, problems that are still open
and sometimes controversial.
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