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Short-range screening potentials for classical Coulomb Auids:
Reanalysis of Monte Carlo sampling and cluster model studies
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Results for the short-range screening potentials of classical Coulomb fluids, which were significantly
different from existing theory and from earlier approaches, were obtained by Ichimaru et al. by their
analyses of extra long simulations. In a recent paper [Phys. Rev E 50, 2977 (1994)], Ichimaru, Ogata,
and Tsuruta (IOT) summarize these results and attempt to support them with more simulations and with
cluster model studies. In this paper I present an alternative analysis of the same data, which is in con-
tradiction with the analyses of Ichimaru et al. , as portrayed by IOT. I present an analysis of general axi-
ally symmetric clusters that is different from that of IOT and provides insight into the short-range
screening potentials of strongly coupled plasmas. In particular, I give an exact mathematical proof that
questions the main conclusion of IOT from their culster model studies [their Eq. (49b)].

PACS number(s): 52.25.—b, 05.20.Gg, 61.20.—p

I. INTRODUCTION

Classical plasmas, namely, positive ions in a uniform
neutralizing background of electrons, make important
basic models for dense stellar materials and provide a
most useful reference system in condensed-matter physics
[1]. The screening potential, the balance between the
bare Coulomb repulsion and the potential of mean force
[1,2], and in particular its behavior at short separation
between the particles, plays an essential role in estimating
the enhancement factors for the thermonuclear reaction
rates, which are important for stellar evolution [1,2]. The
screening potentials play a key role in the study of the
short-range behavior of the bridge functions, notably
their universal properties, which proved seminal for de-
veloping an accurate theory of liquid structure [3,4]. The
zero separation theorem for the screening potentials
[5—7] provides an important consistency test for approxi-
mate theories of the equation of state and of the structure
of Iluid mixtures [3,4].

In a continued large effort during recent years
[2,8 —11], Ichimaru et al. presented simulation data for
the equation of state and pair correlation functions of
dense plasma Auids, from which they derived diff'erent re-
sults [9,11] for the screening potentials that are
significantly different from earlier results and from exist-
ing theory. The differences are numerically small but
have important conceptual implications and. lead to
marked variations of the phase diagrams and of the
enhancement factors. The data analysis methods em-
ployed by Ichimaru et al. were criticized, however, and
it was argued [12,13] that the simulations of Ichimaru
et al. actually do support the earlier results and the exist-
ing theory. In a recent paper, Ichimaru, Ggata, and
Tsuruta (IOT) [14] summarized the results of Ichimaru
et al. [2,8 —ll] on short-range screening potentials for
Quid classical plasmas and tried to refute the criticism
with new simulations and cluster model studies.

In this work, I summarize and update the alternative
viewpoint, namely, the criticism [12,13] of the Ichimaru

et al. data analysis [2,8 —11]. Following the presentation
by IOT [14], I point out the questionable points in their
data analysis and explain the way by which the individu-
ally questionable equations, Eqs. (20), (25), (31), and (33)
of IOT [14] appear to be mutually consistent. The final
part of the paper is devoted to various charge-cluster cal-
culations and leads to results that are different from those
of IOT [14]. Together with the analysis of general axially
symmetric clusters, as given in the Appendix, it provides
insight into the short-range screening potentials of
strongly coupled plasmas. In particular, I give an exact
mathematical proof that does not agree with the main
conclusions of IOT from their cluster model studies Eq.
(49b) in [14], and thus questions the basis for their subse-
quent discussion.

II. PROBLEM, GENERAL METHODOLOGY,
AND EARLIER RESULTS

The system under consideration is a binary ionic mix-
ture (HIM) consisting of N, particles of species i with
charges Z;e (i =1,2), in a uniform background of neu-
tralizing electrons of volume V at temperature T. The to-
tal number of particles is %=X&+%2, the molar frac-
tions are x, =Xi /X, x2 = 1 —x i

——x, and the charge ratio
is Rz =Zz/Z, ) 1 where it is assumed that Z2 )Zi. The
thermodynamic state of the BIM is specified by the
Coulomb coupling parameter, I,=e /a, k~ T, where
a, =(3/4am, )', and n, =(N, Z, +N2Z2)/V is the num-
ber density of the uniform electrons. It is useful to de6ne
the ion-sphere radii, a; =a,Z, and the coupling param-
eters, I;=I,Z; (i =1,2). It is convenient to measure
all distances in units of the total Wigner-Seitz radius,
a =(3/4vrn)', where n =N/V is the total number den-
sity of the ions. For the one component plasma (OCP),
with Z& =Z denote I

&

= I .
The screening potential H(r) of the OCP is defined in

terms of the bare Coulomb interaction between the two
ions and the pair correlation function g (r):
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Ii =g~M—
0 0

8 AfB™(Rz=2,x, I,=I), (4
x —+0

where the derivative of bf,„'gives the deviation of ho
from the liner-mixing (LM) approximation [15],
h LM 2focP( I ) focP(25/31 )

This first principles analysis defines exactly the re-
quired calculations, which nevertheless can be achieved
only approximately, with an accuracy that depends on
that of the required computer simulations and on the va-
lidity of the corresponding data analyses. The "Onsager
molecule" concept [16—18], on the other hand, provides
in a simple physically intuitive way the asymptotic strong

H(r)= —+ ln[g(r)] .r
r

The pair correlation function can be expressed through
the free energy change upon fixing the positions of the
pair of Quid particles in the appropriate configuration to
form an interaction-site molecule, so that

Fo~} IH(r)= — +—. (2)
k~T r

Here Fo is the configurational (excess over ideal gas) free
energy of the N-particle system (in a uniform neutralizing
background) and F'i (r) is that of the same system but
with the pair of particles kept at fixed separation r, form-
ing a two-site charge cluster. F; (r) does contain the in-

tramolecular interaction I /r, so that H(r) is finite as
r —+0.

The problem is to obtain the short-range screening po-
tential H(r & —1). According to Widom [6] it can be ex-
panded in even powers around r =0:

H(r)=ho —h, r +&i(r)r4
=h0 A &r +h2r +h3r (3)

It is useful to define the relatively small and slowly vary-
ing (see below) function &z(r}, i.e., the "effective"
coefficient of the r term. We shall see below that Eq. (2)
yields an expression for ho=H(r =0). The coefficient h,
is known exactly [7], h, = ~~I . Following the derivation

[7] of h i, expressions for the higher order coefficients can
be easily derived. Their evaluation requires, however,
dedicated simulations, which become increasingly costly
as the order increases. In particular, h2 has recently been
calculated [9,14], with relatively large error bars, from
extra long Monte Carlo (MC) samplings. The simulation
data for g(r) is limited to r &R;„where, e.g., R;„—1

for I -160 and R;„-0.8 for I -10. It is impossible to
get H(r-0) by simulations directly from Eq. (1) because
of the essentially zero probability for very close en-
counters, but it is possible to try to extrapolate these re-
sults down to r =0. On the basis of Eq. (2), however, the
calculation of H (0) can be carried out via the equation of
state of the binary ionic mixture (BIM} plasma, if it is
available. The equation of state of the BIM can be
represented by the difference, b,f, ' (Rz, x, l, )
=f, =fLM, in order to obtain the (relatively small) de-
viation of the excess free energy (normalized by Nks T),
f, ™,from its linear-mixing (LM) value, where

f =(1—x)f,„(I',)+xf,„(l). Thus [11]
r

coupling properties of the exact integral equations for
classical plasmas. It provides better understanding of the
numerical simulation results and has proven useful for
their interpretation [12,19]. The asymptotic I ~ oo solu-
tion of the exact diagramatic equations for g(r) features
the ion-sphere and the Onsager molecules: (i) The On-
sager exact lower bound [20,21] for the potential energy
is the sum of the self-energy of "Onsager atoms" (OA)
(ion-spheres), U/NkB T=u o~ /ks T= —0.9t, where

uo~ is the self-energy of an Onsager atom (ion-sphere
[22]), consisting of a point charge at the center of a neu-
tralizing unit sphere having the background charge densi-
ty. (ii) Correlation functions and screening potentials
feature the "Onsager molecules" (OM) naturally and by
recursiue definition [18]: Fo" ~ NuoA, and
Fi"(r) +(N —2}uoz+uoM(r), where uoM(r) is the self-
energy of an Onsager molecule, consisting of a pair of
ions separated by a distance r in a uniform neutralizing
charge cloud of the background charge density. The
shape of this molecule is determined by the surface on
which the electrostatic field vanishes. It is a sphere of ra-
dius 2' for r =0; it is then similar in shape to smoothed
fused spheres [23] and eventually becomes two touching
ion spheres (of radius 1 each) for r =2. Thus, from Eq.
(2)

r uoM(r) uoA
HoM(r) =—— +2 (5)

r k~T k~T '

the OM approximation for the screening potential is the
difference between exact lower bounds for Fo" and F i"(r).
Onsager molecules have, by definition, the ability to dis
sociate when r ~ 2, uoM(r ~ 2)=2uo~, i.e.,
HoM(r ~2)=l /r. The OM limit for the short-range
screening potential (before "dissociation" ), r & 2, is of the
form

HOM( r ~ } 5/5 2 2, OM(=
—,', (2 / —2) ——'r + ' r, (6)

where numerical calculation [23] of the OM gives the fol-
lowing estimate [16]:
hz oM(") ~2 oM(" =2)

=—0.038—0.0026r; ' =-0.0277 .r = '' r
(7)

&2 oM(r) was obtained by fitting the Onsager-molecule
numerical data [23], whereas its value at r =2 is deter-
mined by HoM(r =2, I )/I =0.5. Equations (6) and (7)
represent the asymptotic form of H(r) for the OCP fiuid
and are thus expected to give a good estimate of the re-
sult in strong coupling, as is indeed found by the simula-
tions (see below).

Salpeter and Van Horn [24] pioneered the calculation
of ho from Eq. (2) and employed the ion-sphere model
[22]. The first attempts [25] to extrapolate simulation
g(r) data using Eq. (1) were not very successful [as al-
ready explained in [31(b)], but there was improvement
after Jancovici's proof [7] of hi =0.25I . Alastuey and
Jancovici [26] extrapolated H(r) toward the origin by
fitting the simulation data of Hansen [1(a)],keeping terms
up to h5 in Eq. (3). They found ho to be in agreement
with h 0 as obtained by employing an early fit of DeWitt
[27] to Hansen's OCP equation of state simulations data
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[1(a)]. Linear mixing is predicted to hold in the asymp-
totic strong coupling (OM) limit for plasmas [19]. The
first theoretical direct calculations of the short-range
H(r) were performed by the assumption of universality
of the bridge functions in the modified hypernetted-chain
theory [3]. The properties of strongly coupled plasmas as
obtained analytically from the Onsager-molecule theory
[16—19] are in complete agreement [12,13] with the simu-
lations data in strong coupling, e.g., with the Alastuey-
Jancovici fit &2(r)=—0.039—0.0043r at I =160. The
OM prediction of H(r =2)/I =0.5, which is the im-
mediate result of the dissociation property of OM, holds
well even down to I = 10 (see Figs. 7 and 8 in IOT [14]).
As an asymptotic theory, without any free parameters, the
Onsager-molecule approach is remarkably successful in
describing all the major features of the statics of strongly
coupled plasmas as born out by the simulations, includ-
ing the equation of state, direct correlation functions, and
bridge functions [12,13,16—19].

III. METHOD AND RESULTS OF ICHIMARU et al.

Ichimaru et al. [2,8—11] presented MC simulation
data for g (r), hz, and hf,„,on the basis of which they
arrived at significantly different results from Jancovici for
the short-range H(r) and were in contradiction with the
asymptotic Onsager-molecule predictions. Ichimaru
et al. [2,8 —11]employ the following methodology.

(i) New and highly accurate simulations were per-
formed [9,10] for the OCP g (r}. The simulation data for
H(r)/I, from Eq. (1), were fitted by Ogata, Iyetomi, and
Ichimaru (OII) [9] in the range R;„&r ~ 2 to an accura-
cy of O. l%%uo by some function, denoted foii(r), for
5&I &180.

(ii) An exact expression was derived [9] for the
coefficient h2 and calculated directly by the Monte Carlo
method. On the basis of the MC sampling, OII conclud-
ed that [9]

h2 =0.00+0.01 . (8)

(iii) Granting that hz/I =0, they truncated the expan-
sion at the second term with h

&
=0.25I and obtained the

extrapolated screening potential in the following form [9]:
H(r}=ho —h, r for r ~re, and H(r)=foii(r) for r ~re
The remaining two unknown parameters ho, ro are deter-
mined from the requirement that the function and its first
derivative are continuous at ro, thus obtaining [9]

g OII

I
= 1.148—0.0094 ln(l ) —0.00017[ ln(I ) ] . (9)

At near freezing temperatures, for example at I =160
(corresponding to Fig. 7 in IOT [14]), OII obtain
r 0i. 780, hii/I =1.095. OII [9] estiinate the error in
their ho so extrapolated to stay on the order of 0.1%.

(iv) New extensive simulations for the BIM were per-
formed by Ogata, Iyetomi, Ichimaru, and Van Horn
(OIIVH) fl 1]. Their linear-mixing results were obtained
from the Ogata-Ichimaru [8] representation for f,„(I},
denoted fo

' (I ), which they obtained from their fit to
the simulations results for the potential energy
u o ( I ). On the basis of their BIM results and

f,„(I')=fo (I'), they obtained a fit for b,,„.The
results for ho thus obtained by OIIVH from Eq. (4) agree
well with ho [Eq. (9)]. As stressed by OIIVH [11],this
agreement for ho, as well as important features of their
phase diagrams, crucially depends on the negative sign
and on the relatively large magnitude of their derivative
of b.f,„atx 0.

(v) Finally, IOT [14] present (a) additional BIM simu-
lation data to further support the negative deviations
froin LM, (b) new and more accurate data for h2 from
very long MC runs to support their conclusion that
h2 =0, and (c) cluster model studies that are meant to add
weight to this conclusion.

IV. CRITIQUE OF DATA ANALYSIS
OF ICHIMARU ET AL.

It should be emphasized at the outset that the main
question [12,13] regarding these results by Ichimaru
et al. [2,8 —11] concerns the data analyses, and not the
bare simulation data themselves. In this section I ques-
tion the data analysis of Ichimaru et al. and offer an al-
ternative analysis of the same data. I explain how the in-
dividually questionable Eqs. (20), (25), (31), and (33) of
IOT [14]appear to be mutually consistent.

(i) On the basis of their Table 4, OII [9] conclude that
hz virtually vanishes. They apparently give little weight
to previous predictions [26] for hz/I =0.04 in strong
coupling and to their own data point of 0.06+0. 13 at
I =160, and they regard [9] their Table 4 as proof that
h 2

—-0. IOT [14] already regard the assessment (8) as con-
sistent only with all the data in their earlier series of
simulations, as well as their new results. But even by this
characterization, a large variety of choices can be con-
sidered "consistent" with all the data. For example, con-
sidering their Table 1 and Fig. 1 [14] (see also the present
Fig. 1 and point (iv) below), there is no reason why a re-
sult like, e.g. , h2/I =0.2+0.01, should be less "con-
sistent" (in their sense} with the new IOT data [14] than
their hz/I =0.00+0.01.

(ii) The analysis by OII [9] is based on questionable
methodology: In strong coupling (e.g., I =160), the
values of ro (e.g., r&=0 78) is m. uch smaller than Rm;„
(e.g., R;„—1.15; see Fig. 7 in IOT}. Thus, the connec-
tion point for the extrapolation is beyond the actual data
points, making the procedure dependent on the choice of
fitting function for the data. Ichimaro, Ogata, and Tsur-
ta refer to Ref. [12], where this property of the OII
method was first pointed out, but they do not address this
issue.

(iii) An elementary consistency check, which can be
performed [12] within the OII extrapolation method, is to
see what happens with the addition of extra terms. By
keeping the term h 2 free and repeating the fitting pro-
cedure of OII [9], it was found [12] that the connection
point is now inside the data range, and the extrapolated
results for ho are in 0.3%%uo agreement with hii as ob-
tained from the DeWitt, Slattery, and Stringfellow
(DWSS) [28] fit to their most accurate MC equation of
state for the OCP,
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FIG. 1. The coefficient of the r term in the Widom expan-
sion of H(r), h2/I, from difFerent approximation (lines), com-
pared with the Monte Carlo data (full circles with error bars) of
IOT [14].

I LM
= 1.056 38+0.996431r

(0.268 lnI +1.059 69)
r

The Ogata-Ichimaru [8] fit used by OII [9] gives very
similar results for ho . This fit yields [12] h2/I -0.3,
which is in accord with the Alasuey-Jancovici fit and the
OM limit. A systematic study along this line (see iv
below and Fig. 1) reveals that h2(I )/I decreases gradu-
ally with decreasing I, as does hz™/I—O(I ) with
6}-—2/3 in agreement with the asymptotic analysis [19],
and in better agreement with the new simulation results
of IOT [14] than with their assertion by Eq. (8) in [14].

(iv) A further step to improve the analysis of the OII
data is to employ the Alastuey-Jancovici "AJ(i)" type fit,
i.e., by keeping terms up to h, in Eq. (3), using the OII
data as embodied by their fit fo«(r), R (I ) ~r ~2. I
found [12] that the function fo«(r) in the actual data
range for r, R (I ) ~ r ~ 2, can be fitted to 0.05% by AJ
(3) (i.e., up to the I term) for all values of I & -70, with
results in about 0.3% agreement with the original
Alastuey-Jancovici extrapolation result for ho. This also
shows that the functional form of fo«(r) as chosen by
OII, with four free coefficients, is not as effective as the
Alastuey-Jancovici form, with three coefticients. Increas-
ing the number of free coefBcients to five almost does not
affect the result of the extrapolation for relatively large
values of I & -70 (Figs. 1 and 2). The resulting function
ho(I )/I decreases with I" toward the asymptotic limit,
1.05732+0(I ), 8- ——', , while the function %2(r)/I
gradually increases toward the predicted Onsager-
molecule result of -0.038. For I =10, however, with
only five coefFicients, it is possible to fit the function
fo«(r) to better than 0.1%, and the result features a
smaller coefBcient h2. As can be seen in Fig. 1, this last
result, with its gradual change of h2/I from its asymp-
totic value of about 0.038 to nearly zero, is in accord with
the new simulation results of IOT [14] for the coefBcient
h2. In particular, it is clearly seen in Fig. 1 that the AJ
(5}result is more consistent with the actual MC data than
the OII-OIT [9,14] conclusion of h 2/I =0.00+0.01. The
statement made by IOT [14] concerning the MC results
with further increased sampling size is purely speculative,
and it is not backed up by the actual data.
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FIG. 2. The "zero-separation" sum-rule, h 0/I'
=H (0)/k& T/I, as obtained from difFerent approximations.

(v) Using the DWSS fit [28] to the OCP energies and
repeating the OIIVH [11] procedure, I obtained [13]
significantly different results: In particular, positive and
relatively small (about an order of magnitude smaller
than the positive deviation of OIIVH) deviations from
the linear-mixing approximation for small x are obtained
by using f,„=fo . This is in agreement with the
Jancovici-Alastuey extrapolation [26] and the LM result,
h 0 (h 0 is almost the same with either fo or
f0 ), and is in agreement with the previous criticism
[12] of the OII extrapolation method (see Fig. 2). First,
this result demonstrated directly that the special features
of hf, ', as emphasized by OIIVH, are the result of
their choice of fo (I ) and are not the refiection of
their bare MC data for the BIM. Moreover, an analytic
variational model [29], which provides the paradigm for
the form of fo ' (I } itself, also features small positiue
deviations from linear mixing. It is in good agreement
[13] with the fiuid binary ionic mixture data of OIIVH
[11] if the DWSS [28] equation of state for the OCP,
fOD s, is used (instead offo«) to evaluate b,f,„'

(vi) The source for discrepancy between the OIIVH
and DWSS fits for the OCP was identified [13]as internal
inconsistency in the OIIVH [11]data reduction and was
demonstrated directly by new simulations [30]: With in-
herent uncertainties of about +0.001 for the MC ener-
gies, and in view of the deviations of uo' from u,
possible errors for u LM are about +0.004. This rela-
tively large uncertainty in the OCP fits is not taken into
account by OIIVH. %"ith errors of about +0.004 for
uo", OIIVH [11] still cite errors of about +0.001 for
b,ue„™ (in their Fig. 2) and for the accuracy of their
fit for hf,„«. From this fit they subsequently ob-
tain a large negative result for the derivative at x =0,
which makes the result from Eq. (4} compare well with
h 0 . On the other hand, with correct error bars in their
Fig. 2, which take into account the relatively large uncer-
tainties in the OCP fits, the negative deviations from
linear mixing, as found by OIIVH [11],now fade away.

It should be emphasized that similar possible errors ap-
ply also to u PM . However, DeWitt and Slattery [30] re-
ported new and exceptionally long simulation runs [30] in
which both the relevant OCP energies (at I i and I 2) and
BIM energies were all obtained from MC sampling.
These gave good agreement with OIIVH for the HIM and
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good agreement with DWSS for the OCP, always finding
posiriue deviations from linear mixing. This shows clearly
that the function that QIIVH and IOT use for the OCP,
fc ' (I ), does not represent correctly the OCP limit of
their own results for the BIM. Thus, the new "extra long
MC samplings in the specifically designed binary-ionic
systems, " as presented in Table 2 of IOT [14], cannot
change the picture, since they also are processed via
f0' (I ) in the linear-mixing rule. This inconsistency
can be verified by IOT if they will go one step further:
Instead of simulating BIM systems with 999 charges Ze
and one charge 2Ze, they should do it also for the OCP
with 1000 charges Ze. With their data points at r =0,
which are derived on the basis of (4) but from data with
inconsistent error bars (as explained above), the agree-
ment with the OII extrapolation, as presented in Figs. 7
and 8 of IOT [14],seems to be accidental.

In summary, the case of Ichimaru et al. [2,8 —11], as
summarized by IOT [14], is based on analysis of their
simulation data, by which the individually questionable
Eqs. (20), (25), (31), and (33) of IOT [14] appear to be con-
sistent. On the other hand, full consistency with the raw
data of Ichimaru et al. [9—11] is obtained by using the
Alastuey-Jancovic AJ(i) fits to the H(r) data, in agree-
ment with the Onsager-molecule asymptotic analysis,
which represents well the new h2 data of IQT. It is in-
teresting to note that "AJ(5)" was already presented in
Saint-Malo [ld], before the new hz data by IOT [14] were
published. Deviations from linear law of the energy of
mixture data, using the DWSS energies for the QCP,
agree with the AJ(i) fits and are also in agreement with a
variational hard-sphere Inodel for the free energy. This
alternative analysis achieves consistency of all the data
and agrees with physically acceptable theoretical models.

V. "ONSAGER MOLECULES" AND
CLUSTER MODEL CALCULATIONS

Following the introduction of charge-cluster plasmas
[16—18], a detailed study of diatomic confined Onsager
Inolecules was performed by Stein, Shalitin, and Rosen-
feld (SSR) [23]. Of particular interest was the family of
all neutral objects composed of the pair of point charges,
with separation r, and a uniform neutralizing background
charge density. These are the "clusters" as rediscovered
by IOT [14],for which they find new results, namely, that
[Eq. (49b) in [14]] hz=0 for the clusters, which sustain
their analyses of the simulation data. These main results
of IOT [14] from their cluster model calculations are
questioned below.

Stein et al. proved [23] that the cluster with minimal
electrostatic energy (i.e., the Onsager molecule} must
have an equipotential surface. It was found that the solu-
tion to the variational electrostatic problem of finding the
optimal object (the OM) has a very shallow minimum
with respect to variation of shape, as borne out also by
the cluster calculations (see below). The general expres-
sions needed for the calculation and discussion of the en-
ergy of axially symmetric clusters are provided in the ap-
pendix of [23], and particular cluster shapes, as approxi-
mations to the OM, were already considered [23]. The

(14)

first two terms in (6) are the result for the spherical
shape, and the contributions from the deviations from the
spherical shape are represented by &z, (r), which is the
analog for the general cluster of the optimal &z oM(r).
Because of its optimal shape, the OM yields the lowest
energy for the cluster, and thus the largest value for its
approximation of the screening potential:

~2,OM( r }—~2, (11)
Ichimaru, Ogata, and Tsuruta [14] consider the

spheroidal (SD) and spherocylindrical (SC) shapes and
optimize the deformation parameter 8 (8=0 for the
sphere; see Ref. [14] and the Appendix) for every value of
the interion separation r. In their notations,

&z, (e, r)r II =H, (e—, r)/I + —,', + ,'r-
=8(8)—2 (8,r), (12)

subject to the optimization
a[H, (e, r)/I ]Iae=a[&z, (e, r)r /I ]/ae

=a[a(e) —~ (e,r)]/ac=0,
which yields 8(r) and the optimized H, , (r}=H,[8(r),r].
The derivative of the final result %z, ,~( r )

=&z, ,~[8(r), r] with respect to r is given by

d[%z, , (r)r II ]/dr
= [(a[B(8)—A (6,r) ]/ae)„(ae/ar )

—[aw(e, r)/ar], ], „„,.

Because of the optimization [Eq. (13)], however, it takes
the form

d [%z, ,z(r)r II ]Idr = —[(a& (e, r)/ar)e]e
Ichimaru, Ogata, and Tsuruta [14] find linear behavior,
8(r) =t ir+. . . . , in the small r limit for both the SD and
SC shapes, as can be seen in their Eq. (A5) and in the
equation following it. From Figs. 5 and 6 of IOT, esti-
mate t, =0.85 for the SD and t, =0.92 for the SC shapes.
The leading term for the small-r and small-8 expansions
of A (e, r) is of the form A (e, r) = aze r +. . .—, where
az =

—,', for the SD [there is a misprint in Eq. (41) of IOT:
28 should be replaced by (28—48 /3 ) ] and
az= —,', (ll —8X2'~ )=1/11.6 [from Eq. (44) of IOT] for
the SC. Thus, in the limit of small r, we find that
d [&z, , (r)r II ]/dr =2aztir +. . . , or

%z, (r =0)/I'=azt, /2; (15)

i.e., &z, (r =0)/I = =0.0361, 0.0365, for the SD and
SC, respectively, in agreement with the earlier analysis
[23] and the OM result [Eq. (7)]. With the help of Figs. 5
and 6 and Eqs. (47) in IOT [14], it is possible to recon-
struct the full &z, ,~(r). As can be seen in Fig. 3, the
cluster models behave as expected by SSR [23], sustaining
the Qnsager-molecule analysis and supporting my criti-
cism [12,13] of Ichimaru et al. , instead of sustaining Eq.
(8), i.e., Eq. (20) of IOT [14].

Actually there is no need to use any specific result from
IOT [14] in order to question their Eq. (49b). It was
found numerically [23] that the OM energies and those
for the cluster of the shape denoted R' ' in [23] (see Eq.
(19}in [23] ) are almost the same, especially near r =0. In
Table II of [23], we find 8 =2/r, Ao= 1/8'~, from which
we estimate t, =0.877 and &z, (r =0)/I =0.0384,
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FIG. 3. EfFective coefficient for the r term of the OCP
screening potential h2(r) [denoted &z{r) in the text] as approxi-
mated by charge clusters of the spheroidal (SD) and sphero-
cylindrical (SC) shapes, and by the optimally shaped Onsager
molecule (OM). The exact relation h2 M(r) ~ h2, (r) does not
always hold because of the limited accuracy of the numerical
calculations and of the representations by Eq. {17)in IOT [14].
The error bars for the point at r =0 reflect the uncertainty in
determining the coefficient t& from Figs. 5 and 6 in Ref. [14].

=0.024 . (17)

The source of the difFerent IOT [14] result is probably
the last term in their Eq. (A7), which implies (unlike our
result) that a2=0. Obviously, the IOT mathematical
proof of their Eq. (49b) is questionable. Instead of sup-
porting (8), my exact cluster model calculations give a
physical picture that is different from the IOT results
{Eqs. (20) and (49b) in [14]].

My analysis here, in particular Eq. (17), demonstrates
the insensitivity of the cluster screening potentials to the
shape. This gives an idea why the AJ(i) type fits for
&2(r), obtained from the MC H(r) data for strongly cou-
pled plasmas, feature a slow change with I from the
asymptotic prediction by the Qnsager molecules. Consid-
ering the thermodynamics and structure of the strongly
coupled OCP, it can be understood in terms of slowly
varying boundary conditions (e.g. , the shape) of the On-
sager atoms and molecules. Thus ho(I }/I slowly in-

which compares well with the extrapolated value in Eq.
(7) above. This estimate also compares well with those
obtained from the IQT data. It is proven in the Appen-
dix that the R ' cluster shape and the SD should give the
same results in the small-r expansion. Note, however,
that the R ' ' cluster does have the dissociation property
(i.e., interpolates between one sphere and two adjacent
spheres), while the spheroidal (SD) and spherocylindrical
(SC) shapes are more like a mathematical exercise.

Moreover, it should be noted that the SC and SD
shapes are just two specific examples of cluster shapes ob-
tained by continuous axially symmetric deformation of
the sphere, for which we obtain (see the Appendix) the
following general exact bound,

&2,(r =0)/I & 3X2'i /160=0. 024, (16)

which is independent of the shape of the cluster. Together
with the QM result we thus have the following exact ine-
qualities for all clusters:

0.038=& (r =0)/I" &&,(r =0)/I & 3X2'~3/160

creases with decreasing I from its asymptotic "ion-
sphere" value of =1.057 (Fig. 2). The ion-sphere result
h i/I =

—,
' turns out to be exact by virtue of the uniform

neutralizing background. &z(r) is slowly varying from
its asymptotic limit because of the dissociation property
of the molecules, which sets &2(r =2)/I'=0. 028, and
the insensitivity of h2/I =&&(r =0)/I =0.038 to the
shape of the cluster (Fig. 3). The AJ (i) fits (Fig. 1}to the
new simulations [9] show that iVz(r ~ 2)/I monotonical-
ly decreases from gfzoM(r ~2)/I as I decreases from
the asymptotic I —+ Oo limit, in accord with the inequality
(11).

APPENDIX: ANALYSIS OF GENERAL AXIALLY
SYMMETRIC CHARGE CLUSTERS

Consider the general axially symmetric cluster, com-
posed of the pair of identical point ions of charge Ze at
k(r/2) on the symmetry axis, and a uniform distribution
of electrons. Recall that we measure distances in units of
a, so that the uniform electron charge density is

(3/4n. )Z—e. Let the shape of the cluster be described by
the radius vector from the origin to the boundary R (0),
where 0 is the azimuthal angle in spherical coordinates,
and let p=cosO. In particular, consider the rather gen-
eral shape

R ( cosO) =R (8)s (8 p ) (Al)
where 0 is the deformation parameter, and the shape
function s (y) can be expanded in the form
s (y) =1+siy +szy + . The normalization factor
Ro(8) is determined from the condition that the volume
remain the same throughout the deformation (Eq. (17}in

[23]»

Ro(8)= 2

I is 3(82 2)d

' 1/3

(A2)

Using (19) above and Eqs. (A2) —(A5) in [23], we obtain
the following leading terms in the expansion of the ion-
electron interaction in the cluster, in powers of 0 and r:
u;, (8,r) = ——'X2' 3+ +b'"'8 —a 0 r + .
k TI 4 a2 r

(A3)
The first two terms are the well known results for the
ion-sphere, and the leading coeKcients are given by

b" =( —,'X2 )—s4 ws
(A4)

a2= ~s(
—1

Note that b4"' is always positive, while a2 is positive for
the physically correct deformation s

&
)0, i.e., with

elongation along the line joining the two point charges.
The leading order in the expansion of the electron-
electron interaction u„(8),in powers of 8, beyond the
spherical contribution u„(8=0)/I =—', X2, can be
represented as an infinite series using Eqs. (A6) —(A9) in
[23]. Consider the total cluster energy (excluding the

ACKNOWLEDGMENT

This work was supported by the Basic Research Foun-
dation administered by the Israel Academy of Sciences
and Humanities.



COMMENTS

ion-ion interaction) when the two charges are at the
center (r =0), and consider its change upon any
infinitesimal deformation of its initial spherical shape. If
e is the infinitesimal charge outside the maximal sphere
that can be inscribed inside the deformed sphere, then it
can be easily established from elementary electrostatics
that the change in the total energy of the cluster is of or-
der e . Since the sphere is the optimal cluster (Onsager
molecule) for r =0, then this change must be positive. For
the case at hand we thus have

u, (8, r) 1 u;, (8,r)+u„(8)
k~TI r k~ TI

r 2= ——'X2 +- -+b 8 —a Hr +
10 4 4 2

(A5)
where b~ is positiue, b4) 0. In view of (A3) and (A5), we
must have

=-X2'"—b'"'8'+u„(8)
(A6)4 ~ ~ ~

where b4'"' is positive, b&"' & 0, since for a uniform charge
density the sphere has the maximal self-energy. Because
b4=b4'"'+b4"' is positive, we thus have b4 &b4"'. Op-
timizing u, (8,r) with respect to 8,

(A8)

8
u, (8,r)=0, (A7)

we obtain 8(r)=t, r+. . . , where t, =(a2/2b4)'~, so
that the coefFicient of the r term for the cluster screening
potential takes the form

&z, (r =0)/I =a&/(2b4) =azt, /2 .

Since b4 & b4'"' we obtain the following exact bound,

&2,(r =0)/I &a&/(2b4"')=3X2'i /160=0. 024, (A9)

which is independent of the shape of the cluster since the
s& dependence cancels out. Together with the OM results
we thus have the following exact inequalities for all non
spherical clusters:

0 038. =&~ oM(r =0)/I ~&2, (r =0)/I )3X2'~ /160
=0.024 . (A10)

Finally, note that the R' ' cluster shape of (A6) with
s(y)=(1+y)' and the spheroidal shape of [14] with
s =(1—y) ' have the same coefficient s& =

—,', and thus
should give the same results in the small-r expansion.
Note, however, that unlike the spheroidal clusters used
by IOT [14], the R { ) cluster does have the dissociation
property (i.e., it interpolates between one sphere and two
adjacent spheres).
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