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Kinetic self-avoiding walks on randomly diluted lattices at the percolation threshold
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Survival probability arguments have been developed for obtaining generalized formulas for the end-

to-end distance exponents of the self-avoiding walk, the kinetic growth walk (KG%'), and the true self-

avoiding walk on a percolating cluster. A crossover in the asymptotic behavior of KGW on a two di-

mensional percolating cluster has been observed at a walk length =60. This is presented as numerical

evidence of the fact that the KGW latches onto a backbone as it grows longer.

PACS number(s): 36.20.Ey, 05.40.+j, 64.60.Cn, 82.35.+ t

Self-avoiding walks (SAW's) on a randomly diluted lat-
tice have been a subject of great interest because of their
relevance to polymers in porous media. Much attention
has been focused on studying the e6'ect of lattice dilution
on the end-to-end distance exponent v and the suscepti-
bility exponent y. It has been demonstrated [1,2] that the
exponent v changes at the percolation threshold to a
higher value vp=3/(df+2), with df representing the
fractal dimension of the percolating cluster, whereas the
exponent y does not change at all with lattice dilution.
Even though it can be argued that vz must be greater
than the Flory value v~=3/(d+2), the question of what
the value of vp should be has remained controversial [3].
In particular, the exact enumeration studies [4—6] report
higher values of vi, than the Monte Carlo studies [7,8].
The reason for this discrepancy is said [3] to be due to the
nature of the unbiased Monte Carlo sampling: The per-
colating cluster is known to be made up of self-similar
blobs which are linked by singly connected paths; it is
very dificult for the Monte Carlo method to generate un-
biased SAW's through these singly connected paths.

This raises the interesting academic question of wheth-
er it is possible to estimate vz independently by some oth-
er means. For example, the kinetic growth walk (KGW
[9]) grows by stepping into one of the unoccupied nearest
neighbor (UNN) sites at random, and so cannot miss go-
ing from one blob to another through the singly connect-
ed channels of a percolating cluster. This walk represents
the nonequilibrium conformations of a linear polymer,
and is also intimately related to the hull of a percolating
cluster [10]. In regular Euclidean spaces, the KGW is
known [11,12] to have the same asymptotic behavior as a
SAW. Hence a study of whether it is also true on a per-
colating cluster will throw light on the Monte Carlo as
well as the exact enumeration results for SAW's.

A K.GW can be viewed as a true self-avoiding walk
(TSAW [13]) without self-intersections because, apart
from the trapping problem, it is essentially the same as
the latter in the limit g~ ~. This is quite analogous to
the situation where a SAW is viewed as a random walk
without self intersections. Therefore, we adapt
Pietronero's survival probability approach [12] to this
problem, and consider an N-step kinetic walk (KW) —ei

ther a random walk or a TSAW —on an infinite percolat-

ing cluster.
I.et P(r;N) denote the probability that an N-step KW

has an end-to-end distance r. Then the probability distri-
bution Q(r;N) for the end-to-end distances of N-step
SAW's or KGW's can be written as the product

Q(r;N ) = Ps(r;N )P(r; N ),
where Ps(r;N) represent the probability that a KW will

survive up to X steps without self-intersections. We may
write

Ps(r;N)= exp( —Np),

with p denoting the probability per step that the walk will
be trapped into a self-intersecting situation. How to esti-
mate p7

As we move on the walk from one end to the other, at
every step we may find some (or all) of the nearest neigh-
bors occupied by the walk. So, naturally, we may define
the encounter probability pz as the probability that a
nearest neighbor site will be an occupied one. Assuming
that the monomers fill a volume V=r (D is the fractal
dimension of the space in which the walks are realized)
uniformly with an average density p =N/V, we may iden-
tify pz with p, where a is the number of occupied
nearest neighbors encountered, and is referred to as the
order of encounter. The functional dependence
pz(p)=p satisfies the expectation that pz —+0(1) as

p —+0(1).
Pietronero has argued [12] that this definition of o, is

wrong in view of the topological connectedness of the
walk. For a Gaussian random walk in a regular Euclide-
an space, he has defined it as the number of walk seg-
ments encountered whose contour lengths far exceed the
correlation length pertaining to the directions of succes-
sive steps. This definition of a is also applicable to the
TSAW in a space of dimension of d ~ 2, because it has
the same asymptotic behavior as the Gaussian random
walk. He has further demonstrated that encountering the
walk is necessary but not sufhcient to trap a KGW.
Hence he has proposed the following expression for p:
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where the summation is due to the fact that e is arbitrary
and pT

' denotes the probability that an encounter of or-
der a also traps the walk. In the case of a SAW, we may
write p =g~ .

A random walk on an infinite percolating cluster, how-
ever, is non-Gaussian with the end-to-end distance ex-
ponent vp having a value vp =0.3484 in two dimen-
sions [14]. Even though Pietronero's definition of a is
not applicable directly in the present case, we refer to n
formally as the order of encounter, and assume that Eq.
(3) is still valid. The survival probability for the walk can
then be written formally as

Ps(r;N)= exp Ngp—pz'
' (4)

where a=1,2, 3, . . . .
The probability distribution P(r;N) for the end-to-end

distances of X-step KW's on an infinite percolating clus-
ter has the form [14]

( r )
IIIIII

P(r;N) = exp ' —N

o~w= (1 vp— —

where d;„ is the chemical dimension, and v= 1/d
( =0.883+0.003 in two dimensions [14]).v~ is the cor-
responding end-to-end distance exponent. The required
probability distribution Q(r;N ) can now be obtained by
substituting the above forms of Ps(r;N) and P(r;N) in
Eq. (1); the exponent vB for kinetic walks without self-
intersections (KSW) can be obtained by minimizing the
saddle-point function

&aw
( )

III III

F(r;N)=N X +Neap p,". (6)

It may be noted here that Lhuillier's form [15] for E is a
special case of Eq. (6). Since the maximum contribution
comes from the lowest value of a with nonzero pT ', we
have the general formula

Ksw &+&KW
Vp

Da+6Kwd

which is a more generalized version of the Chang-
Aharony formula [16] for v on a fractal. Pietronero
[12] has argued that a first order encounter (o.= 1) is
sufhcient to trap the walk in two or three dimensional
space. This argument should also be valid for a percolat-
ing cluster because it provides less escape routes for a
walk than its embedding Euclidean space. The exponent
vp will correspond to that of either SAW or KGW de-
pending on whether the kinetic walk considered is a ran-
dom walk or a TSAW.

In order to calculate vp, we need to have the value
of vp at the percolation threshold. It is possible to
obtain some theoretical estimate of vp by considering
a TSAW as a random walk with a tendency to move to-
wards regions not yet visited. The probability distribu-

tion P, (r;N) for such an asymmetric walk can be ex-
pressed in terms of P(r;N), Eq. (5):

P, (r;N) =P(r;N)expI —gn(r) [, (8)

where n(r) represents the average number of times an iY.
step random walk has been found at a distance r. The
factor exp( g—n ) in the above expressions ensures that a
walk which revisits a site is given lesser weight; g is
known as the self-avoidance parameter. If we assume
that the walk is equally likely to be anywhere in the re-

gion of volume, V=(r) f, then we have n(r)=p. Here
df is the fractal dimension of the percolation cluster
( =—", in two dimensions [14]). The exponent vps is

then obtained by minimizing the saddle-point function
appearing in Eq. (8):

TSAW RW
Vp

df +~Rwdmin
5Rw—= (1—vp /v) ' . (9)

Substituting the appropriate two dimensional values in
Eq. (9), we obtain vp =0.438. Numerically, this com-
pares well with that ( =0.48) estimated by Bouchard and
Georges [17]. Equation (9) may be written in the
equivalent form

~TSAW

TSAW
Vp

~+ min
(10)

Since dRw )df and dRw )d;„ in all dimensions [14],we
have the result 5TSAW) 5RW with the following implica-
tions for the SAW and KGW on percolating clusters.

Since asymptotically long SAW's are supported by the
percolation backbone, we also need to consider the
KGW's on the percolation backbone in order that they
can be compared. Substituting D =dB in Eq. (7), we have
the ratio

vKGW ) vSAW for

KGW SAW'
(12)

Substituting appropriate values of Eq. (7), we have
v& =0.768, which is only slightly greater than
v =0.758. Since the value of v is bounded below
by the Flory value vF, the bounding interval for vz
shrinks to the classical value —,

' as d —+6.
In order to find numerical support for Eq. (7), we have

generated KGW's on a square lattice at the percolation
threshold using the ROLL algorithm of Honeycutt and
Thirumalai [18]. The size of the lattice has been chosen
such that the longest walk generated does not suAer from
boundary e6'ects. Every site is assumed to exist in one of
the three states, blank (8) (yet to be decided), available
( A) (neither occupied nor forbidden), or unavailable ( U)

vB +(~TsAw ~Rw)(dB min )

SAW
4

vB (dB+ "oTs~wd;. )(~+ |iRw)

In view of the fact that dz )d;„ for percolating clusters
in less than six dimensions [14], the inequality
6TsAw) 6Rw leads to the result
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(not A), respectively. Initially, all the sites are in the B
state. We start generating a KGW by first occupying the
center of the lattice. At every stage in the growth pro-
cess, we first decide the state of the nearest neighbor B
sites, if there are any, by comparing a random number p
(0 &p & 1) with the (site-) percolation probability p,
(=0.592745 for the square lattice [19]). Ifp )p„ then it
becomes a U site; otherwise it becomes an A site. The
growth of the walk proceeds by choosing one of the A
sites at random. If no 3 site is available for further
growth, then the lattice is cleared and a fresh walk begins
from the center. The number of statistically independent
cluster configurations sampled is clearly the same as the
number of KGW's generated. Therefore, disorder
averaging is automatically performed while we compute
the mean square end-to-end distance (Rz(N) ) or the ra-
dius of gyration (Sz(N) ).

We have generated KGW's of lengths X ranging from
19 to 96 steps, and then calculated (Sz(N) ), which has
smaller statistical Iluctuations than (R&(N) ). Out of the
hundred million attempts made to generate them, only
about two hundred walks survived up to 96 steps. For
each value of N, we have not only computed (Sz(N) )
and (S~(N)), but also the fraction f(N) of surviving
KGW's. We have repeated this process ten times with
diferent random seeds, and obtained the mean values.

We have calculated v~(N) values using Lam's recipe
[4], and plotted them against 1/N in Fig. 1. We have
used (S (N) ) data and the standard error analysis tech-
niques to estimate the error on vz(N) The exp. onent in-
creases linearly in the region, 0.0315 ~ 1/N ~0.0165. A
simple extrapolation would lead to a value
v~ =0.725+0.007. This compares well with the value
( =0.721 ) obtained by setting D =d&, and substituting
the value v~ =0.3484 [14] in Eq. (7).
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FIG. 1. v(X) as a function of 1/X. The curve drawn
represents an attempt to extrapolate the data to the value,
vz =0.768. The inset represents a plot of
N(X) = —In[vs —v(N) ] against 1n(X). Solid lines with slopes
0.2 and 0.5, respectively, have been drawn to guide the eye.

However, the data show a definite trend to curve up in
the region 1/N &0.0165. This behavior is suggestive of a
crossover to a higher value of v. As mentioned earlier,
the fraction of walks which survived up to 96 steps is of
the order of two thousand in one billion. Hence it is
dificult to obtain more accurate data in this crossover re-
gion without resorting to some sample enrichment
scheme. We have already seen that setting D equal to the
backbone dimension dpi in Eq. (7) yields the value

v~ =0.768 in two dimensions. Even though our data
in the region 1/N &0.0165 show a definite tendency to
curve up, they are not accurate enough for reliable extra-
polation. Nevertheless, we have plotted —ln[vii—v(N)] against ln(N) in the inset of Fig. 1. Solid lines
with slopes 0.2 and 0.5 have been drawn to guide the eye.
We have attempted an extrapolation of the data using the
formula [20], v(N) =v~ —(6/2)BN with b, =0.6
and 8=3, and indicated the same by an extrapolating
curve. It may be noted that the attempted extrapolation,
though not reliable, is quite compatible with the trend of
the data.

This therefore represents the signature of a crossover
in the asymptotic behaviour of KGW, with a crossover
length N, =60. It will be extremely dificult to make a
similar observation in three dimensions, because X, could
be of the order of thousands. Nevertheless, on the basis
of this small scale simulation, we can say that there exists
a crossover length beyond which the backbone influences
the asymptotic behavior of KGW.

It may be noted that the formulas for v~sw and vz
[Eqs. (7) and (9)] are valid whatever the type of
disorder —quenched or annealed. This follows from the
general validity of the asymptotic scaling form of the
probability distribution P(v;N), given by Eq. (5). There-
fore, the results obtained from these formulas will be val-
id for the kind of disorder to which corresponds the value
of vow used.

The RQLL algorithm, used in our simulations, may be
said to generate different configurations of a finit walk at
different locations of the infinite random medium. If we
juxtapose one end of all the configurations, we see that
they sample di6'erent random environments. With this
mental picture, we expect that the e6'ect of the annealed
disorder might be washed out on the average. Recent
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FIG. 2. v(X) as a function of 1/X for TSAW.
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studies [21,22], however, have indicated that constrained
annealed disorder may have nontrivial efFects on the
behaviour of random walks with weak self-avoidance.

Using the ROLL algorithm, we have also generated one
million TSAW configurations of length X ranging from
50 to 300 steps on a square lattice at the percolation
threshold for g =0.0, 0.135, 0.25 and 0.5. We have calcu-
lated the values of v(N) using Lam's procedure [4], and
plotted them against 1/N in Fig. 2. A simple extrapola-
tion of the data yields vz =0.35 for g =0, thus agreeing
well with the quenched value ( =0.3484) reported in the
literature [14]. The data for g )0 can all be extrapolated
to the value vT~s~w=0. 422+0.005, which compares fairly
well with the value v~ =0.438, obtained from Eq. (9)
by substituting vz =0.3484. Accurate simulations with
much longer walks may be necessary for making con-
clusive statements. However, for all practical purposes,

our simulation data may be taken to correspond to
quenched disorder.

To sum up, we have presented survival probability ar-
guments that lead to generalized formulas for the end-to-
end distance exponents of the SAW, KGW, and TSAW
on a percolating cluster. In particular, vz has been
shown to be bounded above by vz for d (6. Simula-
tion data for KGW's on a two dimensional percolation
cluster have been presented as numerical support for
these formulas. The observation of a crossover in the
asymptotic behavior of the KGW at a crossover length
X, =60 has been interpreted as a numerical evidence of
the fact that the KGW latches onto the backbone as it
grows longer.

I am. extremely grateful to Dr. K. R. Rao for his sup-
port and guidance.
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