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Numerical solution of the Schrodinger equation using discrete kinetic theory
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The quantum lattice Boltzmann equation a new variant of the lattice Boltzmann equation specifically
designed to describe quantum mechanical motion, is checked against analytical results for the case of a
free particle and the harmonic oscillator in (1+1)space-time dimensions. The proper parameter regime
under which the method needs to be operated in order to reproduce faithfully nonrelativistic quantum
motion is discussed.

PACS number(s) 02.70.—c, 03.65.—w

I. INTRODUCTION

The Dirac equation is the most general equation
describing single particle motion in compliance with the
two fundamental pillars of modern physics: quantum
theory and special relativity. Relativistic effects are con-
trolled by the ratio of particle to light speed P=U/c,
while quantum effects are driven by nonvanishing values
of the (imaginary) difFusion coeKcient fi/2m, m being the
particle rest mass [1]. In a recent paper, a procedure to
solve quantum mechanical problems using numerical
techniques mutuated from discrete kinetic theory has
been proposed [2]. This procedure builds on a formal
analogy between the Dirac equation and a special discrete
kinetic equation known as the lattice Boltzmann equation
(LBE). In particular, it was shown that by a proper
resort to operator splitting methods, the Dirac equation
can be integrated as a sequence of three one-dimensional
LBE s evolving complex-valued distribution functions.

It is the purpose of this paper to investigate the ability
of the numerical procedure outlined in Ref. [2] to proper-
ly describe the nonrelativistic quantum motion starting
from a relativistic equation such as the Quantum LBE
(QLBE).

The method should in principle be able to follow rela-
tivistic motion as well, but a quantitative assessment
along this direction would require a separate study in its
own. As a result, in this paper we shall restrict ourselves
to nonrelativistic quantum motion as described by the
Schrodinger equation.

II. QUANTUM LBE

For the sake of simplicity, we shall confine our discus-
sion to one-dimensional motion (1+1)of a free quantum
relativistic particle. Using the Majorana representation
[3], and projecting upon chiral eigenstates, the Dirac
equation reads as follows:

Btd cB d — co Q + Igd

Bt Q +cB Q —+67 d +EgQ

where Q and d represent a pair of complex bispinors,
co, =mc2/fi is the Compton frequency, and g =qV/A is

the (space-dependent) frequency coupling to the external
potential V, q being the particle electric charge. Since we
confine our attention to electrostatic potentials, the spi-
norial indices will be dropped throughout the paper.

As noted in [1],Eq. (1) can be interpreted as a discrete
Boltzmann equation for a pair of complex distribution
wave functions u and d, streaming along the z axis with
opposite speeds +c, and undergoing collisions according
to the scattering matrix defined by the right-hand side of
Eq. (1).

In the collisionless limit (m~0, g —+0), Eq. (1) de-
scribes two light pulses propagating undisturbed and
passing transparently across one another as befits photon-
ic wave functions. This is the fully hyperbolic, relativistic
regime described by the Klein-Gordon equation for spin-
less bosons.

Once a material mass is switched on, the two photonic
pulses start to interact so as to produce drag (a particle
speed slower than light speed) and difFusion (a loss of
quantum coherence) on the distribution functions.

Nonrelativistic motion emerges in the adiabatic (low-
frequency) limit:

CO (( ~CO +g
~

(2)

it is readily checked that the slow mode [see Eq. (11)]dy-
namics is governed by the Schrodinger equation for a
spinless particle of mass m.

It is worth noting that, in this "kinetic-theory-
inspired" view, both quantum and relativistic effects can
be traced back to a simple common kinetic origin: a
nonzero particle collision frequency.

This is somehow suggestive of a "hidden-variables"
theory, whereby the wave function plays the role of a
coarse-grained variable resulting from the collective
motion of a cloud of unobservable "automata" all propa-
gating synchronously in lock-step mode at light speed,
and undergoing collisions according to the right-hand
side of Eq. (1). Leaving aside this controversial subject,
we turn to the issue of numerical discretization.

With the further constraint of "small" potential cou-
pling

(3)
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According to the procedure prosed in [2], the system of
equations (1) is discretized via a Crane-Nicolson time-
marching scheme combined with a (somewhat unconven-
tional) upwind treatment of the spatial derivatives. This
means that the space derivatives are replaced by one-
sided discrete differences taken along the streaming direc-
tion, i.e., forward differences for upward propagating
modes and backward differences for the downward-
moving modes.

By working in atomic units (c =A'=q = 1) and normal-
izing space time in units of lattice spacings (hx = b, t = 1),
we are led to the following set of algebraic equations:

Q Q =aQ+M

d —d =ad —bu,
where u =u(z t), d =d(z t) and d=d(z —l, t+1),
u =u (z + 1,t + 1). The scattering elements are given by

a =(1—0/4)/(1 0/4+ig)—,

b =m /(1 fl, /—4+ig),
where Q=m —g, u =u(z, t), and d =d(z, t), and m
represents the dimensionless Compton frequency in lat-
tice units (b,x = b.t =c =q = 1).

Equation (4) preserves unitarity (norm conservation) all
along the time evolution under the condition

It is readily checked that the scattering matrix defined
by Eqs. (4) and (5) does indeed comply with the above
conservation law. In addition, owing to the upwind
treatment of the spatial variable, the scheme is also un-
conditionally stable and dispersion free. Another re-
markable feature due to the upwind scheme is that un-
conditional stability can be obtained without spoiling the
matrix freedom of the numerical scheme. This is due to
the fact that the linear system generated by the implicit
Crane-Nicolson time-stepping procedure is easily solved
algebraically site by site to yield expressions (4) with no
need to introduce any matrix solver.

III. NUMERICAL TEST I: FREE
PROPAGATION

Free-particle dynamics is recovered from Eq. (1) by
simply letting the coupling constant g —+0. This test is
trivial from the physical point of view, but is well suited
to isolate numerical issues from the physical ones.

The nonrelativistic limit is most conveniently discussed
by inspecting the dispersion relation associated with Eq.
(4). This reads

co@=+V k +m'

where m'=arctan[m/(1 —m /2)] is an efFective mass in-
corporating the effects of lattice discreteness. In the limit
m —+0, m' reduces to m as imposed by consistency re-
quirements. This sets an upper bound to m which is,
however, rather soft because, due to the shape of the
arctan function, m' remains close to I except for m =1.
As a result, in the following we shall always refer to m,

or, equivalently, in our units,

P=k/m «1 .

In order to test the validity of our scheme in this re-
girne, we evolve the following pair of minimum uncer-
tainty wave packets:

(z —zo)

4To

Xexp[+iPO(z —zo/2)] . (10)

This expression represents two wave packets centered
about zo, with an initial spread ho= +TO propagating at
speed Po along the +z (particle} and —z (antiparticle)
axes, respectively.

Following a standard procedure, we introduce a pair of
transformed wave functions defined as follows:

1—(u+id }exp( imt), —
2

which represent the slow (+) hydrodynamic and fast
(
—

) nonhydrodynamic modes, respectively. Note that
these modes combine a weighted mix of particle (u ) and
antiparticle (d) states.

It is a simple matter to show that the fast mode ampli-
tude is of order 0 (P) with respect to the hydrodynamic
mode, and its oscillation frequency is 0 (P ). As a re-
sult, in the adiabatic limit P—+0, the fast mode decouples
from the system dynamics which is consequently dom-
inated by the slow mode. It is precisely under these con-
ditions that nonrelativistic quantum motion is expected
to emerge out of the Dirac equation (1).

To check the ability of ELBE to reproduce this
dynamical decoupling, we monitored the main represen-
tative parameters associated with the wave motion, i.e.,
the mean displacement Z=(z) and the mean spread

( ( Z )2)1/2

As is well known [4], these quantities evolve according-
ly to the following exact equation:

Z(t) =z, +Pt (12)

t2
h(t) = 5O+

4m 62

1/2

(13)

In Fig. 1 we show Z —zo and 6 as a function of time for
the following choice of parameters: m =0.1, ho= 50, and
zo = 1024, on a 2048-point mesh.

The suffix (+) denotes averaging over p+ =
~ tf)+ ~.

From this figure, one can appreciate a remarkable match
of the (+ ) quantities with the analytical results [the short
solid segments indicate the analytical slope derived from
Eqs. (12) and (13) in the limit t ))1].

with the tacit assumption m & 1.
The Schrodinger equation follows from the Dirac equa-

tion in the limit of long wavelength and low frequencies:

k «m
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during wave motion is approximately given by
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This relation shows that adiabaticity can be violated
whenever ho& I/kc, even though ko lies well within the
nonrelativistic range. This inequality is indeed fulfilled
for the present simulations (b,0=50).

IV. NUMERICAL TEST 2: HARMONIC QSCILLATQR

50

l I I

200 400 600 800 1000 1200 1400 1600 1800
Time

FIG. 1. Mean displacement and variance of the wave func-
tion as a function of time for Pa=0. 2 and m =0.1. The suffix

(+ ) indicates the average over the density of the hydrodynamic
mode.

In Fig. 2 we show the probability d.istribution function
p+ as a function of the space for three di6'erent times. A
typical drift-diffusion behavior is clearly visible.

A series of runs at different values of P invariably
showed that indeed the probability density of the nonhy-
drodynamic mode is order P with respect to the hydro-
dynamic one. These results prove that the adiabatic limit
of Eq. (1) correctly describes nonrelativistic Schrodinger
dynamics.

At this point it is worth mentioning that the quality of
the results is afFected not only by the value of m but also
by the choice of the initial spread 60. This parameter
must be kept sufticiently large so as to prevent high wave
numbers from violating the adiabaticity conditions Eq.
(2).

Note in fact, that the range of wave numbers active

Perticie probebiiity density p+

0,0060-

0.0040-

0.0020-

As a second test, we consider a one-dimensional har-
monic oscillator, namely a quantum particle trapped
within a parabolic potential centered about the midpoint
of the computational domain and attaining its maximum
Vo at the edges z =0 and L,.

'2

V(z)= Vo
z L /2—

It is well known that, for such a potential, time-
dependent exact solutions exist in the form of coherent
wave packets:

e„=(2rrb, ') ""exp —. exp
Iz —Z(t) I'

—iP(t)exp

where the mean quantities Z(t) and P(t) obey the classi-
cal equations of motion of the harmonic oscillator:

Z=P/m,
Z+cooZ =0,

where

coo= I/2mbo .

Remarkably enough, these wave packets do not
disperse because quantum di6'usion is exactly counterbal-
anced by the linear force associated with the harmonic
potential. In particular, the spreading Ao characterizes
the ground state of the harmonic oscillator and is there-
fore exactly preserved all along the evolution. This is
true only in the nonrelativistic limit.

We have checked the ability of QLBE to preserve
quantum coherence over an extensive series of runs by
varying the parameters Vo, m, and I so as to produce the
following sequence of spreadings: 50=64, 32, and 16.

A series of results is reported in Table I. Here 6 is the
wave-function variance averaged over 3—6 periods.
From this table, we observe that good agreement is ob-
tained on the smaller grids. The deterioration on larger

0.0000
400 800 1600 2000

TABLE I. Loss of coherence as a function of the grid size for
case 3 (50=64). The theoretical spreading is 64 lattice units.

FIG. 2. Probability distribution p+ of the hydrodynamic
mode at three different times t =0, 1000, 2000 for the same pa-
rameters as Fig. 1. A typical drift-diffusion behavior is clearly
visible.
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TABLE II. Loss of cohernece as a function of the grid size
for case B (DO=32). The theoretical spreading is 32 lattice
units.

TABLE IV. Loss of coherence as a function of the particle
speed for case A (60=64). The theoretical spreading is 64 1at-

tice units.

1024
512
512

33.5+1.0
33.2+1.1
32.6+0.6

1

8
1

16
1

32

1

4
1

8
1

4

0.0
0.2
0.4
0.8

66. 1+1.1
67.6+3.6
76. 1+10.8

156.0+45.9

2.0X 10
3.3 X10-'
1.5X10
1.4X10-'

grids is mostly due to inaccuracies produced by poorly
populated tails in the wave-function profile. In fact, by re-
stricting the integration domain from (L/4, 3I, /4) the
scatter on the variance can be significantly cut down
while leaving the mean variance itself essentially un-
changed. A di6'erent diagnostic, based upon detection of
the maximum of the wave-packet density, provides much
better results, within a few percent of the theoretical
value 1/&2m b, .

Narrower packets provide somewhat better results, as
indicated in the Tables II and III. Note the slight im-
provement brought about by the increased separation be-
tween I and g (2m /g equals 4 on the second row, and 8
on the third), which, according to inequality (3), helps to
recover a better adiabaticity.

All of the above results were obtained at a fixed value
of P=0. 1. Higher values of P rapidly show the onset of
relativistic motion, especially for narrower packets. This
is in line with the fact that —on account of Heisenberg s
principle —narrow packets generate high momenta, and
hence nonadiabatic motion.

A typical example is illustrated in Table IV. Note that
norm conservation is also fulfilled up to a respectable lev-
el of accuracy when relativistic emotion takes over. This
is due to the fact that within this numerical formulation
density is locally conserved up to machine accuracy. The
average motion is also fairly close to the nonrelativistic
trajectory for values of P as high as P-0.3.

Inspection of the wave-function profiles reveals that a
significant loss of coherence is already apparent at P=0.2
even if the variance still appears to be rather close to the
theoretical value, and even more so the mean coordinate
Z. This suggests that the onset of relativistic motion
shows up first on higher order moments, while the aver-
age motion is somehow more "resilient" to relativistic
corrections. This is again a typical scenario of the hydro-
dynamic limit of kinetic equations (see Fig. 3). An exam-
ple of a well-behaved solution at P=0.05 is shown in Fig.

V. NUMERICAL TEST 3: SCA'I jsKRING BARRIER

k;=k„=&2mE, k, = I/2m (E —Vo) . (20)

Manifestly, where the potential exceeds the total energy
E, the wave number becomes imaginary, and the
transmitted wave undergoes an exponential decay.

The presence of both oscillating and decaying
behaviors is apparent from Fig. 5, which illustrates the
collision of a coherent wave packet with the potential
barrier. The numerical parameters of this simulation are

I.=16384, I=0.2, Uo =0. 1

Vo =0.002, ~0= 128

corresponding to the wavelengths

A, ; „=A, , =2' /( m Uo ) = l00m .

0.50—

0.30—

0.20—

As a third test we shall consider the scattering of a
wave packet by a box-shaped repulsive potential. As is
well know, the steady-state solution of this problem is
given by a superposition of incident, rejected, and
transmitted waves with wave numbers k, , k„and k„re-
spectively:

0.10 '.

TABLE III. Loss of coherence as a function of the grid size
for case C (60=16). The theoretical spreading is 16 lattice
units.

0.00
.00

1 I I I I I I I I

.10 .20 .30 .4-0,50,60 .70 .80 .90 1.00

256
256

16.9+0.6
16.7+0.8
16.3+0.5

1

4
1

8
1

16

FIG. 3. Time derivative of the mean variance of the hydro-
dynamic mode (lower curve) and total wave function (upper
curve), respectively, as a function of Po. The mass is set at
m =0.1, and the initial spreads is ho=50.
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0. 025

t=-0
t = 402
t = 1206

0. 02

~+ 0. 015

FIG. 4. Localized wave packet bouncing
coherently within the harmonic potential. The
three profiles correspond to the initial condi-
tion (middle), one quarter period (right), and
three-quarters of a period {left). The main pa-
rameters are m =0.5, Vo =

—,'6, U =0.05,
L =256, and P=0.05.

0. 005

80 120 160 180

From this sequence of wave functions, the bounce-back
of the wave function as well as its exponentially decaying
penetrations into the classically forbidden region is well
apparent. In the early stage of the collision, the wave
packet slows down abruptly, with a typical profile
steepening due to incoming waves piling up over the ones
just on the verge of reversing their motion. This gives
rise to fast rejected waves with a typical wave number
k-mUO. As time goes on, these ripples smear out in
response to the need of the wave form to regain a smooth
backward-propagating Gaussian profile.

Since higher order modes contributing to the initial
wave packet never die out, the picture is inherently
dynamical in nature and cannot be straightforwardly
confronted with analytical steady-state expressions. A
typical dynamical feature associated with the presence of
these modes is oscillatory behavior also inside the forbid-
den region. This kind of behavior is clearly detected
when the impinging packet is sufticiently narrow so as to
contain harmonics whose energy exceeds the potential
barrier. This is indeed the case also for the simulation of
Fig. 5, in which the fast modes with k =ko+2m. /50 have
enough kinetic energy to overcome the potential barrier.

VI. COMPUTATIONAI. EFFICIENCY

For a spinless nonrelativistic calculation the QLBE re-
quires two complex words and six complex Boating-point
operations per grid point. As a comparison, a "classical"
one-dimensional Schrodinger scheme would require only
half that memory and Ave complex Aops per grid point
L'53.

This makes a factor 2 less storage and a factor 5/6 (five
over six) less computation. Why then bothering about
the QLBE? The point is that the above figures do not tell
the whole story.

First an explicit Schrodinger solver with a triadagonal
spatial stencil (second order derivative) needs two tiine
levels of storage. The QLBE, instead, by involving only
one-sided finite difFerences (upwind first order derivative)
can do with one level only; all that is needed is to execute
spatial loops in reverse, i.e., cycling against the direction
of motion. This closes the factor 2 gap in memory re-
quirements. The factor 5/6 in the computation is a small
nuance as compared to other relevant aspects of the
time-stepping procedure. A plain explicit Schrodinger
solver is known to be conditionally unstable. Several sta-

0. 0025

0. 002

0. 0015
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FIG. 5. Localized wave packet impinging
against a potential barrier (solid line). The
time sequence refers to t = 10000, 15 000,
20000, and 35000 time steps. The main pa-
rameters are m =0.2, U =0.1, Vo =0.002,
60= 128, and I. = 16 384. The oscillatory
behavior of the reflected waves and the ex-
ponential decay in the classically forbidden re-
gion are clearly visible.

6000 6500 7000 7500
Z

8000 8500 9000



SAURO SUCCI 53

bilization techniques can be devised [6], but none of
them —to the best of our knowledge —manages to com-
bine the three features ofFered by the QLBE: unitarity,
dispersion freedom, and unit Courant number (the time
step equals the space step in code units).

It is our opinion that his combination is the direct out-
come of the hyperbolicty of the Dirac equation as op-
posed to the parabolic nature of the Schrodinger equa-
tion. Artificial hyperbolicity is nothing new in computa-
tional Auid dynamics; indeed, the hydrodynamic LBE can
be regarded as nothing but a finite-hyperbolicty scheme
for the Xavier-Stokes equation.

The point is that in the Quid-dynamic context finite hy-
perbolicity is a mere numerical trick (although one
strongly inspired by physical rather than numerical con-
siderations), while in the quantum context the hyperbolic
equation bears a fundamental physical meaning: it is the
real Dirac equation "in Aesh and bones. "

The above remarks are not intended to heralding the
QLBE as the best finite-difFerence scheme for the time-
dependent Schrodinger equation. Quite the contrary, we
believe that, just like in computational Quid dynamics,
more accurate —if not more eScient —schemes are
definitely available in the modern literature [6,7].

An extensive comparison with the current literature
goes way beyond the scope of this paper: on a more qual-
itative basis we may argue that a point in favor of the
QLBE is its ability to secure a number of important
features (built-in unitarity, dispersion freedom) while
keeping the same computational simplicity of plain expli-
cit schemes.

As to the actual performance, the computer code takes
about 1 (ps/step)/grid-point on an IBM RS/6000 mod.
550 superscalar computer workstation, corresponding to
about 30 MAops. This relatively high performance can
be traced back to a very efFicient execution of complex
Aoating-point operations on the IBM RS/6000 architec-
ture.

By comparison, a simple Crane-NIicolson scheme,
based upon the algebraic Thomas procedure to solve the
resulting triagonal system, takes about three times longer
on most of the cases examined in this work. The factor 3
reAects the additional operation cost brought about by
the Thomas algorithm.

Apart from the serial performance, we are mostly in-
terested in assessing the viability of QLBE on highly
parallel architectures. To this end, we first remark
that —like most explicit finite-di6'erence schemes —the
QLBE is very lean from both computation and communi-
cation points of view. Communication is lean because
only nearest neighbor connections are involved, and com-
putation is lean because the physics can be lumped into a
state-independent 4 X4 matrix.

Even counting six Hops per complex Aoating-point
operation (actual measurement would yield three) the
corresponding communication-to-computation ratio is as
low as 4/9 byte/Hop. As a result, high parallel speed-ups
with QLBE are subject to very stringent requirements on
the latency and bandwidth of the parallel machine. This
is in a marked contrast with the hydrodynamic LBE
which, by featuring several tens of Hops per byte, is good

for virtually all present-day parallel computers.
Where does this difFerence stand from? The point is

that the hydrodynamic LBE requires many speeds per
grid-point and, what is more, the collision matrix acts
upon the departures from local equilibria which them-
selves depend on the local state of the system.

To better focus on this issue, it is convenient to recast
the Dirac Eq. (1) into an explicit discrete kinetic-theory
format:

Bi,f, +v, B,f, = ig(f—; f )—,
with the identifications

f; =d, u, v, =+1, i =1,2 (24)

(25)

This expression highlights the overly simple nature of
the local quantum equilibria f;, which are nothing but
the distribution function itself times a coef5cient. This
contrasts with the hydrodynamic LBE, in which local
equilibria are quadratic functions of the local speed,
which in turn is a linear combination of all discrete popu-
lations. The computation of local hydrodynamic equili-
bria therefore involves a rather computer-intensive task
involving of the order of b operations, b being the num-
ber of discreet speeds per lattice site. The corresponding
QLBE complexity is only O(2D) in D spatial dimensions.
This is due to the fact that hydrodynamics is a nonlinear-
ly self-interacting field theory, whereas the quantum
equations considered in this work are linear.

The bottom line is that computational advantages such
as those we are used to in hydrodynamics, i.e., ease of im-
plementation of complex boundary conditions and out-
standing amenability to parallel computing, are likely to
surface mostly in situations where nonlinear physics
forces a substantial amount of computation into the
scattering matrix. The nonlinear Schrodinger equation
with local self-interacting potentials a la Landau-
Ginzburg stands out as a natural candidate for reaping
the opportunity of parallel computing.

VII. CGNCLUSION

The present results indicate that the quantum LBE is
able to reproduce simple nonrelativistic quantum
mechanical motion under a variety of physical situations.
The resulting numerical scheme exhibits excellent norm-
conservation properties, while preserving the swiftness,
namely low memory and CPU demand, typical of explicit
methods.

Computational eKciency on parallel machines is poten-
tially hampered by low computational density, but is li-
able to improve significantly once nonlinear interactions
are to be dealt with. The viability, both in terms of phys-
ical fidelity and parallel computational e%ciency, for
more complex situations (higher dimensionality and non-
linearly interacting systems) calls for further quantitative
investigation.
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