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Wavelet transform analysis directly from sinusoid crossings
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We show that the wavelet transforms of an analog signal f, (t) can be computed directly and eKciently
from a data representation consisting only of locations It; I, where f, (t) intersects with the reference
sinusoid r (t) of frequency 8' and amplitude A. To achieve a measurement bandwidth of 8; one cross-
ing must occur within each interval b, = 1/2W. This is satisfied when A

l f, (t)l for all f, (t) values
within the sampling period T. A total of 2M sinusoid crossings occur within T. Crossing-based wavelet
analysis is demonstrated with respect to the sombrero-shaped wavelet, using 256 crossings of an inter-
ferogram signal.

PACS number(s): 02.70.—c, 89.80.+h, 02.60.Gf, 07.05.—t

Because of their good localization properties in both
time and frequency domains, wavelet transforms (WT's)
are well suited for multiresolution signal analysis [1,2].
Extraction of specific signal features using the WT tech-
nique has gained widespread interest in optics [3], audio
[4], geophysics, solid state physics, astrophysics, weather
forecasting, and medicine [5]. So far, WT analysis has
been implemented only on data sets consisting of equally
sampled values of the analog signal f, (t) where t is the
independent (time) variable.

In this paper we show that WT's can be calculated
directly and efticiently from a data set consisting only of
locations of It; ] where f, (t) intersects with the reference
sinusoid r (t) of frequency W and amplitude A. Any
sinusoid r(t)=A cos[2n(Wt+P)] can be utilized as
reference signal, but choosing /=0 further simplifies the
design of the crossing detector [6].

Because sinusoid crossing (SC) sampling is based on
thresholding, it ofFers a simpler mode of signal acquisi-
tion than the amplitude sampling off, (t). A SC detector
can be built using only one comparator whose inputs are
r(t) and f, (t) [6]. A SC is detected every time the com-
parator output changes state as a result of sign Aipping in
the value of the input difFerential [f,(t) r(t)]. The larg-—
est measurable f, (t) value is limited only by the voltage
compliance of the comparator.

As required by the Nyquist sampling criterion, a SC
must occur within each interval 5 for the bandwidth of
the sampled version f (t) of f, (t), to be
2W = 1/6 =2M/T. This condition is satisfied when A is
chosen such that A ~

lf, (t)l for all possible f, (t) values
within T. The locations It, ]of the 2M S.C s within T are
indexed according to their order of detection in time
(i = 1,2, . . . , 2M).

The dynamic range of detection is optimized when 3 is
made equal to the largest absolute f, (t) value

l f, '"l. Be-
cause a SC cannot occur within a 6 wherein f, (t)l ) A,f (t) will be unknown within this interval. On the other
hand, if A )) f, (t)l then small amplitude changes in
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f, (t) become difficult to observe. High-resolution (large
M) signal analysis and synthesis have already been
demonstrated in Fourier [7,8] and Hartley transform
operations [9].

Investigations regarding the use of SC's as data repre-
sentations have brought new insights into the roles of
functional analysis and computational complexity in
measurement processes [10]. This paper together with
our previous work [7—9] illustrates that complicated sig-
nal processing operations can be done directly and
efficiently from I t,. j. This is an important finding because
many physical systems respond to external stimuli by
thresholding. Note further that SC sampling can be for-
mulated within the framework of the stochastic reso-
nance technique [11]. For instance, it will be interesting
to study whether the addition of noise to an r (t) whose
A ( lf, (t)l improves the quality of the f (t) that can be
reconstructed within the entire T.

The wavelet transform W f (s, b) of f, (t) with respect
to the mother wavelet g (t) is given by the cross-
correlation between f, (t) and the daughter wavelets

g,b(t) of g (t) [1]:

W,f(s,b)=, , I g' f, (t)dt
S

=g,'(b)tg f, (b) =g,'( b)o f, (b), —

where g, (b) = lsl
'

g (b ls), and s and b are the respec-
tive scaling and shift parameters. The symbols and o

denote correlation and convolution operations, respec-
tively. If g(t) is complex, i e , g(t)=gz(t. ).+jgI(t) where
gz(t) and gI(t) are its real and imaginary components,
and j =&—1, then

Wsf ( s, b ) = Wstt f ( s, b ) +j W If (s, b ) .

Using the convolution theorem, the Fourier transform
Q,, (P) of Wsf (s, b) can be expressed as

&,(P) =6,*( P)I (P) = lsl'"G*—( sP)I'(P), —

where F(f) and 6 (f) are the respective Fourier trans-
forms of f (t) and g (t), and P and f are frequency vari-
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ables. The G (f ) satisfies the admissibility condition

f ~G(f)~ ~f~ 'df =c ( ao, which implies that G(0)=0.
Both g (t) and G (f) are smooth and concentrated in their
respective domains. In general G(f)=Gz(f)+jGt(f)
but when g (t) is real then G~ ( f ) —=Gtt (f ) and
GI( f)=——G(f)

In practice, the b value in Eq. (1) is chosen discretely:
b =kbo, where k is an integer and bo is a fixed translation
parameter. Hence,

Q, (n)= /s/' F(n)G'( —sn) (2)

where P=n/T. The integer n is bounded according to

~n~ ~ T/bo. The WT analysis of f(t) is done at various
sizes of bo and at different s values. With respect to the
information content in j t, j, the smallest meaningful size
for bo is h.

We now show an efficient way of computing Q, (n)
directly from It; j. Because G(f) is known a priori, Eq.
(2) can be immediately evaluated once F(f) is known.
The Wzf (s, b) is obtained by inverse Fourier transform-
ing Q, (n) for all possible s values. A 2Mth-degree poly-
nomial representation of f (t) can be formulated from its
Fourier series expansion:

m=Mf (t)= g F(m)exp(j2m5t;)= g F(m)Z

=Z [F( M}+F—( —M+1)Z+ +F(M)Z ]
2M

Z —Mg (Z Z ) -Z —Mf (Z)

=Z [a (0)+a (1)Z+a (2)Z + . a (2M)Z ],

where Z =exp(j2n5t), 5=1/2Mb, = 1/T, F(m) is the
mth Fourier coefficient of f (t), and Z,- =exp( j2rr5t, ). To
within Z™,f (t) can be represented as a 2Mth-degree
polynomial f (Z) in Z. Because it is a polynomial, f (Z)
can also be expressed as a product series of its 2M roots
[Z; j. Carrying out the product series involving terms in
(Z —Z; ) yields the polynomial coefficients [a (i) j neces-
sary to describe f (Z). To within a multiplicative con-
stant, the f (t) spectrum [F(m) j can be determined from
[a(M+m)j using F(m)=a(M+m).

Because 8' increases proportionately with M, a large
M is necessary if f (t) is to closely resemble f, (t). How-
ever, the detection and processing of a large number of
SC's have to address the issues of finite circuit response
and efficiency in computing [a (M +m ) j from [ t; j.
Computational accuracy depends on the accuracy with
which the various SC's are located within their respective
b, 's [11]. A SC location is established by counting the
number of clock pulses that has elapsed when the com-
parator output changes state [6]. Because a pulse width
cannot be less than the response time 5, of the counter,
the number of pulses within T never exceeds
T/5, =2Mb/5, . For a fixed T, a trade-off exists be-
tween M and detection accuracy because increasing M
(by decreasing b, ) results in decreasing the number of
clock cycles 5/5, per A.

The reliability of the computed a(M+m)'s and the
time needed to compute them also depend on the number
of operations needed to compute them. With a 23k-class
algorithm, spurious a(M+m) values are already ob-
tained when M exceeds 20 [9]. The erroneous results are
due to rounding-off errors which are inherent in Aoating-
point operations where numbers are represented only to
within a finite value of range and precision. If the
a(M+m)'s are computed recursively, the effect of

Analog signal: f (t)

r(t) = Acos(2~t /2A)

Comparator Eq (4)

f a(N+ n))

scaled Fourier coeffs: ( llslG(sn)}—

Eqs. (5a - b)

N/ f(s, k) = inverse FT
n, (n)

FICx. 1. Flow chart describing the computation of Wgf (s, b)
from the SC locations [t; ] off, (t).

rounding-off errors extends rapidly throughout the entire
a (M +m) sequence. The following M -class algorithm is
the most efficient so far [7,9,12]:

q=i
a (i)= ——g b (q)a (i —q),

q=i

where b(q)=(Zi) +(Z2) + +(Z2M) and a(0)=l.
The a(M+m)'s are computed recursively starting from
a(1). Generally, a (M +m ) is complex because

Z;=c s(o2m5t;)+j sin(2~5t;) .

Imposing a (0}=1presets the F( —M) value at unity be-
cause a(M+m)=F(m). The computed set [a(M+m)j
contains not only the spectrum of f (t) but also that of
the reference sinusoid r(t). The r(t) spectrum is given by
F( —M)=a(0)=F(M+1)=a(2M)=1. In the compu-
tation of [Q, (n)j from Ia(M+m)j, only a(l),
a (2), . . . , and [a (M —1)j contain nonambiguous infor-
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mation about f, (t).
In general, Q, (n) =Q,tt(n)+j Q,l(n):

Q,tt(n)= ~s~'~ [Gz( —sn) an't(M+n)

+Gt( —sn)ar(M + n )],
Q,I(n)=~s~' [G~( s—n)at(M+n)

—Gt( s—n)an't (M+n)],

(sa)

(5b)

where az (M +n) and ai(M + n) are the real and imagi-

nary components of a (M +n ), respectively. If
g (t) =gz(t) then Q,& (n) =Q,z ( —n) and Q,t( n—)
= —Q,l(n) which implies that W f (s, b) is real. In
evaluating Eqs. (5), we use a (0)=0=a (M). Figure 1

shows a Bow chart of the procedure for computing

&sf (s, k) from the 2M crossings off, (t).
As a demonstration, we compute the a (M+m)'s per-

tinent to the doublet interferogram [13]

f, (t) =exp[( x—&20]cos[2vr15(t —0.5)]

X cos[2~2. 5(t —0.5)],
': 2a.
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for O~t ~1. The f, (t) is symmetric and maximum at
t =0.5 [see Fig. 2(a)]. Analytically [13], the modulus
spectrum of ~F(f}~ of f, (t) has peaks at f =+17.5 and
+12.5. We use /=0, so that the length of each b coin-
cides with the distance between two successive extrema of
r (t}. Each b, is divided into 2t parts (clock pulses) where

q is an integer. The ith SC is located within the ith inter-
val 6; by finding the corresponding pulse number q;
where [f,(t) r(t)]=0.—The SC location t; is given by
t; =2 (i —1)+q;, where 1 ~ q; ~ 2~.

Shown in Figs. 2(b) and 2(c) are the real and imaginary
components of the [a(M+m) j that were computed from
256 crossings of f, (t) using b, = 1/256, 2 =1.33f, (0.5),
Z =1, and q =8. The [a(128+m)j is complex with
az(M+m)=a+( —M —m) and al(M+m—)=a( —M
—m) because f, (t) is real and shifted away from t =0.
In Fig. 2(d) is the modulus I (128+m )I =

[az (M
+n)+al (M +n) j

' which illustrates the doublet nature
of the f, (t) spectrum.

We evaluate the e6'ect of detection accuracy
using the normalized mean square error (NMSE):
NMSE=[g~f, (k) —f(k)~ j/[g~f(k)~ j, where the
summation is taken from k =0 to 127. The [f,(k) j
represents 256 equally sampled values of f, (t), and
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FICy. 2. (a) Test signal f, (t) =exp[( —x +20)]cos[2m15(t
—0.5)]cos[2m2. 5(t —0.5)], (b) a„(128+m), (c) at(128+ m),
and (d) ~a (128+m)

~

= [ag (128+m)+at (128+m)] '~ . The
a (128+m) values were computed from 256 SC's using
6= 1/256 and Z = 1. Each D is divided into 2 equal parts.

FIG. 3. Plots of NMSE vs q. In SC sampling, 6 is divided
into 2~ clock cycles. The NMSE values are evaluated for in-

creasing additive noise strengths (increasing o). Also shown for
comparison is the NMSE vs q curve (o.=0) associated with am-
plitude sampling by a q-bit ADC.
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FICx. 4. (a) Plots of some sombrero-shaped
wavelet basis functions g~( t) =2 g (2 t) where g ( t) = ( 1
—ltf ) exp( —ltl /2).

FIG. 5. Wavelet transform W f(2~, k) calculated using the
procedure outlined in Fig. 1. It is computed from 256
sinusoidal crossings of f, (t) where T=1 and ho=5=1/256.
The Wz f (2~, k) distributions are all symmetric about t =0.5.

{f(k)] is the signal obtained by inverse Fourier trans-
forming the 256 computed a (128+m) values with
a(0)=0. Shown in Fig. 3 is the NMSE vs q curve. For
comparison we show also the NMSE vs q curve associat-
ed with the amplitude sampling of f, (t), by a q-bit
analog-to-digital converter (ADC) whose compliance
range is 2A. Note that a q-bit ADC samples at a Qnite
amplitude resolution of 2.66f, (0.5)/[2~ —1]. Note that
SC detection at an accuracy of 1 in 2" yields a recon-
structed f (t) similar to that produced by an eight-bit
ADC.

We also studied the performance of SC-based sampling
in the case of a noisy signal [f,(t)+n (t)] where n (t) is
the Gaussian noise term [14]

Shown in Fig. 4 are plots of g, ( t ) for s =2, 2, and2, and in Fig. 5 are relevant 8"f (2~, b)'s that were
computed by inverse Fourier transforming the pertinent
{Q,(n)]. The {A,(n)] were computed using Eq. (5),
from the a(128+m) values with a(0)=0 and
ho =6,= 1/256 [see Figs. 2(b) and 2(c)]. A comparison of
the characteristics of f, (t) [see Fig. 2(a)] and the various

g,s(t)'s (the relevant ones illustrated in Fig. 3) indicates
that the Wsf (2t', b) shown in Fig. 5, provide a correct lo-
calized multiresolution analysis of f, (t) in terms of the
sombrero-shaped wavelets. Maximum correlation be-
tween the interferogram and g,s(t) is obtained at s =2
at position b =0.5.

In this paper, we utilized the correlation structure of
W f (s, b) together with the linearity property of Fourier
transforms to show that the WT's of f, (t) can be com-
puted directly and efhciently from its SC's with the refer-
ence sinusoid r(t). To minimize the effects of rounding-
ofF'errors when M is large, an efficient algorithm for com-
puting the coefBcients {a(M+m)] from {t;],was also
proposed and demonstrated.

n (t) =(2o in[1/{1—2 (t)] ]cos8(t))'/

8(t) =2mB (t), o is the noise variance, and A (t) and
8 (t) are randomly generated numbers in the range [0,1].
Shown in Fig. 3 is the NMSE vs q curve for o. =0.001,
0.003, 0.005, and 0.007. The NMSE deteriorates with o..
Even for noisy signals, an eight-bit ADC is still
equivalent to SC detection at an accuracy of 1 in 2". Sig-
nal acquisition of noisy signals has already been demon-
strated using an actual SC detector [6].

We compute the 8' f (s, b) with respect to the
sombrero-shaped mother wavelet [15]

g(t)=(l ltl')exp( —ltl'/2)=g'(t) . A part of this work was done with 6nancial support
from the Science and Technology Agency of Japan. The
computations were done with the assistance of V. Daria
and C. Blanca.

The Fourier spectrum G (f) of g (t) is real and even:

G (f ) =Gz (f) =4n. f exp [ 2rr f ]=Gz ( f)—. —
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