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A nonlinear theory describing the long-term dynamics of unstable solitons in the generalized
nonlinear Schrodinger (NLS) equation is proposed. An analytical model for the instability-induced
evolution of the soliton parameters is derived in the framework of the perturbation theory, which is
valid near the threshold of the soliton instability. As a particular example, we analyze solitons in
the NLS-type equation with two power-law nonlinearities. For weakly subcritical perturbations, the
analytical model reduces to a second-order equation with quadratic nonlinearity that can describe,
depending on the initial conditions and the model parameters, three possible scenarios of the long-
term soliton evolution: (i) periodic oscillations of the soliton amplitude near a stable state, (ii)
soliton decay into dispersive waves, and (iii) soliton collapse. We also present the results of numerical
simulations that confirm excellently the predictions of our analytical theory.

PACS number(s): 03.40.Kf, 42.65.Tg, 42.60.Jf, 42.65.Jx

I. INTRODUCTION

As is well known, propagation of self-guided beams
in dielectric optical waveguides [1,2] and short nonlinear
pulses in optical fibers [2,3] which exhibit Kerr nonlinear-
ity is governed by a conventional model, the cubic non-
linear Schrédinger (NLS) equation. However, practical
materials often display physical effects, such as nonlin-
earity saturation, which can only be described by gen-
eralized models of the nonlinear refractive index. For
such non-Kerr materials theoretical predictions of new
nonlinear effects, e.g., nonlinearity-induced focusing of
self-guided beams via wave collapse [4], multistability
[5,6], and nonlinear switching and steering due to spa-
tial solitons [7], are very important for practical appli-
cations. Therefore models with a more general form of
the intensity-dependent refractive index are often used
to analyze nonlinear effects in non-Kerr materials. In di-
mensionless units, these models can be described by the
following generalized NLS equation:

U 5%V
1+

e 5:;5+f(|‘1’|)‘1’=0a (1)

with rather general nonlinearity f(|¥|). Here ¥ is a
slowly varying envelope of the electric field, and ¢ and z
have different meanings depending on the physical con-
text. For example, for the problems of stationary wave
propagation in a dielectric waveguide (i.e., spatial soli-
tons) t and z stand for the longitudinal and transverse co-
ordinates, respectively. In the case of temporal solitons in
optical fibers, ¢ is the coordinate along the fiber whereas
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z is the retarded time. In various nonlinear models of
solid state physics (see, e.g., [8] and references therein)
the variable ¢ is time and z is the propagation coordinate.
Below, for simplicity, we call these variables “time” and
“coordinate,” respectively.

In all cases, the function f(|¥|) characterizes nonlin-
earity, e.g., the nonlinear correction to the refractive in-
dex of the optical material. For many physical problems
this function can be approximated by a power-law depen-
dence, f ~ |¥|?P (see, e.g., [4,9]) and, in the particular
case of the Kerr nonlinearity, we have p = 1. This model
has been investigated in detail in the context of the exis-
tence and stability of (bright) optical solitons which are
stationary solutions of the form ¥,(z,t) = ®(z;w)e'?,
where ®(z;w) vanishes for |z| — oo, and w is either the
nonlinearity-induced shift of the mode propagation con-
stant (e.g., for spatial solitons) or the soliton frequency
(see, e.g., the review papers [8,10] and references therein).
In particular, it has been proven that solitons can become
unstable for stronger nonlinearity (p > 2) and they either
decay or exhibit wave collapse (i.e., singularities of the
wave field |¥| are formed in a finite time from localized
initial perturbations). However, it still remains unclear
whether this scenario can be applied to the model (1)
with a more general nonlinear function f(|¥|), or the
generalized NLS models may display other types of the
long-term instability-induced soliton dynamics.

The standard approach of the soliton theory is to an-
alyze the linear stability of the stationary, spatially lo-
calized solutions. For the generalized NLS equation (1)
the soliton stability is determined by the well known
Vakhitov-Kolokolov criterion [11] (see also [12] for a rig-
orous mathematical proof) which allows one to predict
the parameter region in w where the soliton amplitude
can grow or decay exponentially with a nonzero growth
rate. However, the linear stability analysis does not allow
one to predict the subsequent evolution of the unstable
soliton when the linearized equation describing the initial
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exponential growth of small perturbations of the soliton
profile becomes invalid.

The main objective of the present paper is to inves-
tigate analytically and numerically the dynamics of the
soliton instabilities in the model (1) with a rather gen-
eral form of nonlinearity f(|¥|) in the vicinity of the
instability threshold. We derive, for the first time to
our knowledge, an analytical model which describes not
only linear instabilities of solitons but also their nonlin-
ear long-term evolution. The approach we use is based
on a modification of the soliton perturbation theory (see
[8] and references therein) under the condition of slow,
almost adiabatic, evolution of solitons near the instabil-
ity threshold. In particular, we show that our analytical
model predicts (at least in the case when there exists
only one stable stationary soliton state) three possible
scenarios of the long-term instability-induced dynamics
of solitons, which depend on the initial conditions and
the sign of the derivative N (w) = d?N,(w)/dw?, where
N, (w) is the energy (or “the number of particles”) invari-
ant calculated for the soliton solutions,

+oo
N, (w) = %/ 0, (2, )| de. 2)

— 00

Note that the condition N)(w) = dN,(w)/dw = 0 de-
termines exactly the instability threshold w = w,. in the
dependence of the soliton energy N;(w) on the parame-
ter w, and solitons are unstable provided the condition
N!(w) < 0 is valid [10-12]. We reveal that in the vicinity
of the instability threshold the stable solitons have al-
ways a nontrivial “internal mode” which corresponds to
long-lived nonlinear amplitude oscillations of the stable
solitons. As a result, the soliton instability leads, for cer-
tain types of nonlinearities, not to wave collapse but to
an excitation of the amplitude oscillations around a new
(stable) stationary state. Similar oscillating solitons have
been recently reported in Ref. [13] for a special case of
so-called threshold nonlinearity. This oscillating regime
in the soliton dynamics disappears when the soliton pa-
rameter w approaches the threshold curve of soliton sta-
bility. The frequency €2, of the soliton internal mode
vanishes exactly at the instability threshold w = w,, and
for 92 < 0 it gives rise to exponentially growing per-
turbations with the growth rate of the linear instability
A =~ 4/—Q2. In such a case, for nonlinear systems with
only one stable soliton state, our model describes two
other scenarios of the dynamics of unstable solitons, ei-
ther spreading of an unstable soliton and its decay into
linear diffractive waves, for N!(w) > 0, or soliton col-
lapse and formation of singularities in a finite time, for
N!(w) < 0.

To make more specific predictions, we apply our non-
linear theory to a generalization of the NLS equation
which includes two power-law nonlinearities

F(12]) = a TP + b|w|*, 3)

where a, b, and p are arbitrary parameters (but b,p >
0). This model can be used to describe the effect of

saturation (e.g., for a < 0) of the nonlinear refractive
index [5,6,14], and its exact soliton solutions are known
[14-16]. We show that for the case a < 0 the solitons of
the model (1) and (3) become unstable and decaying near
the instability threshold for 1 < p < 2, while for p > 2
they might collapse in a finite time. On the other hand,
for a > 0 the instability of large-amplitude solitons is
observed for 2 < p < 4, and it results in a wave collapse.
Moreover, all solitons become collapsing provided p > 4.

The paper is organized as follows. In Sec. II we present
the analytical theory describing the long-term nonlinear
dynamics of unstable solitons in the model (1) with a gen-
eral nonlinearity f(|¥|). Then, in Sec. III we discuss the
soliton solutions and their stability for the model (1) with
two power-law nonlinearities (3). In particular, we ana-
lyze in detail the dynamics of unstable solitons near the
instability threshold for two cases: (i) a < 0,1 < p < 2,
and (ii) @ > 0, 2 < p < 4. The special degenerate case,
p = 2, is discussed in Sec. IV where we show that it cor-
responds to the case of critical collapse [17-19] observed
for large-amplitude solitons. Analysis of the model in
the other degenerate case, p = 1, is presented in Sec. V,
where the instability of algebraic solitons is proven. In
particular, it is shown analytically that an algebraic soli-
ton, which corresponds to a threshold between the ex-
ponential (i.e., sech-type) solitons and linear dispersive
waves (see, e.g., [16] and references therein), transforms
into one of the above-mentioned types of waves under the
action of small perturbations. Finally, Sec. VI presents
the concluding discussions.

II. NONLINEAR MODEL FOR THE DYNAMICS
OF UNSTABLE SOLITONS

The standard approach of the soliton perturbation the-
ory is applied to analyze the problems related to the
dynamics of solitons under the action of either exter-
nal or internal perturbations [8]. The external pertur-
bations are given by additional (usually small) correc-
tions to the basic nonlinear equation, while the internal
ones can be presented, for instance, by interactions with
other solitons or smooth inhomogeneous or/and weakly
nonstationary radiation fields. Here we deal with a differ-
ent physical situation considering unstable solitons in the
“unperturbed” model (1). The unstable solitons evolve
under the action of their “own” perturbations exponen-
tially growing due to the instability. However, it turns
out that even in this case we are still able to use a stan-
dard asymptotic analysis and, similarly to the general
scheme of the soliton perturbation theory [8], reduce the
soliton dynamics described by the original NLS model to
a governing nonlinear equation for the adiabatic evolu-
tion of the soliton parameter.

In this section we present the basic idea of our ap-
proach, describing the soliton dynamics near the insta-
bility threshold. We consider the model (1) with a gen-
eral nonlinear function f(|¥|) and suppose that it has a
stationary soliton solution in the form

U, (z,t) = ®(z;w)e™t. (4)
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Here we call w the soliton propagation constant. The real
function ®(z;w) satisfies the following ordinary differen-
tial equation:

o _wd 4+ f(3)® =0. (5)

We assume that the function @ is even, and it vanishes
exponentially as |z| — oco.

Now we consider the evolution of the soliton (4) under
the action of an (infinitesimally small) initial perturba-
tion of its shape. It is clear that the soliton changes
its parameters as a result of the instability development
and, in particular, the soliton parameter w varies in time,
w = w(t). Our analytical method is based on the fact that
near the instability threshold the growth rate is small.
Thus we can assume that the instability-induced evolu-
tion of the perturbed soliton is, first, slow in ¢t and, sec-
ond, almost adiabatic. The first assumption allows us to
use the asymptotic theory, whereas the second assump-
tion implies that the localized part of the solution is close
to the profile given by the soliton solution of Eq. (5) but
with parameters slowly varying in time similarly to Ref.
(8].

We expand the solution to the original model (1) in an
asymptotic series,

U(z,t) = ¢(z,t) exp (’LA w(t')dt') ,
#(z,t) = ®(z;w(t)) + d1(z,t) + Pa(z,t) +--- . (6)

If the assumption of the slowly varying perturbations
is satisfied, i.e., |0¢/0t| < |w¢|, the NLS equation (1)
can be reduced, with the help of the familiar multiscale
asymptotic analysis, to a system of coupled linear inho-
mogeneous equations for the functions ¢;, ¢2, and so on.
For instance, in the first-order approximation the correc-
tion ¢, defined as

dw
¢ =1 (E) wy(z; w)

is given by a solution of the linear equation,

dzwl od
Jez W + f(®)wy = 50 (M

Because the eigenfunction of the linear operator Lo is
proportional to the soliton solution ®(x;w) (see, e.g.,
[10]), Eq. (7) can be easily solved analytically,

ﬁo'wl =

wi(z5w) = —P(z;w) Am #m,:w)

@ 0®(z";w)
", > "
></0 ®(z"; w) 0 dz". (8)

However, the solution (8) diverges exponentially unless
the following (solvability) condition is satisfied:

dN,(w) _ I B RPN
A 0, Ns(w)= 5/ &% (z; w)dzx. (9)

— 00

This condition is nothing but the well known criterion for

the onset of the soliton instability [10-12] known as the
Vakhitov-Kolokolov criterion. Therefore the assumption
of slow adiabatic variation of the soliton parameters can
be justified only in the vicinity of the instability thresh-
old, where the condition (9) is satisfied, at least approxi-

“mately. Then the perturbation (8) is spatially (exponen-

tially) localized and we can proceed with the asymptotic
series to analyze the next, second-order approximation
which leads to the following linear equation for ¢:

— d2¢2 ’
L1z = dzz w2 + [f(2) + f(2)2] p2
d? dw\? 8 1 (dw\?
- (5) G- (%) rew

(10)

where f'(®) = df (®)/d®.

Solutions of the linear equation (10) are spatially local-
ized for any value of the soliton propagation constant w(¢)
because the eigenfunction of the operator £; is odd with
respect to z (it is proportional to 8®/9x), while the right-
hand side of Eq. (10) is even with respect to . Therefore
we can proceed further and consider the third-order ap-
proximation where the solvability condition produces a
third-order differential equation for w(t). However, here
we prefer to avoid this cumbersome technique which in-
volves higher-order approximations and, instead, we use
a different but equivalent method to derive a nonlinear
equation for the soliton propagation constant w which
is based on the conserved quantities (see, e.g., [8] and
discussions therein).

Let us consider the conserved quantities for spatially
localized solutions of Eq. (1),

+oo +°°'
No = %/_w U (z, t)[2de = %/_oo U (z,0)[%dz, (11)
+oo x 2
m=1[" { e —F<|w<z,t>;2>}dw
1 [t [|8¥(z,0) ’ 2
-1 { 220 _ p(w(z,0) )}dm, (12)

where F(u) = [ f(v/u)du. Now, we substitute the ex-
pansion (6) into the first conserved quantity (11) and
neglect the terms of the fourth- (and higher-) order ap-
proximations. As a result, we obtain the following ex-
pression which involves the soliton propagation constant
w(t) and its derivatives:
d?w  1dM,(w) [dw
Mo(@) G 5 qu (dt

where N, (w) is defined in Eq. (9) and M, (w) can be calcu-
lated through the stationary soliton solutions according
to the formula

) + Ns(w) = No, (13)

2

M,,(w)=/_:° [@(;w) [q»(z';w) P25) 4ot

> 0. (14)
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The details of the calculation of the coefficients in Eq.
(13) are given in the Appendix.

Because N is conserved, the expansion (13) can be re-
garded as a differential equation for w(t). We can readily
find the first integral of Eq. (13) (see comments in the
Appendix) and present it in the form

%M,,(w) (%) +U,(w) = E, (15)
Ua(w) = / " N, (') = No) du, (16)

where E is the integration constant, and wy is the value of
the soliton parameter w corresponding to the initial en-
ergy, i.e., it is defined through the equation No = N, (wpo).
We note that the first integral (15) can also be found from
the second conserved quantity (12) and, therefore, the
integration constant E can be expressed through the ini-
tial value of the system Hamiltonian, £ = Ho — H,(wo),
where H,(w) is the soliton energy satisfying the differen-
tial equation dH,(w) = —wdN,(w).

Thus we obtain the remarkable result that in the gener-
alized NLS-type model (1) the dynamics of solitons near
the instability threshold can be described by the generic
model (15) which is equivalent to the energy conservation
law for an effective particle of the mass M,(w) with the
coordinate w which moves under the action of the “exter-
nal” potential U, (w). The difference between the soliton
energy N,(w) and the initial value Vg of the input pulse
(i-e., slightly perturbed soliton) creates an effective po-
tential force, whereas the difference between the soliton
Hamiltonian H,(wo) and the initial value Hy defines the
energy of the particle. They determine completely the
subsequent evolution of the unstable soliton.

Our asymptotic model is valid provided the soliton pa-
rameter w is selected near the instability threshold (9) de-
fined through the derivative of the energy N (w). There-
fore, in a general case, we can evaluate the function N, (w)
near its extremum point by the standard approximation
through a Taylor series up to the quadratic nonlinear
term. This allows us to reduce Eq. (13) to the following
quadratic equation of the second order:

2

d’Q 1
Ms(wg)ﬁ + N;(wo)Q + §N;’(wo)92 = 0, (17)

where Q = (w —wop) is a deviation of the soliton propaga-
tion constant w from the unperturbed value wyp, and this
deviation is assumed to be small. In Eq. (17) we neglect
all the terms of higher orders, for example, the terms pro-
portional to Q3 and Q€, where Q = dQ}/dt. Note that a
quadratic equation similar to Eq. (17) has been recently
derived, using the direct approach described just before
Egs. (11) and (12), in the problem of the soliton insta-
bility in a diffractive optical x(?) medium governed by
phase-matched resonant quadratic interactions [17].

The first two terms in Eq. (17) give immediately the re-
sult of the linear stability analysis discussed, for example,
in the review paper [10]. Indeed, because the soliton mass

M, (wo) is always positive, Eq. (17) immediately implies
that the soliton is exponentially unstable for N (wo) < 0,
and the growth rate of this instability A can be found as
A = y/—N!(wo)/M,(wo). For N}(wo) = 0, we have a
critical case when the growth rate of the linear (expo-
nential) instability A exactly vanishes. However, even in
this degenerate case the soliton is still unstable with re-
spect to small perturbations which grow on the soliton
profile according to a power-law dependence [18]. On the
other hand, the nonlinear (quadratic) term in Eq. (17)
allows us to consider not only linear but also long-term
(nonlinear) dynamics of unstable solitons and, moreover,
to identify all possible scenarios of the soliton instabil-
ity which, according to Eq. (17), are determined by the
type of the extremum point of the function N,(w) (i.e.,
by the sign of the derivative N!'). In the next sections we
apply our general analytical model (17) to investigating
the soliton instability in the generalized NLS equation
(1) with two power-law nonlinearities (3). In some de-
generate cases, when the coeflicients in Eq. (17) vanish
or diverge, we return back to the analysis of the general
asymptotic model (13).

III. DIFFERENT SCENARIOS
OF SOLITON DYNAMICS

A. Model and soliton solutions

Let us analyze the general characteristic features of
the soliton instability dynamics for the model (1) with
the power-law nonlinear function (3). As a matter of
fact, the parameters ¢ and b in Eq. (3) can be easily
normalized by a trivial scaling transformation. Therefore
we take the basic model in a form more convenient for
our subsequent analysis,

ov 5%

o b — 2)|w|Pw Py =

i+ 0 ol + 2P+ (p+ DTPPE =0, (18)
where 0 = +1. As is well known (see, e.g., [15,16]),
the NLS equation (18) possesses an explicit analytical
solution in the form of the sech-type soliton (4) with the
envelope ®(z;w) defined as

®(z;w) =

(Ve raa- a)w‘ (19)

The soliton solution (19) corresponds to different types of
nonlinear waves in the special limits of the parameter w.
For w > 1, the solution (19) asymptotically approaches
the sech-type soliton supported by a higher-order nonlin-
ear term in the model (18),

1/p
Vw
®(z; )=(—Y*_ ) 20
(@50 >1) (cosh[p\/am] (20)
On the other hand, for w — 0 and o = +1 the solution
(19) transforms into an algebraic soliton with the power-
law asymptotics [16]
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<I>(z;w—->0):( 2 )1/,,. (21)

1+ p2x?

We note that both nonlinear terms in Eq. (18) are
equally important for the existence of the algebraic soli-
tons. The expression (21) for two particular cases, p =1
and p = 2, has been recently found in Ref. [14] and the
authors of Ref. [14] claimed the stability of these sta-
tionary solutions in both cases. However, the analytical
model discussed below (see Sec. V) reveals a weak in-
stability of algebraic solitons (21) for p < 1, and their
absolute instability for p > 1 (see also the discussions in
[16])-

For the case 0 = —1, the limit w — 0 does not change
the exponential character of the soliton asymptotics for
|z] — oo but it reduces the soliton solution (19) to the
form (20), i.e., to the soliton supported by the lower-order
nonlinear term in Eq. (18).

B. Soliton stability

Now we analyze the stability of the soliton solutions
(19) in the framework of the nonlinear equation (17).
First, we define the soliton energy N,(w),

1 —
N, (w;p,0) = ;w%fr(w;p,a),

+oo dx
I(w;p,0) = /0 [v/1+ wcosh(z) — a]2/P’

The numerical investigation of the integral I(w;p, o) for
various p shows that the extremum points (9) exist for
1<p<2ato=+1,and for 2 < p < 4,ato = —1.
On the plane (w,p), the critical curve w = w.(p) defined
by the condition N](w) = 0 separates the instability and
stability domains, as is shown in Figs. 1(a) and 1(b) for
both signs of 0. Accerding to the linear stability analysis,

(22)

8 T %%
(a) o]
E 6t o=+1 o=-1 /
1]
8 _— /
L W=w
s 4 «(P) 7/ ///
;3 STABLE UNSTABLE
g et
§ 2| | |w=w(p)
a
LiNSTABLE STABLE
O 1 1
0 1 2 3 1 2 3 4 5

Power of Nonlinearity p Power of Nonlinearity p

FIG. 1. Region of linear stability of the sech-type solitons
(19) on the parameter plane (w,p) for (a) o = +1 and (b)
o = —1. Stability and instability domains are separated by
the critical curve w = wc(p).
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all solitons are unstable for w < w.(p) at o = +1. For
o = —1, the situation is reversed, and the solitons are
unstable for w > w.(p) [see Fig. 1(b)].

The type of the extremum point is determined by the
sign of the second-order derivative N/ (w) along the curve
w = wc(p). Using simple algebra, we can express this
quantity through the soliton energy N,(w),

d?N (w)

_@=192-p)
dw? - 2p%w (1 + w) N(w).

w=wc(p)

(23)

As follows from Eq. (23), for o = +1 the extremum point
is always a minimum because the value N (w.) is positive
for 1 < p < 2 [the soliton energy N,(w) is positive for
any w, see the definition, Eq. (9)]. On the other hand,
for 0 = —1 the extremum point is always a maximum
since the value N/ is negative for 2 < p < 4. The typical
profiles of the function N,(w) in the intermediate regions
of the parameter p are presented in Fig. 2(a), for o = +1
and in Fig. 3(a), for o = —1.

(a)

Lgsx 2 2 -
S22

Wo ! w

B

! .

(b)]

il

i TR

0 1 2 3 4 5
Propagation Constant w

FIG. 2. (a) Characteristic dependence of the soliton en-
ergy Ny(w) for 0 = +1 and 1 < p < 2 (here we select
p = 1.35). Minimum point w. corresponds to the instability
threshold and wo and wy to the unstable and stable solitons at
N,(w) = No = 1.96, respectively. Shaded regions 1 and 3 cor-
respond to the soliton decay, and the region 2 to the periodic
amplitude oscillations around the stable soliton. (b) Phase
plane (w,w) of the analytical model (13) describing different
regimes of the soliton dynamics: curves 1 and 3—soliton de-
cay; curve 2—amplitude oscillations around the stable soliton
with w = wy. Separatrix curve is shown by a bold curve.
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0.44

0.42

0.3
0.2

0.1

-0.1

-0.2
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FIG. 3. (a) Characteristic dependence of the soliton energy
Ny(w) for 0 = —1 and 2 < p < 4 (here we select p = 3.3).
The points wy¢, we, and wo have the same meaning as in Fig.
2(a). Shaded region determines the soliton collapse, while the
region 2 corresponds to the periodic amplitude oscillations.
(b) Phase plane (w,w) of the analytical model (13) describing
different regimes of the soliton dynamics: curve 1—soliton
collapse; curve 2—amplitude oscillations around the stable
solution with w = wy.

In the special cases p = 1 and p = 2, we can calculate
the integral I(w;p, o) defined by Eq. (22) in elementary
functions and find N, in an explicit form. For the case
o = +1 it is given by

Ny(w;1,1) = 7 + y/w — tan™* (Vw), (24)

and
N,(w;2,1) = % [r — tan™* (vw)] . (25)

It is obvious from Eq. (24) that the function N,(w) is
monotonically increasing for p = 1 from a finite value
Ny(w — 0) = w. For p < 1, the curve N,(w) remains
qualitatively similar to that described by Eq. (24) but
with a slope which is always positive, including the crit-
ical point w = 0. This indicates the absolute stability
of the whole branch of the (bright) sech-type solitons
(19) for p < 1. On the other hand, the function N,(w)
is monotonically decreasing for p = 2 from the value
Ny(w — 0) = 7/2 to the value N(w — oo0) = w/4.
The slope of the function N,(w) is always negative for
p > 2, and this indicates the absolute instability of the
sech-type solitons for this case. A similar analysis shows
that the solitons (19) for 0 = —1 are stable for p < 2 and
absolutely unstable for p > 4.

Next, we calculate numerically the coefficients M, (w.)

1945

and N!(w.) of the quadratic model (17) at the stability
threshold curve w = wc(p), using the formulas (14) and
(23), and present them in Figs. 4(a) and 4(b), respec-
tively. It turns out that the reduction to the quadratic
model (17) fails for special critical cases, i.e., when (i)
P — 2, we— oo at any o, (ii) p > 1,w. — 0 at 0 = +1,
and (iii) p = 4, we = 0 at 0 = —1. In the first case, the
coefficients M, and N/ in Eq. (17) vanish, while in the
other two cases they are diverging.

The first failure of our asymptotic reduction is related
to a scaling invariance of the function N,(w) in the limit
P — 2,w — oo [see Eq. (25)]. It is well known that such
an invariance is a characteristic feature of models dis-
playing the critical collapse phenomenon [18-20]. On the
other hand, the divergence of all coefficients in Eq. (17)
in the case (ii) is explained by a critical phenomenon of
another type, when the sech-type solitons (19) with expo-
nentially decaying asymptotics transform into algebraic
solitons (21) with power-law asymptotics. In this case,
the soliton energy becomes also independent of the pa-
rameter w, and it tends to a nonzero critical value [see
Eq. (24)]. Finally, we note that the case (iii) can also
be related to the scaling invariance of the dependence
N, (w), similarly to the case (i) but existing in the limit
p = 4,w — 0. In all the cases, instead of the quadratic
equation (17), we should consider the more general an-
alytical model defined by Eqs. (13) or (15) in order to
obtain a correct description of the long-term soliton dy-
namics. The special critical cases are analyzed in Secs.
IV and V. However, in the intermediate region of the
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FIG. 4. (a) Effective mass M,(w.), and (b) second-order
derivative of the soliton energy, N, (w.), calculated for the
soliton solutions (19) of the model (18) for both o = +1 and
o = —1 (shown on the same plot), vs the power of nonlinearity
p.
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parameter p the nonlinear model (17) is a sufficient and
very useful tool for investigating the instability dynamics
and long-term evolution of bright solitons.

C. Soliton decay and oscillation for 1 < p < 2

1. Analytical results

In this subsection, we consider the model (18) for
1 < p < 2and o = +1, for which the derivative N (w,)
is positive [see Fig. 2(a)]. It is convenient to analyze the
dynamical system (17) on the phase plane (Q, ) or,
equivalently, the system (13) on the plane (w,w), where
w = dw/dt. When the initial value of the energy in-
variant No exceeds the extremum value of N,(w.), the
corresponding phase plane is presented in Fig. 2(b).

The standard initial-value problem to the original NLS
model (18) is imposed on a quasistationary solitonlike
pulse when the first-order correction ¢; to the soliton
shape @ is removed from the series (6) in an initial time
instant. In the analytical model (13) this corresponds to
the initial condition lying on the axis w(0) = 0. For such
initial conditions the integral curves given by Eq. (15)
reveal three different types of soliton dynamics. They
are depicted by the curves 1,2, and 3 in Figs. 2(a) and
2(b).

If the amplitude of the initially perturbed soliton is
taken to be smaller than the amplitude of the (unsta-
ble) stationary solution [i.e., w < wo, curve 1 in Figs.
2(a) and 2(b)], the instability leads to a decrease of the
soliton parameter w (which is proportional to the soliton
amplitude) and this process results in spreading of the
soliton. As there are no new stable equilibrium states
in the dependence N,(w) for w < wo which can be re-
alized at the same value of Ny [see Fig. 2(a)], the soli-
ton spreading cannot be stabilized by the nonlinearity-
induced self-focusing, and the soliton transforms into a
small-amplitude wave packet which finally decays due to
dispersive (or diffractive) properties of the wave medium.

On the other hand, if the initially perturbed soli-
ton has an amplitude slightly bigger than that of the
stationary soliton solution [i.e., wo < w < w;, where
w1 & wo + 3|N,(wo)|/N)(wo); curve 2 in Figs. 2(a) and
2(b)], the exponentially growing instability “pushes” the
soliton into the region of stability where there exists a
stable stationary soliton solution with the other (final)
value of the parameter w, wy = wo + 2|N](wo)|/NY (wo),
which corresponds to the same value of the energy in-
variant Ny [see Fig. 2(a)]. However, due to the inertial

-nature of the soliton evolution, which is characterized
by a nonzero value of the soliton mass M,, and the ab-
sence of essential radiation (i.e., effective radiation fric-
tion), the direct transition from the unstable state to
the stable one is impossible and, instead, the long lived
periodic oscillations are observed around the stable equi-
librium state with w = wy. Thus near the stable state we
predict the existence of periodic amplitude oscillations
which are long lived due to a nontrivial oscillating in-
ternal mode of a bright soliton in the generalized NLS

model (1). The frequency €2, of this internal mode can
be estimated from Eq. (17) in a linear approximation as
Q, = \/Ni{wy)/M(w;).

It is important to emphasize that, according to our an-
alytical model (17), the periodic oscillations of the soliton
amplitude must disappear for larger deviation from the
stable equilibrium state [w > wy, curve 3 in Figs. 2(a)
and 2(b)]. In spite of the fact that larger deviation of
the soliton amplitude does not remove the soliton from
the region of stability, the evolution of perturbations is
predicted to lead again to decreasing of the soliton am-
plitude. As soon as the parameter w enters the unstable
region, the soliton finally spreads out due to dispersion
(or diffraction). Thus soliton perturbations with larger
amplitudes lead also to a decay of solitons near the in-
stability threshold. Moreover, when the initial energy Ny
decreases, the parameter domain corresponding to peri-
odic oscillations of the soliton amplitude becomes smaller
and finally disappears at N9 = Ns(w.). Therefore all per-
turbed solitons spread out provided Ny < N,(w,).

2. Numerical results

To confirm the existence of the three dynamical
regimes for the evolution of unstable solitons discussed
in the previous subsection, we carry out a direct numer-
ical integration of the generalized NLS model with two
powerlike nonlinearities (18) selecting, for definiteness,
p = 1.35. The initial pulse at ¢ = 0 is taken in the form
of a weakly perturbed soliton,

d?®(z;w)

U(z,0) = ®(z;w) + (a + bz?) gz

(26)

where ®(z;w) is the soliton solution (19) which has a
perturbation multiplied by the factor (a + bz?). The pa-
rameter a is the amplitude of the perturbation, and the
parameter b is introduced to keep the initial value of the
energy, Np, unchanged. The latter condition is neces-
sary to compare different regimes of the soliton dynamics
in the framework of the generalized NLS equation (18)
with those described by the analytical model (13) and its
reduced version (17).

In numerical simulations, we have found all predicted
regimes of the soliton instability dynamics. Figures 5(a)
and 5(b) show several characteristic examples of the soli-
ton evolution for the effective propagation constant w(t)
which is determined numerically as the first-order deriva-
tive of the soliton phase calculated at the pulse maxi-
mum. FEach dependence corresponds to different values
of the perturbation parameter a, and the results are in
good agreement with the predictions of the analytical
model (13) [see the trajectories on the phase plane shown
in Fig. 2(b)].

If the amplitude of the perturbed soliton is taken
smaller than the amplitude of the unstable soliton [point
1in Fig. 2(b)], the soliton propagation constant decreases
monotonically, and it vanishes in a finite time [curve 1
in Fig. 5(a)]. For slightly larger amplitudes, the devel-
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opment of the soliton instability leads to the excitation
of periodic oscillations of the soliton amplitude around
the stable soliton corresponding to the same value of the
energy Ny [curve 2 in Fig. 5(a)]. The long lived oscilla-
tions of the soliton intensity |¥|? are shown in Fig. 5(c).
We note that these oscillations are mostly radiationless
and, therefore, they are observed for many periods with-
out visible changes. Such a behavior of the soliton is
explained by the existence of periodic orbits within the
separatrix loop [see curve 2 in Fig. 2(b)] in our analytical
model.
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FIG. 5. Results of numerical simulations of the generalized
NLS equation (18) at 0 = +1 and p = 1.35 (see text). (a)
Initial conditions are selected near the unstable soliton corre-
sponding to the propagation constant wo [see also Figs. 2(a)

and 2(b)]. (b) Initial conditions are selected near the sta-
ble soliton corresponding to the propagation constant wy. (c)
Long-lived periodic oscillations of the soliton intensity corre-
sponding to the curve 2 in Fig. 5(a).

If we take a small initial perturbation near the stable
soliton, we observe quasiharmonic small-amplitude os-
cillations of the effective propagation constant near the
value wy corresponding to the stable soliton [see curve
3 in Fig. 5(b)]. As a matter of fact, this long lived os-
cillating dynamics is generated by a nontrivial internal
mode existing in the vicinity of the stable soliton. When
the amplitude of the initial perturbation increases, the
period of the oscillations grows, and such oscillations be-
come strongly nonlinear [curve 4 in Fig. 5(b)].

Finally, if the initial value of the soliton propagation
constant exceeds the value w; corresponding to the sepa-
ratrix trajectory shown in Fig. 2(b) by a bold curve, the
soliton amplitude permanently decreases, and finally the
soliton decays [curve 5 in Fig. 5(b)]. We would like to
emphasize again that the latter type of soliton dynamics
is rather unexpected because the initial perturbed soliton
pulse has been taken inside the stability domain.

Thus, the direct numerical simulations of the dynamics
of the unstable and stable solitons in the generalized NLS
equation (18) completely confirm the predictions given by
our analytical model (13).

D. Soliton collapse for 2 < p < 4

In this subsection, we analyze the case ¢ = —1 and
2 < p < 4. Because the model (18) with the higher-
order power-law nonlinear term (f(|¥|) ~ |¥|2?) displays
a collapse singularity for p > 2 [4], it is natural to ex-
pect that the soliton perturbations with w > w.(p) will
lead to collapse as well. Indeed, this is confirmed by the
results following from our quadratic model (17), where
N!(w.) < 0 [see Fig. 3(a)]. The corresponding types of
soliton dynamics for the case Ng < N,(w.) are shown on
the phase plane (w,w), Fig. 3(b). We can see that those
perturbations which are bounded by the separatrix gen-
erate periodic oscillations of the soliton amplitude near a
stable soliton state [curve 2 in Figs. 3(a) and 3(b)]. Note
that now the stable stationary solitons have smaller am-
plitudes than the unstable ones, i.e., w;y < wp. On the
other hand, perturbations lying outside this interval in w
have to grow infinitely. It can be easily shown that the
model (13) displays the formation of singularities in a fi-
nite time (blowup) from such initial perturbations. More-
over, all perturbations with Ny > N, (w,.) lead to collapse.
However, when the deviation of the soliton propagation
constant w from the threshold value w. becomes larger,
correct quantitative analysis based on the model (13) be-
comes impossible.

Numerical simulations of the generalized NLS equation
(18) carried out at p = 3.4, similarly to those described in
Sec. IIIC2, display the same regimes of soliton dynam-
ics as predicted by our nonlinear model (17). These are
shown in Figs. 6(a) and 6(b). Evolution of the unstable
solitons leads to collapsing solutions if the amplitude of
the perturbed soliton is larger than that of the unstable
one [curves 1 and 2 in Fig. 6(a)]. On the other hand,
perturbed solitons with smaller amplitudes spread out
[see curves 3 and 4 in Fig. 6(a)] in spite of the fact that
the theory predicts oscillations around a stable state with
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FIG. 6. The same as in Fig. 5 but for 0 = —1 and p = 3.4
[see also Figs. 3(a) and 3(b)].

w = wys. This disagreement is observed due to the fact
that the separatrix, shown by a bold curve in Fig. 3(b),
is very close to the critical value w = 0 where the soliton
width grows infinitely and its amplitude becomes very
small. As a result, the soliton transforms into dispersive
linear waves, and finally disappears.

If we select the amplitude of the perturbed soliton near
the stable state corresponding to wy, small-amplitude pe-
riodic oscillations are clearly observed [curve 5 in Fig.
6(b)]. For larger amplitudes, the oscillations become
nonlinear, their period increases, and the minimum am-
plitude approaches the line w = 0 where strong radia-
tion is generated. This effect results in fluctuations of
the soliton propagation constant measured in numerical
simulations near the minimum amplitude [see curve 6 in
Fig. 6(b)]. We note also that radiation-induced losses ob-
served in this case create a rapid decay of the oscillation
amplitude.

IV. CRITICAL SOLITON COLLAPSE

As has been mentioned in Sec. IIIB, the case p —
2, w. — oo is special, because in this case the coeffi-
cients M,(w.) and N (w.) vanish. Moreover, as follows
from Eq. (25), for large w the energy invariant N,(w)
becomes independent of w, i.e., Ny(w) = N.. = w/4 for
w > 1. The latter feature implies the existence of scaling
invariance of the soliton energy N,, and this property cor-
responds to the phenomenon known as critical collapse
(see, e.g., [18-20]). For the critical collapse the forma-
tion of singularities is possible only for initial values of
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N larger than a certain value N,... Otherwise, i.e., for
Ny < N, the solitons spread out due to radiation of the
linear dispersive waves. Moreover, for the critical value
Ny = N, the NLS equation (1) with a solely fifth-order
nonlinearity [f(|¥]) ~ |¥|*] possesses a self-similar local-
ized solution describing an exact transformation of the
stationary solitons into collapsing or decaying solutions.
In this section we show that all the phenomena known
for the critical collapse can be directly extracted from
our analytical model (13).

Expanding Eq. (22) into a Taylor series in w™/2 for
large w, we can obtain the asymptotic representation of
the soliton energy N,(w),

_ VAT(1/p)w’
~2pI'(1/p+1/2)
20T2(1/p+1/2)

varey 0 (3)] e

where I'(z) is the gamma function. Substitution of Eq.
(27) into Eq. (9) allows us to find the asymptotic behavior
of the threshold stability curve w = w.(p) for p — 2,

N, (w;p,0)

X |1+

40
we(p) = —. (28
(2 - p) )
Henceforth we consider only the case ¢ = +1. The
other case, 0 = —1, can be analyzed in a similar manner

but it does not display qualitatively new features in the
soliton dynamics. From Eq. (27) it is clear that for any
P < 2 the function N,(w) is similar to that shown in Fig.
2(a) but with the slope approaching zero for larger w and
p — 2. As a result, the soliton dynamics described by
the analytical model (13) in this limiting case is essen-
tially the same as that discussed above in Sec. IIIC and
presented in Fig. 2(b). Nevertheless, the amplitude of
the internal oscillations near the stable equilibrium state
tends to infinity as p — 2. Therefore, although the for-
mation of singularities is formally impossible for p < 2,
small perturbations of the unstable solitons have to lead
to very large amplitudes of the soliton oscillations which
look, at least initially, like those generated due to the
development of the collapse instability (see also the dis-
cussions in [4]).

Let us consider the critical case p = 2, w, — o in

detail. It implies that we investigate now the soliton
dynamics in the critical power-law NLS model
0% 9%V
= 3|T|*T = 0. 29
i5 + gz T3V 0 (29)

In this case, the condition (9) is identically satisfied for
the soliton solutions (20) at p = 2 and the analytical
model (13) becomes nonlinear only due to the depen-
dence of the soliton mass M, on w, which is given by

M,(w) = =

)
w3

(30)

where m = 73 /512. Substitution of Eq. (30) into the first
integral (15) leads to the equation
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m [ dw

2
() = 3 4 31
3 ( ¥ ) Ew” + Aw®, (31)
where A = Ny — N, and E = Hy. A general solution of

Eq. (31) can be found in an analytic form,

_ 2mE
- ZmA—Ez(t—to)z'

(32)

First, we select the integration constant ¢, to be zero
in order to satisfy the initial condition w(0) = 0. It
follows from (32) that the two constants are related as
E = —w(0)A. If now the initial value of the pulse energy
is less than the critical value (i.e., A < 0 and E > 0),
the solution (32) describes a monotonic, power-law decay
of the solitons with different initial amplitudes (curve 1
in Fig. 7). In the opposite case, i.e., when A > 0 and
E < 0, the soliton evolution results in the formation of
singularities in a finite time, t. = vV2mA/|E| (curve 2 in
Fig. 7).

In the special cases A = 0 or E = 0, the evolution of
the soliton depends on the type of small perturbations at
t = 0 because the initial condition w(0) = 0 (on to; = 0)
cannot be satisfied any more. In these cases, the solutions
of Eq. (31) can be rewritten in the form

fo ) (33)

to—t

w:w(O)(

where y = 2for A=0(F >0)andy=1for E =0
(A > 0). These solutions describe either soliton collapse,
for to > 0 and w(0) > 0, or soliton decay, for to < 0
and w(0) < 0. In the case Ny = Ng (v = 2), these
solutions are shown in Fig. 7 by the corresponding dashed
lines. Thus, depending on a weak initial perturbation,
the solitons with slightly increased amplitudes collapse
whereas the solitons with slightly decreased amplitudes

Propagation Constant w

FIG. 7. Evolution of the soliton propagation constant w
for the critical collapse described by Eq. (32). Solid curve 1
shows the case No < N,,, and curve 2, for Ng > N,,. Dashed
curves present the corresponding solutions given by Eq. (33)
for the case No = N¢r (v = 2).

1949

spread out. These phenomena indicate a weak, power-
law instability of the bright solitons in the critical power-
law NLS equation (29) (see [18,19]).

It is important to note that, in the case of the criti-
cal collapse, our asymptotic results completely coincide
with the exact self-similar solutions of the power-law NLS
equation (29) found in Refs. [19,20]. In the primary vari-
ables, the exact solution has the form

T(z,t) = [w(t)]"/*¢(X) expli6 (X, 1)),
(34)

0(X,t) = /Otw(t')dt' _ X2 (d_“’) ,

8w? \ dt

where X = 4/w(t)z, the dependence w(t) is given by
Eq. (32), and the function (X)) satisfies the differential
equation

A

8m

d%y 5
;1‘—)2;+3¢ — o+

X2 = 0. (35)
For A = 0, this equation has a localized solution corre-
sponding to the stationary soliton ¥(X) = ®(X;1). For
nonzero but small A, we can expand Eq. (35) into the
asymptotic series valid for |[X| < 2v/2m/+/|A]. In this
case, our expansions (6) include the terms generated by
this asymptotic series, and also a formal expansion of the
exponential factor in Eq. (34) into a Taylor series.

It is obvious that solutions to Eq. (35) are not expo-
nentially localized as |X| — oo for A > 0 due to the
last, oscillatory-type term. Such improper self-similar
solutions have been investigated for the two-dimensional
NLS equation in Ref. [20], where it has been shown that
they still describe the initial regime of the wave collapse.
For larger time intervals the collapse is accompanied by
generation of a radiation field, and its approximation by
the exact self-similar solutions becomes worse. These
difficulties are beyond the lowest order of our asymptotic
expansion which allows us, anyway, to reconstruct the
scaling laws of the initial dynamics for collapsing soli-
tons.

Thus the analytical model (15) gives an adequate de-
scription of the evolution of initially solitonlike perturba-
tions in the dependence of the initial values of the integral
quantities Ng and Hy. We have found that the soliton-
like perturbations are collapsing when their energy Ny
exceeds the critical value N, realized on the unstable
soliton solution. In the opposite case, the solitonlike so-
lutions are decaying. A similar conclusion follows from
the model (15) with (27) for p > 2 but in this latter case
there is no universal critical value for the energy. As a
matter of fact, for any Ny at p > 2 there is a value of the
amplitude of the input solitonlike pulse which separates
two very different scenarios of soliton evolution, either
collapse or decay. This critical amplitude coincides with
the amplitude of the unstable stationary soliton.
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V. INSTABILITY OF ALGEBRAIC SOLITONS

In this section we consider the other critical case, p — 1
and w. — 0, when the quadratic model (17) becomes in-
valid because of the divergence of the coefficients M, (w.)
and N/ (w.) [see Figs. 4(a) and 4(b)]. In this case, the
sech-type soliton (19) transforms into the algebraic soli-
ton (21) with slowly decaying, power-law asymptotics.
Algebraic soliton solutions to the NLS equation (18) have
been recently demonstrated numerically in Ref. [16] to be
tnherently unstable due to a resonant interaction with in-
finitely long linear waves. The numerical simulations car-
ried out in Ref. [16] for the model (18) with p < 1 reveal
a slow transformation of an algebraic soliton (for which
w = 0) either to a sech-type soliton (with positive w),
if an initial perturbation increases the soliton amplitude,
or to linear dispersive waves (corresponding to negative
w), if the perturbation decreases the soliton amplitude.
In that sense, the algebraic soliton (21) at p < 1 is a de-
generate solution which separates the sech-type solitons
and linear dispersive waves.

Now we will show that the critical phenomenon ob-
served numerically in Ref. [16] can be described analyt-
ically in the framework of our model (13) for the case
p — 1. Moreover, for the case p < 1 we find an explicit
solution of the linear equation (describing small devia-
tions of the algebraic soliton profile) which is responsible
for slow, powerlike instability and nonlinear transforma-
tion of the algebraic soliton into either a sech-type soliton
or dispersive waves.

First, we obtain the asymptotic expansion of the soli-
ton energy (24) in the limit w — 0,

N,=m+ éww + 0w, (36)

Matching the value N/ found from Egs. (23) and (36)
we obtain the asymptotic result for the critical curve w =
we(p) for p — 1,

Veelp) = 2m(p - 1). (37)

Next, expanding the function M, (w) into a Loran series
as w — 0 along the curve (37), we find the leading order
of this series in the form

m

Ms - m (38)
Here m is a constant which can be found numerically,
m ~ 0.15. Now we substitute Egs. (36) and (38) into
the first integral (15) and obtain the equation

m [dw\? / 2

ot - — 3/2 5/2 _ “ 4 39

> (dt) Ew™* + Aw Tl (39)
where A = Ny — N, and the critical value N,, of the

soliton energy corresponds to the algebraic soliton, N, =
Ny(w — 0) = .

The model (39) describes the evolution of the sech-type
soliton which is very close to the algebraic soliton, i.e., in
the limit of small w. Because solutions to this equation
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cannot be found in an explicit form, we analyze them on
the phase plane (w,w). For the subcritical case A > 0,
the phase plane is presented in Fig. 8(a). All trajectories
are located in two regions. The first region is limited by
a separatrix loop shown in Fig. 8(a) by a bold line, and
it describes periodic oscillations of the perturbed soli-
ton near the stable equilibrium state w = wy = (3A)%/3
[curve 2 in Fig. 8(a)]. This equilibrium state corresponds
to a stable sech-type soliton with the propagation con-
stant wy, so that N,(ws) = Np. The region outside of
the separatrix loop describes a permanent decreasing of
the soliton propagation constant w from its initial value
w(0) > w; to the value w = 0 corresponding to the alge-
braic soliton [curve 3 in Fig. 8(a)]. This transformation
occurs for a finite time but the further evolution of such
a decaying soliton remains unclear in the framework of
our analytical model. It is important to mention that the
soliton dynamics in the critical case p = 1 is qualitatively
similar to that in a general case, 1 < p < 2 [cf. Figs. 2(b)
and 8(a)] but the region 1 in Fig. 2(b) disappears in the
limit wg — 0. This similarity of the soliton dynamics can
be explained by the similarity of the dependence of the
soliton energy N, on the propagation constant w.

For the case A < 0 the integral curves are shown in
Fig. 8(b). In this case, there are no stable sech-type soli-
tons, and all initial perturbations decay into the algebraic
soliton with w = 0 for a finite time.

Finally, let us consider the special case A = 0. For
small w we can neglect the last term in Eq. (39) and
obtain the simple analytical solution,

0.0 0.5 1.0 1.5 2.0 2.5

0.0 0.5 1.0 1.5 2.0 2.5
Propagation Constant w

FIG. 8. Phase trajectories of the dynamical system (39)
describing transformations of the algebraic soliton for (a)
No > N¢, and (b) No < Ng,.
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w = wo (1_i>4. (40)

to

For to < 0 Eq. (40) describes slow evolution of the initial
soliton with an infinitely small wo to a stable sech-type
soliton. For the other case, t; > 0, the soliton propa-
gation constant w vanishes for a finite time t = to. In
both cases, the solution (40) indicates a weak, powerlike
instability of the soliton with an infinitely small wp.

When the soliton propagation constant w approaches
zero, our asymptotic theory described in Sec. II becomes
invalid because the assumption of the fast, exponential
decay of the soliton asymptotics at |z| — oo is violated.
Therefore we are not able to consider the further evolu-
tion of the algebraic soliton in the framework of our ap-
proach. The reason for that is the generation of a smooth
radiation field which finally decays into linear dispersive
waves. Indeed, this process is clearly seen from the nu-
merical results for the model (18) at p = 1 reported in
Ref. [16]. On the other hand, a slow evolution of the
soliton of slightly larger amplitude must be stabilized at
larger values of w where the corrections to the function
N,(w) become important, and this leads to the ampli-
tude oscillations around a stable state corresponding to
a sech-type soliton, as we have discussed above (see also
Ref. [16]).

Thus the algebraic soliton (21) at p = 1 displays basi-
cally the same critical properties as the sech-type solitons
in the critical collapse models (see Sec. IV). Note that
the similar critical properties remain valid also for the
algebraic solitons for p < 1 because the energy N (w)
does not vanish at w — 0 when the sech-type soliton
(19) transforms into the algebraic solitary wave (21) (for
the case 0 = —1, N, = 0 for w — 0 at p < 4). Instead,
the soliton energy realizes a minimum value exactly at
the algebraic soliton, which is equal to

JE2/PID(2/p — 1/2)

Ne = Ns(w — 0;p, 1) = PF(2/Z7) ’

p<4. (41)

It is clear that any soliton perturbation with Ny < N,
will lead to dispersion, and any with Ny > N, to oscil-
lations near the stable sech-type soliton. For the critical
case, Ng = N,,, both scenarios can occur depending on
the type of perturbation. Moreover, we can find an ex-
plicit solution to the NLS equation linearized around the
algebraic soliton background which indicates both types
of the soliton dynamics as a weak instability of the al-
gebraic solitons. This solution is just an expansion of
the soliton solutions in the form (4) and (19) in a Taylor
series for small w,

U =&+ w(itd + ®,) + O(w?), (42)

where ® is given by Eq. (21) and ®, is

_ 6_@ _ (3 _ 6])2.’172 . p4$4)

= . 43
Ow —o 12p(1 + p2x?) (43)

1

For p < 1 the first correction ®; is spatially localized
and the expansion (42) gives a solution of the linearized
problem which grows in time. Of course, such solutions
exist also for sech-type solitons but they do not usually
indicate a real instability because it is always possible to
renormalize the soliton propagation constant, obtaining
another sech-type soliton which belongs to the same fam-
ily of localized solutions. However, the algebraic soliton
has no such (free) parameter. Therefore, the develop-
ment of a small perturbation (42) changes drastically the
form of the algebraic soliton, transforming it into a sech-
type soliton, if the initial perturbation gives a correction
with w > 0, or into linear dispersive waves, if the initial
perturbation leads to w < 0. Thus our analytical results
prove the hypothesis of Ref. [16] that algebraic solitons,
which are the degenerate case of sech-type solitons when
w — 0, are inherently but weakly unstable for p < 1.

VI. CONCLUSIONS

We have shown that the long-term dynamics of
(bright) solitons in the generalized nonlinear Schrédinger
equation depends crucially on the type of balance be-
tween nonlinearity and dispersion (or diffraction). When
this balance is destroyed and bright solitons may become
unstable, they transform into other (stable) solitons cor-
responding to the same value of the integrals of motion
N (w). If dispersion dominates, the instability of the soli-
tons leads to their slow decay into small-amplitude dis-
persive wave packets. Otherwise, the soliton amplitude
grows and, for some types of nonlinearity, it results in a
pulse collapse. In addition, near the instability threshold
we have found that the stable solitons have an internal
oscillating mode. The existence of this mode is respon-
sible for long lived oscillating behavior of the perturbed
stable solitons. However, unlike the integrable NLS equa-
tion possessing exact breatherlike oscillating solutions,
the amplitude oscillations in the nonintegrable models (1)
are quasistationary and they decay slowly due to emission
of a very small amount of radiation.

The analytical theory developed in this paper seems to
be a rather powerful and universal tool for studying the
soliton instabilities in the problems of one- (and many-)
dimensional wave propagation. This approach can give
a full analytical description of the long-term dynamics
of slightly perturbed unstable solitons for the NLS-type
model (1) with a rather general nonlinearity. For ex-
ample, our analytical theory immediately explains the
interesting phenomenon which is known as bistability of
optical solitons (see Refs. [5,6]). For this phenomenon,
the soliton energy is presented by a three-valued function
N, (w). It is clear that near the instability threshold the
quadratic approximation of this function is not valid and,
instead, we should use the approximation in the form of
a cubic polynomial. This leads to a cubic, rather than
quadratic, nonlinear model similar to Eq. (17) which de-
scribes the transformation of the unstable solitons at the
intermediate branch of the function N,(w) to one of sta-
ble solitons of larger or smaller amplitudes and periodic
long lived oscillations near a stable soliton state.



1952
ACKNOWLEDGMENTS

We are indebted to R. H. J. Grimshaw, S. K. Turit-
syn, and V. E. Zakharov for useful discussions and sug-
gestions. This work has been partially supported by the
Australian Photonics Cooperative Research Centre and
by a grant of the Russian GosKomVUZ in the framework
of the Russia—Australia Cooperation Program.

APPENDIX

Here we demonstrate explicitly how to calculate the
coefficients in Eq. (13). To do this, we substitute the

—_—00 — 00
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asymptotic expansion (6) into Eq. (11) and obtain the
following equation:

+o0 2
N0=Ns(w)+/ {@¢2+%<Cfi—‘:) wf}dm, (Al)

where NNy is the conserved energy of the initially per-
turbed soliton, N, (w) is defined in Eq. (9), and the func-
tions w; and ¢2 can be found from the linear inhomo-
geneous equations (7) and (10). Now we use the fact
that these functions are exponentially localized. Under
this condition, we can simplify the integral terms of Eq.
(A1) expressing ® from Eq. (5), integrating by parts, and
using Eq. (10),

0P 0P

/+°° Dpodr = /+°° b {Ed; (Z—f) —wao () + f(®)®] 5;} de

_ [, 00 (b
T Va2 ew T &

As a result of this straightforward procedure, we obtain
a second-order differential equation for the function w(t),

No = N,(w) + Ms(w)‘fiT‘: + K, (w) (%‘;i) , o (A3)

where the coefficient M,(w) can be transformed to the
form given by Eq. (14) with the help of Eq. (8) and in-
tegration by parts. As for the other coefficient K,(w), it
allows the further transformation,

2
dw, 8% 1., ,00
[
_1dM,(w) 1 [T (0w, 0% 9%®
Kow)=3—0 +§/_m (%% WGz
, 0D
+w? — f’(@)wf%)dm . (A4)

Next, we express the function 8?®/0w? from Eq. (7) and
find that the second integral is identically equal to zero.
Finally, Eq. (A3) with K,(w) = (1/2)(dM,/dw) coin-
cides with Eq. (13), and this simplified form allows us to
find the first integral to this equation as Eq. (15). It is
important to emphasize that for an arbitrary coefficient
K,(w) Eq. (A3) cannot be further integrated.
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