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We report numerical observation of two new forms of stable localized solutions of the quintic
complex Ginzburg-Landau equation. The first form is a stationary zero-velocity solution, which
consists of two motionless fronts and a source between them. We call this structure the “composite”
pulse. We show that in some range of parameters, a composite pulse can coexist with a plain pulse
solution. At the boundary of their region of existence in the parameter space, composite pulses
exhibit a complicated behavior, which includes periodical dynamics and transition into another new
form of localized solutions, namely, uniformly translating, or moving pulses. A careful study shows
that the moving pulses have an even wider range of existence than the composite pulses. The
interactions between different combinations of moving and stationary pulses are also studied. A
qualitative explanation of the observed structures is proposed.

PACS number(s): 42.25.Bs, 05.70.Ln

I. INTRODUCTION

The quintic complex Ginzburg-Landau (CGL) equa-
tion has a rich variety of solutions, including localized
stationary and uniformly translating structures, periodic
and chaotic solutions. In this paper we concentrate on
localized solutions, as they are most important for many
applications. It is known that the dynamics of localized
coherent structures is determined mainly by the com-
petition between pulses and fronts [1,2]. If fronts have
positive velocity (i.e., if the structure, composed of two
fronts, expands), then fronts dominate over pulses. In
turn, pulses dominate in the region of negative front ve-
locity.

It was thought that only one stationary stable pulse so-
lution of the quintic CGL equation can exist for a given
set of parameters. This follows from the expansions near
the conservative limit (nonlinear Schrodinger equation)
[3] and purely dissipative limit (real Ginzburg-Landau
equation) [4]. Recent analytical studies also supported
this hypothesis (see [5,6], and references therein). In-
deed, although the variety of the exact solutions of the
quintic GL equation has been found [6] (which includes
fixed-amplitude pulses, arbitrary-amplitude pulses, alge-
braic pulses, flat-top pulses), all these solutions can be
considered as partial or limiting cases of the general solu-
tion. Only one stationary pulse solution has been found
in numerical simulations [7,3,8] (we call solution of this
type plain pulse).

At the same time, analytic solutions of the quintic GL
equation exist only in the codimension-one subspace of
the parameter space and these solutions are mostly un-
stable. Perturbation analysis cannot be applied if the
dissipative and conservative effects are of the same or-
der. And numerical simulations cannot cover all range of
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parameters and an infinite variety of initial conditions.

In this paper we show that there is a certain region
in the parameter space where, besides the plain pulse
solution, another stable solution, which we call compos-
ite pulse (CP), can exist. This region of parameters is
smaller than the region of existence of the plain pulses,
but this region of parameters is continuous and it has the
same dimensionality as for the plain pulses.

Another interesting phenomenon reported in this
paper is the existence of uniformly translating non-
symmetric pulse solution, which we call moving pulse
(MP). It is usually supposed that only motionless pulse
solutions can exist in the quintic CGL equation, if the
coefficient in the front of the spectral filtering term is
nonzero. This also follows from the perturbation ex-
pansion [9] and numerical simulations. However, only
symmetric (and motionless) initial conditions have been
traditionally used in simulations, so the MP have been
missed out. Moreover, moving pulses coexist with plain
pulses and composite pulses, so all these three types of
solutions can appear simultaneously.

The rest of this paper is organized as follows. In Sec. II
we introduce the basic equations and discuss briefly the
known approaches to find its solution. In Sec. III we pro-
pose the reduction of the CGL equation to a system of
three first-order ordinary differential equations (ODE’s)
and look into its properties. Section IV is devoted to
a study of the composite pulses. Rather unexpected
uniformly translating asymmetric pulses are discussed in
Sec. V. Finally, Sec. VI concludes the paper.

II. BASIC EQUATION

We write the quintic complex Ginzburg-Landau equa-
tion in the form used in nonlinear optics [10]:
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where z is the propagation distance, ¢ is the retarded
time, 9 is the normalized envelope of the field, J is the
linear gain coeflicient, i8v:; accounts for spectral filter-
ing, €|1|%y represents the nonlinear gain (which arises,
e.g., from saturable absorption [11]), the term with u
represents, if negative, the saturation of the nonlinear
gain, the one with v corresponds to the saturation of
the nonlinear refractive index, and ¢ = £1 depending on
whether the group velocity dispersion is anomalous or
normal, respectively. In this paper we shall consider the
case ¢ = 1.

Several approaches have been used for the analysis of
Eq. (1). Firstly, one can try to find stationary solutions of
the CGL equation analytically (see, e.g., [1,2,5,6]). Un-
fortunately, only the cubic CGL equation can be com-
pletely analyzed in this way. Although the rich variety
of stationary pulse solutions of the quintic CGL equa-
tion has been found [6], these solutions exist only in a
subspace of the parameter space of a lower dimension-
ality. Moreover, these solutions (except the arbitrary-
amplitude pulses and flat-top pulses) are unstable.

Secondly, approximate methods such as perturbation
theory (PT) can be applied [2,3]. In particular, the PT
can be developed as an expansion around the one-soliton
solution of the nonlinear Schrédinger equation. In this
case, the PT predicts the existence of two motionless sta-
tionary solutions, one of them stable and the other un-
stable [3]. However, the PT can be applied only if the
dissipative terms are small. All the solutions presented
in this paper cannot be predicted by means of the PT.

Finally, one can solve Eq. (1) numerically, and this
has been done in several papers [3,7,8]. However, such
studies often give just fragmentary results, e.g., the exis-
tence of stationary pulses [3,7] or the existence of bound
states of two solitons [8]. The problem is that there are
too many parameters involved, including the parameters
of the initial conditions as well as the coefficients of the
equation. More recent papers [1,2] combine numerical
simulations with an analytical study, which allows us to
show an important relation between the front velocity
and the stability of the pulses. In our recent paper [12]
we have found numerically the range of existence of sta-
ble stationary pulses in the parameter space. This study
is very important, because from whatever direction we
move toward the region of the pulse existence and cross
the stability boundary, we can expect some unusual dy-
namics.

This short comparison of different techniques shows
that none of them is able to give an overall picture of
what is happening with pulses. Only by combining them
can one improve the understanding of the CGL equation
and its solutions.

In our previous work [6] we concentrated our efforts
on analytical considerations of the CGL equation. In this
paper we look for qualitatively new solutions numerically.
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III. REDUCTION TO ODE SET

One of the ways to find stationary solutions of Eq. (1)
consists in its reduction to a set of ODE’s. Namely, we
seek the solution in the form

Y = a(T) exp[ip(T) — twz], (2)

where a and ¢ are real functions of 7 = t — vz, v is the
pulse velocity and w is the nonlinear shift of propaga-
tion constant. Substituting (2) into (1), we obtain an
equation for two coupled functions: @ and ¢. Separating
real and imaginary parts we have the following set of two
ODE’s:

[w _ %cqslz +ﬂ¢” +U¢’]a+ 2ﬁ¢lal + %Ca” + a3 +Va5
(=6 + B¢ + 1cd”)a+ (c¢' —v)a' — Ba” — ea® — pa®

=0, (3)
where the prime denotes the derivative relative to the
variable 7. It can be transformed into
wa+ v — LeM?/a® + BM' Ja + Lea” + a® + va® =0,
—ba —va' + BM?*/a® + zcM'Ja — Ba” — €a® — pa® =0,

(4)

where M = a%?¢’. Separating derivatives we obtain:

M = 2(cd — 2Bw) o2 2(ce —20) 4
1+ 402 1+ 452
2(cu —20v) 4 46v 2¢cv
- M ,
Tt 11432 " TiragE W
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144032 114827 15432 o

ad =y. (5)

In principle, this set contains all stationary motionless
and uniformly translating solutions. Parameters v and w
are the eigenvalues of the set (5). On the plane (M, a) the
solutions corresponding to pulses are closed loops start-
ing and ending at the origin.

If we are interested only in zero-velocity solutions (v =
0), the set of Egs. (5) becomes simpler:
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Analytic one-soliton solutions can be found only at cer-
tain relations between the parameters [6]. However, this
set of first order ODE’s can be solved numerically. The
asymptotic behavior of the set (6) at small a is given by

a = ag exp(gt),
(7

céd — 2Bw
= ma% exp(2gt),

where the soliton tail exponent g can be found from the

biquadratic equation
‘g 2(cw +2B8) , (¢ —2Bw)?
1+452 (1+452)2

2 w2+52_cw+2,35
g —i\/1+4ﬁ2 1+4p8% ©)

Using this approximation at the tails we can find the
remaining part of any solution. The examples are given
below.

=0. (8)

Namely,

IV. STATIONARY COMPLEX PULSES
A. Discovery of the stationary pulse

Firstly, we recall results on the competition between
pulses and fronts. To do this, we consider dynamics of a
wide “rectangular” (e.g., super-Gaussian) pulse. If such
a pulse is launched into the system, described by Eq.
(1), first, the short transition to the coherent structure
occurs. Such coherent structure is limited by two nonlin-
ear fronts, i.e., interfaces between the cw and the back-
ground state. For the fixed coefficients of the equation,
the family of nonlinear fronts exists. However, only fronts
with some particular values of the amplitude, wave vec-
tor, and velocity can be formed. This process is governed
by the front selection criteria. This means that front and
source should match together on two parameters: ampli-
tude and wave vector. So, some particular value of the
front velocity is selected. Other possibilities also exist
such as fronts themselves may be unstable, but we do
not consider them here.

This selected value of velocity determines the further
dynamics of the coherent structure. We define the front
velocity as negative if the background state spreads over
the cw. Otherwise, the front velocity is positive. So, if
the velocity is negative, the structure shrinks. Normally,
when two fronts become close to each other, they form
a stationary pulse [Fig. 1(a)]. However, one more possi-
bility exists and it is shown in Fig. 1(b). Finally, if the
velocity is positive, the structure expands [Fig. 1(c)].

As one can see, the new form of localized solution is
formed, which we call composite pulse. Apparently, it
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exists if the front velocity has small negative values. To
find the range of parameters, where the CP exists, its
properties, and the possibility of coexistence with plain
pulse, we performed a series of computations, described
below.

2 §i§§§\\§@&\§\ﬁ\

FIG. 1. Dynamics of the coherent structure consisting of
two fronts and source, § = —0.5, 3 =0.5, u = —1, v = —0.1.
(a) € = 2.51, the structure shrinks and the plain pulse is
formed; (b) € = 2.52, the structure shrinks and the composite
pulse is formed; (c) € = 2.53, the structure expands. Note
that the position of the viewpoint in (c) is different from (a)
and (b).
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B. Range of existence of the CP

First of all, we looked for the range of parameters
where the plain pulse exists. For this task, we solved nu-
merically Eq. (1) to obtain the stationary pulse solution,
and then slightly varied one of the coefficients (normally
€) to find the stationary pulse for different parameters.
Note that we followed two different approaches. In the
first approach, the same initial condition (say, sech type
or Gaussian function) is used after each change of the
parameters of the equation. It is usually supposed that
for the quintic CGL equation there is only one localized
stable stationary solution for each set of parameters, so
if the initial condition evolves to some stationary state,
it is supposed to be this solution. When using the other
method, after each small modification of the parameters
the stationary solution found in the previous step is used
as an initial condition for the next step. This method pro-
vides much faster convergence. If there is only one stable
or quasistable nonzero solution, then there is no differ-
ence between these two approaches. However, if there
are two (or more) stable solutions for the same set of pa-
rameters, then the choice of the initial condition becomes
crucial.

To choose the set of parameters, we note that the stable
plain pulses exist only when § < 0, 8 > 0, € > 0, and
1 < 0. The parameter v can be both positive or negative.
In fact, these conditions mean that one term (that with
coefficient €) provides gain to the pulse and three other
terms (those with coefficients 8, 3, and u) produce losses.

We choose 6 = —0.1, 8 = 0.5, v = —0.1 in all sim-
ulations presented in this paper. Next, we varied the
parameters € and p to find roughly the threshold of posi-
tive front velocity. The initial point found was p = —0.6,
€ = 1.8. Further simulations have been carried out start-
ing from the vicinity of this point.

To find the threshold of the positive front velocity more
precisely, we choose the initial point on the (u, €) plane at
the point (—0.6,1.6), obtained the stationary plain pulse,
and then employed the second method, i.e., increased ¢
slightly to obtain a new stable solution taking as initial
condition the previously found stable solution for lower
€, and repeated the procedure. In this way we can ob-
tain the continuous dependence of the pulse energy and
any other pulse characteristics on the parameter € (see
Fig. 2). A more precise value of the positive front veloc-
ity threshold has been found to be € = 1.78.

Next, keeping the same set of parameters, we applied
the first method. Namely, the same initial condition
[¥o(t) = sech(t)] has been used after each variation of
€. In this case the results coincide with those obtained
using another method up to € = 1.7. Above this value
there are some oscillations around the previous results,
and at € = 1.75 we observed the convergence to a new
type of solution, namely, the composite pulse. We choose
this term because this solution is considered to be com-
posed from a source and two fronts, as discussed below.

In the next series of computations we started from
1o(t) = sech(t) at € = 1.75, obtained the composite
pulse, and then varied ¢, again using the stable solution
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FIG. 2. The energies of the plain pulse, the composite
pulse, and the moving pulse vse, § = —0.1, 3 = 0.5, u = —0.6,
v =-0.1.

found in the previous step as the initial conditions. In
this way we were able to produce the curve that shows
the CP energy (see Fig. 2). As we increased ¢, we realized
that the range of existence of the CP is also limited by
the positive front velocity threshold.

This procedure has been repeated for different p. The
results are summarized in Fig. 3. It shows the ranges of
parameters where the stable plain pulses and the com-
posite pulses exist. The upper boundary on the (u,¢)
plane corresponds to the transition into pair of fronts.
Dynamics of the CP at the lower boundary is discussed
below.

Parameter €

-0.8

-0.6
Parameter u

FIG. 3. The range of existence of the stationary stable
pulses on the (u,€) plane. The solid line marked by trian-
gles gives the zero front velocity threshold, and filled areas
give the ranges of existence of the plain pulse, the compos-
ite pulse, and the moving pulse. Parameters are § = —0.1,
B=05,v=-0.1.
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C. Properties of the composite pulse

The profile, of a CP, its phase profile and Fourier trans-
form are shown in Fig. 4. The same curves for the plain
pulse solution that exists for the same set of parame-
ters are also given for comparison. The CP consists of
two fronts and a small “hill” between them. This hill is
the domain boundary between two fronts, as they have
nonzero wave vectors. This hill should be counted as
a source, because it follows from the phase profile that
there is an energy flow from the center to the CP wings.
Note that the flat regions between the source and the
fronts are relatively small. The typical width of the
source is the same as the typical width of the front.

To compare the CP with the plain pulse we use the pre-
sentation on the (a, M) plane (see Sec. III). From Fig. 5
we realize that that there are many similarities between
the two solutions. In particular, the top part of the CP
(i.e., the source) has the same shape as the top part of
the pulse. The wings of the simple pulse and the CP
are also very similar. To explain this fact, we compared
the nonlinear propagation constants of both structures.
It appears that the difference is around 10%. Then the
similarity between the asymptotes follows from the lin-
earized version of the Eq. (1).

The spectrum of the CP is shown in Fig. 4(c). It has
a hole in its center and two well-separated peaks. To ex-
plain such structure of the spectrum, let us return to the
dynamical coherent structure, considered above. Let us
suppose that the full width of the structure is much larger
than the width of both the front and the source. So, it
consists mainly of two plane waves located between the
source and two fronts. These plane waves have opposite

N W bh
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|
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Spectrum
o
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FIG. 4. The amplitude, phase profiles, and the spectrum
of the composite pulse (solid curves) and plain pulse (dashed
curves), § = —0.1, 8 = 0.5, ¢ = 1.75, o = —0.6, v = —0.1.
Dotted curves give the width of the spectral filtering 1 —3%w?.
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FIG. 5. Comparison of the plain pulse (dashed curve) and
the CP on the (a, M) plane. The parameters are as in Fig. 4.

wave vectors, and the spectrum of this structure consists
of two peaks. The spectral separation between the peaks
is determined by the difference between the wave vectors
of the two plane waves, and it roughly does not change if
the whole structure propagates (and expands or shrinks).
But the width of each peak varies. For instance, if the
structure expands, the width of each peak decreases and
vice versa. The stationary CP is the limiting case of the
dynamical case, and its spectrum is the intermediate case
between the spectrum of the dynamical structure, which
has two peaks, and the spectrum of the plain pulse, which
has one peak.

D. Discussion

As far as we know, these results are the first demon-
stration of the coexistence of two different stable station-
ary solutions of the quintic CGL for the same set of pa-
rameters. This fact contradicts arguments derived from
the perturbation around the conservative and purely dis-
sipative limit. At the same time, this result is quite nat-
ural, if we consider fronts, pulses, and sources as ele-
mentary building blocks, which can be combined to form
more complicated structures.

The CP solutions exist in the range of parameters
where the selected front has small negative velocity. So,
we can explain the existence of the CP by some repul-
sion that exists between the source and the front. When
the front velocity is small, as structure shrinks and fronts
move toward each other, they meet this repulsion from
the source, which keeps them at a fixed distance. For
the other set of parameters, where the front velocity is
large enough, they overcome this repulsion and the plain
pulse is formed. However, this qualitative approach does
not explain why the CP can be formed from an initial
condition that is much closer to the plain pulse than to
the CP. Nevertheless, some additional arguments that
support the idea of repulsion between the front and the
source will be given below.
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Note also that there is some range of parameters where
the selected front has zero wave vector. Apparently, in
this case the plain pulse and the CP become indistin-
guishable.

E. Dynamics of the composite pulses

Now, let us turn back to Fig. 3 and consider more
carefully the range of existence of composite pulses. The
upper boundary on this plot corresponds to the posi-
tive front velocity threshold. The lower boundary corre-
sponds, in general, to the transition from the composite
pulse to the plain pulse. However, this transition is not
straightforward.

In particular, we have discovered the existence of pe-
riodic solutions in this range of parameters. In Fig. 6
we show the dynamics of the pulse energy versus z for
two values of € near the lower boundary. As one can
see, pulses demonstrate complicated periodical dynamics,
with main period varying from T' = 69 (for € = 1.726) to
T = 95 (for € = 1.727). Note that when the pulse energy
has the lowest value at each period, this value is much
smaller than the energy of the plain pulse. Hence, this
dynamics cannot be considered as a periodical transition
between these two types of solutions.

Our calculations show that such periodic dynamics can
be observed in a very narrow interval of parameters and
only for some particular initial condition. If we slightly
increase ¢, stationary CP is formed. If € is decreased, the
solution is transformed into the plain pulse or moving
pulse, described below.

Note that periodical dynamics of pulses for the quin-
tic GL equation has been reported recently in Ref. [13].
However, there are important differences between our re-
sults and the results of Ref. [13]. We observed instability
of the composite pulse, while the authors of Ref. [13] re-
port the instability of plain pulses. Then, in our case

0 200 400 600 800
Distance

FIG. 6. Periodical dynamics of the complex pulse at (a)
€ = 1.726 and (b) € = 1.727. Dashed line gives the energy
of the plain pulse. Other parameters are § = —0.1, 8 = 0.5,
p=—-06,v=—0.1.
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the changes are deeper, and the pulse energy varies more
than 3 times. Dynamics, reported in Ref. [13], is caused
by the instability of fronts, while the pulse in general re-
mains stable. Consequently, the pulse energy does not
vary more than 20%. Finally, if we detune the parame-
ters slightly, periodical dynamics disappears, and a sta-
tionary solution is formed, while in Ref. [13] periodical
dynamics becomes quasiperiodic or chaotic.

V. MOVING PULSES
A. Discovery and properties of moving pulses

Traditionally, it is supposed that if the coefficient 3
in front of the second-order derivative term in the right-
hand side (rhs) of Eq. (1) is nonzero, then only motionless
and symmetric localized stationary solutions can exist
[14]. This follows, for example, from the adiabatic per-
turbation theory (see, e.g., [9] and references therein).
However, perturbation theory cannot be applied if at
least one of the coefficients in the rhs of Eq. (1) is not
small. It has been proven already that asymmetric solu-
tions of the symmetric nonlinear problem can exist in the
conservative case [15], so we can expect this to be true
for the non-conservative problem as well.

MP can be observed as a result of the instability of
the CP at the lower boundary of the region of stable
CP on the (u,¢€) plane. If the antisymmetric perturba-
tion has a large growth rate, then instead of the peri-
odic dynamics described above or transformation into
the plain pulse, we would have the spontaneous trans-
formation into asymmetric MP (Fig. 7). The process of
CP formation can be controlled by choosing a moving
initial condition. In this case both left- and right-moving
pulses can be created; they are related as an original and
a mirror image, due to the symmetry of Eq. (1) relative
to the transformation ¢ < —t.

INTENSITY

FIG. 7. Spontaneous transformation of the composite pulse
into the moving pulse, § = —0.1, 8 = 0.5, v = —0.1, ¢ = 1.8,
p = —0.8.
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The amplitude, phase profile, and the spectrum of the
MP are given in Fig. 8. The amplitude profile is indeed
very close to the profiles of the plain pulse and the com-
posite pulse. In other words, MP can be considered as
the bound state (nonlinear superposition) of the plain
pulse and front, or as a CP in which one of the fronts is
missing. The spectrum of the moving pulse is asymmet-
ric. There are two peaks of different height and a hole
between them.

It follows from the presentation of the MP as the bound
state of a pulse and a front that its energy can be roughly
presented in the form Eyp = Ep + Ep, while the energy
of the composite pulse takes the form Ecp = Ep + 2EF,
where Ep is the energy of the plain pulse. In other words,
the difference between the MP energy and the energy of
the plain pulse (which exists for the same set of parame-
ters) is half of the difference between the energy of the CP
and plain pulse. Numerical calculations show qualitative
agreement with this prediction (see Fig. 2).

It is noticeable that MP always moves with the pulse
ahead. This confirms our hypothesis that the MP is the
nonlinear combination of a pulse and a front, because it
exists in the region of parameters where the front velocity
is negative. Another important fact is that the velocity
of MP is always smaller than the velocity of the selected
front for the same set of parameters. To explain this,
we note that, in the MP, the front tends to move with
its own velocity, i.e., the velocity of the selected front.
At the same time, the pulse tends to be stationary due
to the spectral filtering. The resulting velocity of the
MP is determined by the competition between these two
processes. At the same time, the distance between the
center of the pulses and the front in MP is slightly larger

Intensity

Phase

Spectrum

-4

Frequency

FIG. 8. The amplitude, phase profiles, and the spectrum
of the moving pulse (solid curves) and simple pulse (dashed
curves), the parameters are the same as in Fig. 7. Dotted
curves give the width of the spectral filtering 1 — B%w?.
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than the same distance in the CP, because the pulse of-
fers less resistance to the pushing force of the front. This
explains the difference between the predicted and the ob-
served energy of the MP.

Note the difference between the MP observed in our
paper and asymmetric stationary solution presented in
[15]. In our case, the medium is homogeneous, while in
[15] there is symmetric inhomogeneity. At the same time,
the presence of spectral filtering can be considered as
inhomogeneity in the frequency domain. In both cases,
the asymmetric pulse arises near the boundary, in the
space domain in [15] and in the frequency domain in our
case.

To find the range of existence of the MP, we started
from the moving initial condition in the range of param-
eters where the CP exist, and then slowly decreased €. It
turns out that the range of existence of the MP is even
larger than for the CP (see Fig. 2). The upper boundary
is the same for plain pulses, the CP and the MP, while
the range of existence of the MP is approximately 2 times
wider. However, both the CP and the MP do not exist
for 4 > —0.3. Apparently, this is the threshold where the
double matching (between amplitudes and wave vectors)
of the pulse and front becomes possible. As we decrease
1 below —0.3, the range of this matching increases. This
again proves our hypothesis that the CP and the MP
have common nature.

Note also that the MP exists in the continuous range of
parameters and this range is comparable with the range
of existence of the plain pulses. Apparently, the MP have
been missed in previous analyses because it has been sup-
posed that only motionless pulses can exist and corre-
sponding initial conditions have been used.

At the lower boundary of their existence on the (y,¢€)
plane, the MP are transformed into a plain pulses. This
process can be explained in the following way: As the
front velocity increases, resistance from the pulse also
increases. At some point the front velocity overcomes
the repulsion and the front is absorbed by the pulse. In
this sense the lower boundaries for the CP and the MP
on the (u, €) plane have the same meaning.

To avoid any misunderstanding, we have to explain the
difference between our moving pulses and moving pulses
in Refs. [8,16,17]. Our moving pulses are moving due to
some internal reasons. By contrast, pulses in [8,16,17]
were moving due to external factors, i.e., group veloc-
ity terms and gradient terms. Neither group velocity nor
gradient terms were present in our simulations. Also, the
MP in our simulations has asymmetry as an intrinsic fea-
ture, while pulses in Ref. [16] become asymmetric under
the action of gradient terms.

B. Interaction of moving and stationary pulses

There are four stable pulse solutions in some regions
of the parameter space, namely, plain pulse, composite
pulse, and moving to the right and to the left pulses.
This gives three possibilities of pair interaction, i.e., in-
teraction of moving pulse with the plain pulse, with the
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composite pulse, and with another moving pulse. Note
that the result of the collision depends also on the relative
phase of the interacting pulses. For a collision between
moving and motionless pulses that have different propa-
gation constants, the relative phase at the collision point
depends on both the initial phase difference and the ini-
tial separation, so it is difficult to control the relative
phase in numerical simulations. If two moving pulses
collide, the relative phase between them is determined
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FIG. 9. Interaction between the moving and composite
pulses, § = —0.1, 8 = 0.5, » = —0.1, p = —0.6. (a) In-
teraction between the in-phase MP, € = 1.75; (b) interaction
between the MP and the CP, e = 1.75; (c) interaction between
the MP and the CP, ¢ = 1.73 (note that after the collision the
orientation of the MP is opposite to the initial one); (d) in-
teraction between the MP and the CP, ¢ = 1.73, the relative
phase is changed on 7 in comparison with (c).

V. V. AFANASJEV, N. AKHMEDIEV, AND J. M. SOTO-CRESPO 53

only by the initial phase difference, so it can be easily
controlled.

Figure 9 depicts different scenarios of interaction. We
start from the interaction between the MP. In this case
we observed either the formation of the CP [for in-phase
MP, see Fig. 9(a)], or the plain pulse, or another MP (for
out-of-phase pulses). Collisions between stationary CP
and MP also result in several possibilities. Figure 9(b)
shows one of them, namely, absorption of the MP by the
CP. The only difference between the CP before and after
the collision is the small shift on ¢.

Figures 9(a) and 9(b) have been obtained for € = 1.75.
As we decrease € to 1.73, the CP still exists, but its sta-
bility wanes. For this set of parameters we observed for-
mation of the MP after the collision, and direction of
propagation of this MP depends on the phase difference
between the pulses [Figs. 9(c) and 9(d)]. Note that if
the MP changes its direction of motion after collision, as
in Fig. 7(c), it also changes its orientation, because MP
always moves with the pulse ahead, front behind. Po-
tentially, there are other possible results of interaction,
including complete annihilation of interacting pulses and
tunneling of one pulse through another one. We expect
to observe these scenarios in future simulations.

We note the difference between our results and the re-
sults of Refs. [8,16,17]. In these papers, interaction in
the frame of two coupled GL equations has been studied,
which described propagation of two components. Also, as
we already mentioned, the pulses were uniformly trans-
lating due to group velocity terms, incorporated into the
equations. So, in each component, only one direction of
motion is possible. By contrast, in our case we consider
one GL equation, the pulses move due to internal reasons,
and both left- and right-moving pulses are possible. At
the same time, there are a number of similarities between
our results and the results of [8,16,17]. In particular, the
disappearance of one of the pulses after the interaction
has been found in [17]. The fusion of two pulses into one
has been observed in [16], although for the case where
the resulting two-component pulse was unstable and it
transformed into two fronts.

VI. DISCUSSION AND CONCLUSION

In this paper we have found numerically a series of new
solutions of the CGL equation. To explain their exis-
tence, we propose the hypothesis that pulses, fronts, and
sources can be considered as elementary building blocks,
which can be combined to form more complicated struc-
tures. Another example of a stationary solution, which
arises from the superposition of two simplest solutions, is
the bound state of two pulses [2,8,18]. However, pulses in
such bound state are weakly overlapping. Moreover, as
we demonstrated recently, the bound states of two pulses
are unstable [18]. At the same time, the bound states of
two pulses exist in a relatively wide range of parameters.
By contrast, we report stable structures, which arise as a
result of strong interaction between the pulses and fronts.
However, such structures require the matching conditions
for the amplitude and the wave vector to be fulfilled, so
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they can exist in a relatively narrow range of parameters.

In conclusion, we study numerically propagation of
localized coherent structures in the quintic Ginzburg-
Landau equation near the zero front velocity threshold.
We have found that besides the stationary pulse solution,
known before, another type of stationary solution, which
we call the composite pulse, can exist. The composite
pulse and the plain pulse exist at the same values of pa-
rameters. Also, we show that such composite pulses can
demonstrate periodic dynamics. We discovered the exis-
tence of the asymmetric moving pulses and studied the
interaction between the moving the motionless pulses.
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To explain the existence of the structures observed, we
suppose that the simple pulse and nonlinear front can be
considered as elementary building blocks, which can form
more complicated nonlinear superpositions.
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FIG. 3. The range of existence of the stationary stable
pulses on the (u,€) plane. The solid line marked by trian-
gles gives the zero front velocity threshold, and filled areas
give the ranges of existence of the plain pulse, the compos-
ite pulse, and the moving pulse. Parameters are § = —0.1,
B =0.5,v=-0.1.



