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Discontinuous decompaction of a falling sandpile
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We investigate experimentally and via computer simulations the fall of a two dimensional granular
material in a rectangular container with friction only at the lateral walls. We study the decompaction
modes of the granular assembly, which is a basic question relevant to the general dynamics of
a noncohesive powder. We observe during the fall the possible occurrence of successive cracks
splitting the initial pile into smaller blocks as time passes. These cracks preferentially occur in
the lower part of the array, resulting in an ascending decompaction wave in the bulk. We show
experimentally how this efFect is related to the surface roughness of the boundaries. A heuristic
continuum theory is proposed that rationalizes the experimental results. Furthermore, event driven
simulations, including particle rotations and friction, parallel nicely the experimental observations.
In the simulations, we find strong pressure Huctuations at the boundaries correlated to the occurrence
of arches.

PACS number(s): 46.10.+z, 83.70.Fn, 47.20.—k

I. INTR.ODUCTION

Among other open questions concerning the physics
of granular materials (see [1,2] and references therein),
the problem of guided Bows in tubes, pipes, or chutes
is of crucial importance. The great majority of indus-
trial processes dealing with granulates is inHuenced by
several basic phenomena. Effects like recurrent clog-
ging [3] as a sort of "traffic jam" problem [4], density
waves [5—8], and size segregation [9—11] are frequently
observed during granulate processing. Related to indus-
trial challenges and to fundamental questions, experi-
mental efforts have been attempted to clarify the intrigu-
ing problem of the behavior of sand Bowing along inclined
chutes either in three dimensional (3D) situations [12]
or in 2D model granular materials [13] [14,15]. How-
ever, due to the diKculty of dealing with particle-wall
interactions and also due to the subsequent formation of
stress chains in the granulate, the system is not yet com-
pletely understood and undoubtedly requires further ex-
perimental, theoretical, and simulation work. Some pub-
lications deal with granular Bows and particularly with
propagating density waves within falling powders. Den-
sity waves have been found in simulations to occur in
a steady state regime [5,8] or in experiments, related to
gas-particle interactions (pneumatic effects) [16]. In the
spirit of current efforts dealing with model granular ma-
terials [17,11,18,19,15] we tackle the problem of a 2D pile
made up of rather large beads, in order to minimize the
inHuence of the surrounding gas. Since 2D model sys-
tems greatly reduce the geometrical complexity existing
in commonly used granular materials, it is likely that
some difference shows up when comparing model media
results with more general sand problems. However, the
increasing amount of experimental data shows that many
basic features of the physics of granulates are maintained
in model situations. This is due to the common nature
of microscopic granular interactions (frictional and dissi-
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FIG. 1. Experimental observation of successive microfrac-
tures which occur in a vertically vibrated (at 15 Hz) 2D pile in
a box. The micro-cracks occur repeatedly and erratically with
an approximative V shape during a few milliseconds at every
period of excitation when the compact pile moves upwards.
This photograph has been obtained by using a series of stro-
boscopic Hash light synchronized with the vibration period at
a given phase.

pative collisions). In contrast to the more complex real
situation, such an approach has two main advantages:
erst, it allows a direct observation of the behavior of
the falling column of particles, and. second, it permits
a tractable computer simulation to be made which, in
turn, can be confronted to experimental observations on
quantitative grounds.

Recent observations of approximately V-shaped micro-
cracks (see Fig. 1) in vertically vibrated sandpiles [17]
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lead us to the problem of gravity driven vertical motion
of sandpiles in 2D containers. In a continuously vibrated
container with rough walls, the cracks appear periodi-
cally at difFerent positions in the pile and exist only dur-
ing a short interval of time (e.g. , for a few milliseconds at
a vibration frequency of 15 Hz). Therefore, we designed
an experiment which allows a much longer observation
of the dynamics of these microcracks. Hence, we study
the fall of a 2D granular material inside a rectangular
container with frictional lateral walls. We examine the
modes of decompaction, which is a basic problem related
tn the general dynamics of a noncohesive powder. This
paper reports a series of experiments, paralleled by com-
puter simulations based on an event-driven algorithm,
including rough and rotating particles. We discuss the
basic features of both, simulation and experiments, us-
ing an extension nf our previously developed continuum
model [17].

2D cell plastic walls

thin alu blade

II. EXPEB.IMENTS AND SIMULATIONS spring

A. Ex:perirnental details

For the experiments, we use a set of monodisperse oxi-
dized aluminum beads of diameter d = 1.5 mm, which we
have already considered in previous works as a convenient
model granular material [10,17,18]. These metallic beads
are initially prepared in an ordered triangular network in-
side a vertical 2D cell made up of two glass windows for
visualization and two lateral vertical walls of plexiglass.
The width of the cell is typically 3.6 cm and the heights
of the arrays range &om 0.15 to 19 cm, while the gap be-
tween the glass windows is marginally greater than the
diameter of the beads. This setup minimizes friction with
the front and back windows while maintaining strong fric-
tion between the pile and the lateral boundaries and thus
mimics a convenient 2D granular object. For a schematic
picture of the experimental setup see Fig. 2.

The cell containing the pile is initially closed at its
lower outlet by a vertical and 1 mm thin aluminum blade
which can be moved downward at an acceleration of ap-
proximately 3g, i.e. , larger than the gravitational accel-
eration g. This aluminum blade acts as a piston which is
abruptly pulled down via a strong vertical spring. The
whole setup is carefully aligned in order to make sure
that the piston does not touch the cell when moving.
Since the downwards air drag, obtained when the piston
is lowered, might induce artificial efFects at the beginning
of the falling process, we checked for this by testing that
a single bead or a single layer of beads falls according to
the acceleration of gravity g, so that we will neglect the
influence of the surrounding air in the following.

The recording setup consists of a charge coupled de-
vice (CCD) camera interfaced to an image processing
device. The definition of the origin of time, i.e., the
time when the fall starts, is appreciated via an additional
setup which uses a He-Ne laser, the beam nf which is cut
ofF when the blade starts moving downwards.

Our observation and recording of a large number of ex-
periments in difFerent containers leads to the conclusion

FIC. 2. Schematic drawing of the experimental setup.

that during the fall discontinuous decompaction may oc-
cur via cracks. In Fig. 3 we present snapshots of a typical
experiment (a) complemented by the result of numeri-
cal simulations (b). For details on the simulations and
the parameters used therein see the following subsection.
The development of the cracks starts in the lower part of
the pile and ascends progressively inside the bulk in both
experiment and simulation.

Examining our experimental data we get in summary
' two important features which will be considered in more

detail in Sec. III.
(i) Almost perfectly machined, i.e. , optically polished,

laterals walls are unlikely to induce cracks during the
fall, so that the pile often remains compact. On the con-
trary, rather poorly polished walls unavoidably introduce
cracks which display the following characteristics.

(ii) If a crack occurs in the lower portion of the pile,
it quite generally increases in size as the fall proceeds. In
contrast, if a crack happens to occur in the upper part,
it tends to close and disappear during the fall.

Concerning point (i), we checked that both differently
machined walls (i.e. , optically polished or not) did exhibit
approximately the same bead-wall coeKcient nf friction
p . The consequences of this fact will be discussed in
Sec. III.

In order to complement and extend nur experilnen-
tal observations, we set up a computer simulation which
takes into account both the bead. -bead as well as the
bead-wall friction.

B. Simulations

Our computer simulation model is based on the follow-
ing considerations: Since a rough surface implies both ro-
tation and energy loss, it is important to allow rotation
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and to account for the friction of the particles . In the
simulations, we describe the roughness of surfaces and
the connected energy dissipation, using the coeKcient of
friction p, and the maximum tangential restitution Po, as
already described in Refs. [20—22]. Other mechanisms of
energy loss might be a permanent deformation of a par-
ticle during contact, or the transfer of kinetic energy to
thermal energy. We account for these eBects, introducing
the coeKcient of normal restitution,

n x AP,

v2 = v2 —AP/m2,

~) ~ ~2

(2I2)

(Ib)

(1c)

(1d)

1. Inter action model

v~ = vy + AP/my, (la)

First, we give a brief description of the collision model
we use. For a more detailed description see Refs. [20—22].
Consider two particles with diameter di and d2 and
masses m~ and m~ . The normal unit vector for their
contact is n = ~"' "'

~, where r; is the vector to the cen-
ter of particle i (i = 1, 2). For the interaction of particle
1 with a wall, we set m2 ——oo, d2 ——0 and n is in this
case the unit vector from the contact point wit h the wall
to the center of the particle. The relative velocity of the
contact points is v, = vq —v2 —( 2' 2q + 2' w2) x n, with v,
and u, being the linear and angular velocities of particle
i just before collision. From the momentum conservation
laws for linear and angular mo ment um we get

where v,'. and u,' are the unknown velocities of particle
i after the collision. I; is the moment of inertia about
the center of particle i and 4P is the change of linear
momentum of particle 1 and is a function of e, p, and Po..

AP = —mq2(1 + e)v(") ——mq2(1 + P)v( ),

with the reduced mass mq2 ——mqm2/(mq+m2). (n) and
(t) indicate the normal and the tangential component of
v„respectively, and the factor 2/7 in the tangential part
of Eq. (2) stems from the fact that we use solid spheres. e

is the (constant) coefficient of normal restitution and, in
parallel we also have P, the coefficient of tangential resti-
tution. We simplify the two particle contacts in the sense
that we allow exclusively Coulomb-type interactions, i.e.,
LP( ) is limited by p LP ~ ), or broken contacts with the
maximum tangential restitution Po due to the elasticity
of the material . For a detailed discussion of the above
equations see Ref. [22] .
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FIG. 3. (a) Experiment: Successive snapshots (aperture
time 1/2000 s) taken at 0.02 s intervals after the piston has
been removed. We use L = 24 d and 103 layers so that
So 3.7. (h) Simulation: In a container of I = 20.2d and
with 80 layers so that So 3.5 we use e = 0.99, e = 0.98, p

0.5& p~: 1.0& Po: Po~ —0.2 and v(t = 0) 0.05 m/s.

2. Simulation method

t d i (ED)
such that the particles undergo an undisturbed motion
in the gravitational field until an event occurs . An event
is either the collision of two particles or the collision of
one particle with a wall. From the velocities just be-
fore contact, we compute the particles velocities after a
contact following Eqs. (1). In the ED method, the time
for which two particles are in contact is implicitly zero,
the consequence being that exclusively pair contacts oc-
cur . Thus ED algorithms run into problems when the
time between events, t,„,gets too small . In systems with
strong dissipation t „may even vanish and the so-cal led
"inelastic collapse" may occur [23—26]. In Ref. [27] an ED
algorithm was introduced which updates only those par-
ticles which were involved in the previous collision. For
this a double burring data structure is implemented to-
gether with several other techniques in order to optimize
the speed of calculation. A more detailed description of
the original algorithm is given in Ref. [27]. Like in Refs.
[22,28] we implement the algorithm of Ref. [27] with some
changes and extensions. Despite the gravitational accel-
eration, all contact times of particles with each other or
with the lateral wal ls can be calculated analytically. If,
for example, the coeKcient of normal restitution dep ends
on the partner of the colliding particle, we use e or e for
particle-particle or particle-wall collisions, respectively.
For more details on the collision model see Refs. [20—22]
and Sec. II B 1.
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8. Initial eanditians

We are interested in the situation when a rather com-
pact array of particles begins to fall and progressively
decompacts. We use a box of width I and initially ar-
range K particles with diameter d on a triangular lat-
tice with lattice constant 8 = 1.01d. Each particle gets
a random velocity, uniformly distributed in the range
—vo & v;(0) & t/o in both horizontal and vertical direc-
tion. This rather regular system is now allowed to reach
a steady state, i.e. , we start the simulation at t = —t„,
using e = e = 1 and p = p = 0. A typical average
velocity in our simulations is 6 = g(v2) = 0.05 m/s for
t = 0. Due to the rather low kinetic energy, the array
of particles is still arranged on a triangular lattice, ex-
cept for a few layers at the top which are fluidized [see
Fig. 3(b)]. In a typical simulation, we use I = 20.2d and
% = 1562, so that the array consists of about 80 layers.
At time t = 0 we remove the bottom, switch on dissipa-
tion and friction and let the array decompact. We used
di8'erent initial conditions, keeping all other parameters
Axed and found strong fluctuations in position and shape
of the cracks. However, the cracks are a reproducible ef
feet, almost independent of the initial conditions. When
decreasing the tangential friction p, the cracks vanish
since the pile falls with only weak perturbations from the
lateral walls.
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C. Num. erical results

Density

In Fig. 4 we plot the density, i.e. , the packing fraction
(defined as the ratio of density and close packed den-
sity), along the vertical axis, obtained from experiments
(a) and from simulations (b) for the snapshots shown in
Fig. 3. The comparison between both calculated and ex-
perimental profiles can be considered as fair provided two
unavoidable artifacts are taken into consideration.

(i) The experimentally obtained packing fraction suf-
fers from imperfection due to inhomogeneities in the
lighting of the screen placed behind the experimental
setup and which tends to darken somewhat the upper
and the lower parts of the snapshots, see Fig. 3(a).

(ii) The ED algorithm implies some "arti6cial" thermal
agitation which leads to the fluidization of a few layers
in the top of the pile. The finite kinetic energy in the
system thus leads to a smooth decrease of density at the
top. In ED simulations the pile is not static, i.e. , the
particles are always fluctuating around their positions in
the triangular lattice. Note that this erratic motion is the
only source of Quctuations in the numerical procedure.

Since the comparison between experiments and simu-
lations seems satisfactory, we investigate via simulations
the problem of stress in the pile [20,29] and particularly
the problem of forces the pile exerts on the lateral walls
during the fall.

2. I ressure at the lateral ~calls

From simulations, we get the pressure on the side walls
by integrating the normal component of the momentum

FIG. 4. (a) Experiment: Packing fraction versus height
from a typical experiment. (b) Simulation: Packing fraction
versus the vertical coordinate from the simulations presented
in Fig. 3(b).
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FIG. 5. Plot of the pressure on the side walls as a function
of height, obtained from the numerical simulations of Fig.
3(b). The integration interval is At = 0.01 s and each data
point corresponds to a wall segment about six layers high.

change, Eq. (2), of those particles colliding with the wall
within the time t —At and t. In Fig. 5 we choose At =
0.01 s and plot the pressure as of function of height so
that each data point represents the pressure on a part of
the wall about six layers high. For t = 0.02 s (diamonds)
we still have a rather small pressure, whereas for t = 0.04
s (crosses) the pressure increases over almost one order
of magnitude in the lower part of the pile. As can be
intuitively imagined, the increase in pressure is strongly
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correlated to the occurrence of cracks. During the fall
of the array arches, vaults or, in other words, contact
chains may build up corresponding in our simulations,
to a large number of collisions per unit time and thus
to a great amount of momentum change. These arches
hold the particles above, at least for a short time, and
thus allow a crack to open below. As can be seen in Fig.
5, these arches happen to disappear, after a short while,
thereby allowing the pressure to relax and the falling to
proceed f'urther. At time t = 0.06 s (squares) we observe
cracks also in the upper part of the pile, again connected
to strong pressure. For even longer times, t = 0.08 s
(x symbols) the particles are already too dilute near the
walls, such that contact chains are not longer probable.

III. THEORY AND RESULTS

P(h) = 1 —exp
ppgL
2K@~

(h —hp) (3)

where pp is the linear density of the granulate, p is the
coefFicient of &iction for particle-wall contacts, and K
is the dimensionless parameter which characterizes the
conversion of vertical into horizontal stress due to the
imbricated nature of the granulate, for details see Ref.
[»l.

Equation (3) simply states the fact that the stress in
the material depends linearly on the depth in the up-
per part of the pile, i.e. , P(hp —h) = ppgh for small h,
while it tends to saturate to P = ppgL/(2K' ) in
the lower part of the granulate. This equation can also
be interpreted as describing an arching effect which tends
to reduce exponentially the downward propagation of a
vertical stress with a characteristic length ( = L/(2K@ )
which we call the vault range. As in Sec. IIC2, vaults
or arches are chains of contacts which possibly span the
space between the lateral boundaries. In the following,
we will show that this peculiar stress distribution [see Eq.
(3)], which relies on a basic and rather simplistic descrip-
tion of the sandpile, implies a number of consequences
concerning the experiment of a falling pile.

In view of the experimental and simulational results
obtained under different conditions, and also in the spirit
of our preceding work on vibrational progressive decom-
paction [17], we set up a model which allows us to un-
derstand several of the observed features as well as sug-
gesting a further test proving the pertinence of the model
which aims at describing the inHuence of the lateral bead-
wall friction, p, , and of the shape factor K of the 2D
pile.

We recall here our basic model [17] for a two dimen-
sional array of granular material of width L and height
hp. The height h is measured starting from the lowest row
of the rectangular pile. This two dimensional granulate
is allowed to fall between two infinite vertical walls which
interact with the granular material via a Coulomb fric-
tion. Using arguments previously put forward by Janssen
[30] and revisited later by Lord Rayleigh [31], we get an
equation for the vertical and downward force P(h) acting
on a slice dm of material at height 6:

A. How does a compact pile fall?

During its fall, each slice dm of the compact rectangu-
lar sandpile is submitted to the conjugate action of both
the downward force gdm corresponding to its weight and
to a vertical, upward frictional force at the boundaries,

dI—'f„,,q Th. e acceleration p(h) acting upon this slice of
material can be written in terms of a reduced acceleration

&(h) = gF (h) = g— (4)

The second term in Eq. (4) can be found in the derivation
of Eq. (3), (see Ref. [17]):

+f 7i Ct

[9m

P (h) (h —hp i=g 1 —exp
/ ) (5)

It is noteworthy that we consider here the simplest
version of the classic Coulomb deHnition of the static
friction coefIicient. Strictly speaking, the above equation
(5) is true at the very moment of the beginning of the
downward motion, i.e. , in the static case. For the sake
of simplicity, we will consider in the following that the
dynamic coefFicient of friction will not depend on velocity
and remains identical to the static one. Inserting Eq. (5)
into Eq. (4) we find that the slice of material at vertical
coordinate 6 is submitted to a reduced acceleration:

F (h) = exp
fh —hp)r' h e [o, hp]. (6)

We first address the basic question to know whether
this model implies that the pile would remain compact
during the fall or, in contrast, would break into pieces
during the downward motion.

Equation (6) shows that the reduced acceleration is
increasing with height h, so that the lower part of the
pile is less accelerated than the upper part. This results
in a tendency of the pile to remain compact unless any
parameter or condition changes during the fall. Such
changes may be fIuctuations in the particle-wall coefIi-
cient of friction, in the piling geometry, or in the surface
of the lateral walls. Supposing that the pile is compact
and homogeneous, its overall reduced acceleration I'p will
be determined by the lowest slice of the pile, so that we
deduce from Eq. ( 6):

hp)I'p ——exp
~

——
~

= exp( —SpKp ),
&r

(7)

where the aspect ratio of the pile is Sp ——hp/L.
In order to test this prediction, we performed several

experiments, using different Sp values, and we measured
the position of the uppermost layer of the pile, i.e. , hp(t),
as a function of time. These experimental results are
gathered in Fig. 6 (squares) and compared to the results
of our theoretical model (solid lines) using only a 8in-
gle adjustable parameter Kp . This parameter has been
measured repeatedly under different experimental condi-
tions in our preceding work [17],where we used the same
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origin of the cracks.
In this section we have shown that the piles behave

according to the predictions of the continuous model, as
long as no cracks occur. In the following section we will
discuss the stability and the position of cracks in the pile.

B. Where do the cracks appear in the falling pileY

100 150

time (ms)

200

FIG. 6. Plot of the successive positions of the top of the
falling piles as function of time. The solid lines represent a fit
of the continuum model with Kp = 0.12 to the experimental
measurements (squares). The arrows indicate the time when
some cracks appear in the bulk. Note that the 130 mm high
pile fell down without showing any visible crack.

aluminum beads and the same material (plexiglass) for
the lateral walls. In Ref. [17] the Kp, values range from
0.11 to 0.29 and were reported to depend on the specific
properties of the particles (e.g. , wear of the bead sur-
faces) and the walls. We find that the whole set of data
in Fig. 6, obtained in the same container with difkrent
heights ho of the granulate, can be fitted with the value
Kp, =0.12, according to Eq. (7). As can be observed in
Fig. 6, the agreement is satisfactory, at least during the
time the pile has stayed compact during the fall. As soon
as a crack occurs in the array, we observe, as expected,
that the top layer of the pile accelerates more strongly, in
agreement with the model, which states that the acceler-
ation increases when the height of the pile decreases. The
occurrence of visible cracks is indicated by arrows in Fig.
6, which also mark the departure from the theoretical
model.

As a proof and using nearly perfectly machined lat-
eral walls, we observe that the whole pile falls at a re-
duced acceleration without showing any cracks, i.e. , it
stays compact; see the 130 mm pile in Fig. 6. In order to
examine this eÃect, and as mentioned above (Sec. II A),
we use a set of difFerently prepared lateral walls. Both
optically polished and slightly roughened surfaces lead to
the same coefBcient of friction, p =0.6. For measuring
p, we glued three of our aluminum beads on a disk and
get the coe%cient of friction by tilting a plate of the wall
material, until the disk on top starts to slide. We infer

p from the angle of this event. The optically polished
walls often do not lead to cracks during the fall. In con-
trast, poorly polished lateral walls almost always induce
cracks starting from the bottom of the pile and ascend-
ing in the pile as it proceeds to fall. The loss of optical
quality of the surface is connected to heterogeneities of
at least 10 m size. From this result we infer that fluc-
tuations on the surfaces of the lateral wa/ls induce the
cracks. Homogeneous Coulomb friction alone seems to
be insuKcient to cause the cracks. An additional experi-
ment with a thin strip engraved in the lateral wall leads
to cracks starting from this point and thus proves un-
ambiguously that discontinuities at the wall are at the

Now, we assume that a crack occurs accidentally in
the pile during the downward motion. This may be due
to some heterogeneity in the lateral wall friction, or spon-
taneously created by shocks and collisions. In any case,
we realize that such cracks split the pile into two uncon-
nected parts. As a consequence, Eq. (7) may not hold
true any more. Now we raise the question of the stability
of such an accidental crack. In order to investigate the
stability of such a crack and to stay within the limits of
our continuum model, we imagine that a horizontal crack
occurs during the fall at a vertical coordinate h, g in the
rectangular array. Considering that this accidental crack
lasts long enough to allow the system to reset its internal
distribution of stress, we get from Eq. (6) the reduced
accelerations of the two resulting rectangular subpiles A
(for above) and R (for below):

I~ =exp
I'~ ——exp

which holds true when hg lies in the interval [0, ho]. It
turns out immediately that the condition for getting a
crack which will increase in size during the fall, reads as
I'~ & I'~, otherwise the crack would be unstable and
would tend to reduce as the time passes. This leads to
the elementary condition: h~ ( ho/2, for the stability
of a crack occurring in the pile. Thus our model pre-
dicts that stable cracks occur only in the tower half of the
rectangular array.

This peculiar feature can be noticed both on experi-
mental observations and on the computer simulation re-
sults; see Fig. 3. The cracks start from the bottom of
the pile and occur at larger heights only for long times.
This concerns also the stability of the cracks occurring in
the upper part of the 2D pile during the fall. As stated
in our model, these cracks would tend to reduce as the
time passes. In Fig. 3(b) at t = 0.04 s we observe at
the top two small cracks, which are vanished again at t
= 0.06 s. The same feature can be also be observed in
experimentally obtained snaphots.

Cracks opening in the lower part of the pile do increase
in size during the fall, thereby directly confirming our
friction-based model. Two subpiles will separate faster if
the crack occurs lower in the initial pile. This provides a
simple explanation to the experimental fact that a tube
filled with sand, and being turned upside down, will dis-
play a progressive decompaction of the pile starting from
the lowest part. The upper part of the pile stays compact
while the sand falls down like rain in the lower part.

Now we derive a general conservation law which links
the reduced accelerations I'; of all subpiles due to dis-
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continuous decompaction. From Eq. (8) we first observe

that I'~I'~ ——exp —"&' ——I'0, which can be easily it-
erated all along the decompaction process. Due to mass
conservation which, in this problem, reads as P,. h; = ho
the conservation law for the reduced accelerations of all
the subpiles of the pile can be written as

( heiI'; = I'o ——exp
~

——

which stands for a rather unusual conservation law which,
as far as we know, has no equivalent in other fields of
physics.

Thus, the present model implies that the cracks will
split the pile below the midheight and, preferentially, be-
gin from the lowest rows of the pile. This prediction is
confirmed by both experiments and simulations.

IV. SUMMARY AND DISCUSSION

We presented experiments and simulations on a 2D
granular system, falling inside a vertical and rectangular
container. We observe no steady regime for the falling dy-
namics: the granular assembly decompacts progressively
and accelerates down. Looking in detail at the geometri-
cal patterns formed by the grains, we observe either a dis-
continuous decompaction or a continuous one. The dis-
continuous decompaction is the result of cracks breaking
the array into pieces from the bottom to the top. Both
experiments and simulations verify two basic predictions
deduced. from a continuum theory based on a dynamic
extension of Janssen's vault model [30]. First, as long as
no cracks occur, the theory predicts the acceleration of
the top of the pile as a function of the aspect ratio: for
increasing height, the acceleration of the top decreases.
Second, if some crack occurs, it is stable only in the lower
half of the pile and both blocks, hence detached, will fall
with a larger acceleration and will separate further. Ex-
periments show that cracks rarely show up whenever the
lateral walls are optically polished; cracks always appear
for a surface roughness larger than typically 10 m. On
the other hand, in simulations, the surface is perfectly
Hat. Nevertheless, cracks are always observed. for coeffi-
cients of friction close to the experimental value. As men-
tioned in Sec.IIB 2, the ED algorithm requires the use of
a nonzero thermal agitation in order to provide dynami-
cal interactions by collisions. This eventually introduces
fluctuations in the system that may cause cracks, even

when the coefFicient of friction is constant and the wall
is flat. In order to test whether cracks are primarily in-
duced by external fluctuations such as heterogeneities at
the lateral walls, we suggest a comparison with molecu-
lar dynamics calculations, which do not explicitly require
an internal noise. Moreover, the simulations have shown
(Sec. II C 2) another important feature: strong pressure
fluctuations are connected to the occurrence of arches
and cracks and thus are propagating upwards.

It is noteworthy to point out that the discontinuous
decompaction, presented here, is by no means in contra-
diction with the recently described progressive decom-
paction [17].As a matter of fact, the progressive decom-
paction model refers to observations made over large pe-
riods of time. In other words, progressive decompaction
stands for an observation, over a large number of suc-
cessive perturbations, and of the superposition of a large
number of discontinuous decompaction processes.

As expected, we observe that the process of falling
down is equivalent to the upward motion of a pile in a
continuously vibrated box as illustrated in Fig. 1. Com-
paring Figs. 1 and 3 we see that the cracks, originated
by the side walls, are oriented to oppose to the motion
of the particles relatively to the lateral walls. The cracks
are approximately following the geometry of the trian-
gular network such that they occur mainly at angles of
30' relative to the walls. Note that we also observe a
weak proportion of cracks with other angles, see Fig.
3(b). Thinking in terms of arches or vaults leaning on
the lateral walls, we note that the inverse V-shape of the
contact chains is consistent with the natural shape of
stable arches in a triangular network. This is reminiscent
of the concept of "free fall arches" [32], which sustain
a plug of granulate above freely falling particles. Along
this line, we may tentatively extrapolate our results to
3D situations by conjecturing that a similar discontinu-
ous decompaction process might occur via the successive
formation and destruction of arches. As far as we know,
the existence of cracks in monodisperse 3D as well as in
polydisperse systems has not been reported so far.
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