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Schwinger variational principle calculations of wave scattering from conducting cylinders
using physically motivated trial functions

B.J. Stoyanov and R. A. Farrell
The Johns Hopkins University Applied Physics Laboratory, Johns Hopkins Road, Laurel, Maryland 20723-6099

(Received 20 June 1995; revised manuscript received 30 August 1995)

The Schwinger variational principle for the scattering amplitude is applied to two related test prob-
lems: an infinitely long perfectly conducting circular cylinder and a hemicylindrically embossed plane il-

luminated by a normally incident plane wave whose magnetic field is perpendicular to the cylinder axis
(TM polarization). It is demonstrated that the variational principle yields very good results with trial
functions containing only a few variational parameters, provided the trial functions mimic not only the
correct boundary conditions on the scatterer surface but also the expected shadowing effects of the obs-

tacle. A variety of analytical variational limits for both low and high frequencies are derived, which, to-

gether with the numerical results for intermediate frequencies, compare very favorably with the avail-

able exact solutions.

PACS number(s): 42.25.Fx, 02.30.Wd, 03.50.De, 03.80.+ r

I. INTRODUCTION

In this paper, Schwinger s variational principle ([1—5]
and pp. 1135 and 1545 of [6]) is used for plane-wave
scattering from a circular cylinder and a (intimately relat-
ed via the image principle [7—10]) hemicylindrically em-
bossed plane. Applications of variational principles to
virtually all kinds of problems usually lead to formidable
calculations unless relatively simple expressions are uti-
lized for trial functions [11]. Two somewhat difFerent ap-
proaches ([12] and p. 38 of [13])are available for design-
ing trial functions, which lead to solutions satisfying the
reciprocity theorem (p. 1131 of [6]). One approach is to
represent the trial function by a linear set of basis func-
tions and obtain the coefficients of this representation by
solving the simultaneous linear equations that result from
the stationary property of the scattering amplitude. The
other approach consists of choosing an approximation for
the field, which is physically plausible and mathematical-
ly simple, and inserting it directly into the variational ex-
pression.

With systematic methods for generating and appraising
trial functions being still beyond our reach, we are led to
seek trial functions which are simple and plausible rather
than formal and rigorous [14]. Our procedure [15—17] is
based on gaining physical insight into scattering prob-
lems for limit cases, such as very small and very large size
parameters ka (product of a characteristic size of the
scatterer "a" and the wave number k =2~/A. , where A. is
the incident wavelength), and then to incorporate the
essential physics into the trial functions This approach
can be considered as an extension of the Levine-
Schwinger method [2—5] in which the variational formu-
lation with two different approximations for the current-
one in the low-frequency range and another in the high-
frequency range —was used to obtain rather good results
for the entire frequency range. In our approach, a single
universal trial function capable of correctly reproducing
both the small and large ka limits is used for the entire

frequency range.
More specifically, starting with the classic Born ap-

proximation (i.e., just the incident-wave field), we
developed trial functions which not only are able to satis-
fy the correct boundary conditions that are known to
play a key role at low and moderate frequencies [18],but
are also able to approximate the basic shadowing require-
ments that become crucial at high frequencies (p. 1551 of
[6]). One of the two adjustable parameters in the trial
functions is determined by a stationary condition, while
an asymptotic analysis is employed to fix the shadow-
regulating parameter such that the correct large ka limit
obtains for the variational forward (or specular) scatter-
ing amplitude. The adjoint trial function (pp. 1109 and
1131 of [6]), also required in the variational principle, is
formulated via reciprocity which, though not mandated,
is physically highly desirable because the exact field is re-
ciprocal. In the following sections, a thorough investiga-
tion, using analytic asymptotic analyses and numerical
techniques, is described for both the exact and variational
results. It is demonstrated that the agreement is general-
ly (with the exception of very rarely occurring anomalous
spikes) within a few percent for all frequencies and arbi-
trary scattering configurations.

Although this study is concentrated on the transverse-
magnetic (TM) scattering by an infinite cylinder and a
hemicylindrically embossed plane, the approach itself is
by no means limited to these particular scatterers, bound-
ary condition or polarization. Thus, using similar trial
fields, good accuracy was obtained for scattering from an
acoustically soft (Dirichlet) sphere [15] and spheriod [16],
as well as for impedance cylinders. In addition, it has
been demonstrated that to obtain similar accuracy for
scatterers with Neumann's boundary condition (or
transverse-electric (TE) polarization), creeping-wave
eFects (p. 101 of [13],p. 367 of [19],and p. 217 of [20])
have to be included into the trial functions. A brief re-
view of these and other developments, as well as addition-
al references, can be found in [17].
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II. EXACT TM SOLUTIONS

Originally considered by Rayleigh [7], the problem of
plane-wave scattering from a hemicylindrical emboss-
ment of radius "a" on an infinite perfectly conducting
plane is depicted (in cross section) in Fig. 1(a). Only nor-
mal incidence is considered, and therefore the propaga-
tion vectors of both the incident and scattered waves, re-
spectively, k, ,k„ lie in a plane perpendicular to the herni-
cylinder axis. It is well known ([8,9] and p. 90 of [13])
that, for a perfect conductor, scattering at oblique in-
cidence can be readily deduced from the normal-
incidence solutions. The incident (0, ) and scattering (0, )

angles are measured from the positive x axis with coun-
terclockwise rotations being positive. With this conven-
tion, the incident angle will be negative, so that—vr ~ 0; ~ 0, while scattering angles are restricted to
0~ 0, ~ ~. The range of incident angles will be restricted
to vr/2&0; —&0, since the results for angles between

rr & 0; —& vr/2 are r—eadily obtained from the symmetry
of the problem. According to the Rayleigh-Twersky im-
age principle [7—10], this model is physically equivalent
to a complete (isolated) cylinder illuminated by two plane

waves —the original incident wave and its image incident
from below the (removed) base plane [see Fig. 1(b)].
Hence, the desired solution to this problem can be ex-
pressed in terms of the two complete-cylinder solutions
with the angular dependence P, =0, —0, and P2 =0, +0, ,
respectively; here Pi or Pz is the angle between the
scattered-wave vector A;, and, respectively, the incident-
wave vector k,- or its image k„. That is, the field scattered
from the hemicylindrical embossment on the infinite
plane is obtained by the superposition of the fields scat-
tered by the full cylinder, due to the original incident
wave and its image.

For a TM-polarized plane wave of unit amplitude in-
cident at an angle 0, the total (incident plus scattered)
scalar-wave function %' represents the z component of the
electric field at the point (p, 0, ). From the image princi-

ple and the Dirichlet boundary condition it follows that if
P is an isolated-cylinder wave function then

'p(P 0 0 ) 0(P 0i) WP 0'2)

and likewise for the scattering amplitudes

(lb)

where

p, :—0, —0;, p2:—0, +0; . (lc)

The isolated cylinder scattering amplitude is given by
[8,9]

(2a)

with

m =1)2). . . (2b)

Y

ks) p

Here P is the angle between the incident- and scattered-
wave vectors, while J and H"' are, respectively, Bessel
and Hankel functions of the first kind of order m (p. 358
of [21]). The time dependence e '"' is suppressed
throughout and, as a rule, also suppressed are all units
since our final concern is only with certain dimensionless
ratios in free space.

For a subsequent comparison with the variational re-
sults, the small and large ka limits of the exact results are
given next. When the frequency is sufficiently low or the
radius of the cylinder is sufficiently small, so that the size
parameter ka « 1, Eq. (2a) is approximated by

t ( P ) ~ —1/Co —(i ~/2 )( ka ) cosf,
ka «1

where Co—= 1+(2i/rr)ln(I ka/2) with
=0.577 21. . . being Euler's constant. Also

T(0„0;) ~ —im(ka) sin0, sin0; .
ka « I

(3a)

lnI =y

(3b)

FIG. 1. Schematic representation of plane-wave scattering by
a hemicylindrical embossment on a perfectly conducting plane
is shown in (a). Its physical equivalent according to the image
principle is depicted in (b}.

t (P ) —+ —
—,
' cot sin( ka sing ) .

ka &)1 2
(4a)

In the other limit, when ka ))1, (2a) is given by [8—10]
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(cotg;)sin(ka sin2g;)
T(g, ) ~ ka 1—

ka ))1 2ka
(4b)

The first term in (4b), being the shadow-forming term
arising from the image wave, is the largest. The second
term represents the shadow-forming term of the incident
wave and is negligible except near grazing incidence
ka sin20; —+0, where it cancels the first term.

This expression represents the shadow-forming part (pp.
1381 and 1551 of [6]) of the scattering amplitude, which
in the forward direction (/=0) has a very high "peak"
yielding t ~ —ka for ka sing ~0 ( ka )) 1 ). The corre-
sponding large ka limit for the hemicylinder scattering
then follows directly from (4a) and (lb). Thus, for specu-
lar scattering when g, = —g; and P i

= —2g;, Pz =0, so
that the observer would be in the forward direction of the
image wave in the equivalent full cylinder problem [Fig.
1(b)], we get [8,9]

The normalized differential cross section is defined as
(cf. p. 207 of [20])

~t~ /(ka) forward or specular
0 =

(t~ (4/parka ) otherwise (5)

III. VARIATIONAI. FORMULATION

The standard procedure ([2—5], and pp. 1135 and 1545
of [6]) leads to the following variational expression for
the (complex) scattering amplitude:

T =NN/D, (6a)

where, in the usual polar coordinates and with—m/2~g, ~0, 0~ g, ~~,

for the cylinder and likewise for the hemicylinder with T
substituted for t. The normalization is chosen such that
o.~1 for forward scattering and backscattering when
ka~~.

)g m, —ika cos(9' —0, )dO' e e
8 o

—ika cos(0'+0, ) QQ(p', g )

Bp p'=a

ia 2n ika cos(e —8,. ) ika cos(S+(t,. ) QQ(p, g)dO e e
8 0"

Bp
I

2

16 0 o gp

p=a
(6c)

(6d)

Here, as in the preceding section [cf. 1(a)], tli represents
the total (incident plus scattered) field, i.e., tli= E, is the-
electric field component along the hemicylinder axis z,
and z XV%' yields the remaining transverse field com-
ponents. Also, 4 represents the adjoint field, i.e., the
solution of the reciprocal problem in which the source
and observer are interchanged (p. 1135 of [6]). The ad-
joint trial fields are chosen such that

@tttsl( g. g ) @tnsl( i gi. g (7)

in order to have the variational solution satisfy reciproci-
ty.

The fiat-plane scalar Careen's function G in (6d) can be
expressed in terms of free-space two-dimensional Green's
functions (p. 813 of [6]). If the correct field tIi (and,
hence, 4') on the scatterer surface is used in (6), each of
the integrals N, N, and D, as well as their ratio (6a), will
yield the correct scattering amplitude. However, in gen-
eral, such correct surface fields are not known, which
necessitates the use of approximations for (li (and its ad-
joint) on the scatterer surface to obtain an approximate
variational scattering amplitude T .

IV. BOUNDARY-BORN TRIAL FIELDS

Following the approach outlined in the Introduction,
we start with the Rayleigh limit (ka~0). A simple
choice could be to employ the classic Born approxima-
tion (p. 1073 of [6]) in which the incident plane wave (in-
cluding its image for the hemicylinder) is substituted for
the trial field into the integrals. It turns out, however,
that the resulting variational scattering amplitude for the
cylinder problem t is incorrect even in the limit ka —+0.
Both the ka and angular dependencies are wrong in this
limit [10]. On the other hand, for the hemicylinder the
Born trial field provides the correct T in this limit [10].
To understand these results, we recall (p. 1382 of [6]) that
Dirichlet s boundary condition, which requires the
tangential electric field to vanish on the scattering sur-
face, affects the wave no matter how small the radius a is
compared to the incident wavelength. Obviously, the in-
cident plane wave, by itself, cannot fit the Dirichlet
boundary condition at the surface of the cylinder even in
the Rayleigh limit ka —+0. However, for the hemi-
cylinder scattering problem the corresponding Born ap-
proximation consists of the incident plane wave and its
image whose sum can easily be shown to satisfy
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(p', 8';8; )=g (p', y', ) g—(p', y,'),
where the entire-cylinder trial fields are given by

EBB( I I
)

ikp'cosy' p ( k i
)

ika cosy'

with [cf. (lc)]

y', —=0' —0;, (p2
——0'+0; .

(Sa)

(8b)

(Sc)

The arbitrary function f (kp') enables the above trial
fields (which we have called "boundary-Born" for obvi-
ous reasons) to satisfy Dirichlet's boundary condition

Dirichlet's condition for ka —+0.
Noting that the variational principle (6) for T in-

volves the value of 8%'/Bp' (and its adjoint) on the surface
only, we need trial functions that approximate 8+/Bp' on
the surface p'=a but are quite arbitrary elsewhere. With
this understanding, the classic Born-type trial fields have
been amended [17] by an additional term (and iss iiiLage
for the hemicylinder), to get

with the prime indicating that the Bessel function is
differentiated with respect to its argument. Here, as in
Sec. II, the angles P, and Pi are given by (lc), while

and

a =a(P ) —=2ka sin(P/2), (13a)

1 af(kp)
k Bp p'=0

—=f'(ka) . (13b)

The adjoint n is given by (12a) with A replaced by A, so
that n = n and N =N provided A = A. According to (11),
an additive image relation like (lb) holds for N and D;
however, this is not generally the case for the variational
amplitude itself, i.e., T At (Pi) —t (Pz), where
t An Id. The normalized cross sections cr are found
from (5) with t and T substituted for t.

For the isolated-cylinder scattering, the as-yet arbi-
trary function A is treated as a variational parameter be-
ing determined through the stationary condition

f(a, 8') =0,
'dt IBA =0 . (14a)

on the cylinder surface for all values of ka, provided
f (ka) =1. The original Born-type trial fields, whose
salient simplicity is largely retained in the boundary-Born
trial fields, can be recovered from (8) by letting
f (kp')=0. The quantity that enters the invariant ex-
pression for the scattering amplitude is 0+/Bp' so that it
will not be necessary to specify f (ka), but only BfIdp' at
p'=a. Note also that the surface current density induced
by the incident plane wave and its image at the point
(a, 8') on the hemicylinder is given by (p. 37 of [20])

IC(a, 8') =— z W (p', 8')
Bp p'=a l COPO

4'(a, 8'),

where po is the permeability of free space.
Inserting the boundary-Born trial fields (8) and their

adjoints obtained according to the prescription (7) into
(6), and using Graf's addition theorem (p. 363 of [21]) at
the surface of the cylinder in order to reduce the double
integral in (6d) to a sum of products of two single in-
tegrals, we get

N =n (P, ) —n(Pz) (1 la)

D =d(pi) —d($2),
again in terms of the appropriate cylinder quantities:

(1 lb)

n (P)=ka(iver/2) sin+Ji(a)+ Jo(a)A (12a)

and

d(P)=k a (~ /4) g c, cos(mg)J (ka)H"'(ka)
m=0

X[J' (ka) —J (ka)A]

X [J' (ka) —J (ka) A ], (12b)

Generally, the variational parameter 3 depends not only
on ka but also on the angle P between the incident- and
scattered-wave vectors. Therefore, the stationary-
evaluated A'"'(P, ) and A' '($2) for the two entire-
cylinder solutions will be different. Furthermore, the sta-
tionary A "' (8;,8, ) for the original hemicylinder prob-
lem can alternatively be deduced from

"r)T /BA =0, (14b)

with T given by (6a), and with A in (11)—(13) considered
as a variational parameter. In general, A"' (8, , 8, ) will
be di8'erent from A' '(P, ) and A'"'(P2), which will lead
to different T values for the same ka, 0,-, and 0, . For
the hemicylinder problem, we found it advantageous to
treat A in (12) as the variational parameter whose sta-
tionary values are determined according to (14b). It fol-
lows from (14b) and its adjoint [and likewise from (14a)]
that A = A, so that N =N (and n =n)

A straightforward analytic analysis of expressions (12)
for ka «1 shows that the agreement of t and T with
the exact results holds through the higher-order terms
than those given in (3). The variationally improved clas-
sic Born approximations for t and T, discussed at the
beginning of this section, are recovered from the above
formulas by setting 3:—0.

As the above analysis demonstrates, the boundary-
Born trial functions are a significant improvement over
the classic Born trial functions in that they produce the
correct Rayleigh limits even for the entire-cylinder
scattering amplitudes and cross sections for arbitrary in-
cident and scattering directions. Moreover, by virtue of
the variationally adjusted parameters 3, the boundary-
Born results, being extremely accurate for ka ~ 1 (due to
the correct higher-order terms beyond the lead ones), are
reasonably accurate for moderate size parameters as well,
as Figs. 2(a) and 3(c) illustrate for the cylinder forward
(P =0) and hemicylinder specular scattering at normal in-
cidence, 0, = —0; =90 . These results should be contrast-
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variationally determined parameters 3, may lead to in-
correct asymptotic (ka »1) limits of variational results
for these directions. Indeed, this inference is confirmed
by an asymptotic analysis of the integrals in (6) with the
trial fields defined in (8), using the results of [22].
Specifically, up to the leading terms in 1/ka, the
isolated-cylinder TM-scattering amplitude for forward
direction is

2

t '(y =0) —ka,
~r +4ln(32I ka )

—i2ir
(15)

thus yielding t /ka ~0 logarithmically as ka —+ ~, while
according to (4a) the exact t (/ =0)~—ka in this limit.

Thus, while the correct asymptotic (ka )) 1) limits for
forward scattering are t ~ —ka and 0.—+ jI, the variation-
al t /ka and, hence, cr vanish logarithmically as
ka~~. Also, the same (except for the sign) leading
terms hold, in the limit ka —+ ~, for the hemicylinder am-
plitudes in specular directions, as they should, because
the observer in this case would be in the forward direc-
tion of the image wave in the equivalent full-cylinder
problem, with contributions from the primary incident
wave being of smaller orders in ka, cf. (4a) and (4b).
Therefore, in Sec. V while further examining the above
discrepancies in the asymptotic behavior of the
boundary-Born variational solutions, it will be sufficient
to explicitly consider analytical details only for the prob-
lem of isolated-cylinder scattering, with the extensions
needed for the hemicylinder problem merely indicated.

n =ka (iver/2) . sin+ Ji(a)+i—[Jo(a)+cospJ2(a)]

+ A Jo(a) —iPsin+J, (a) (19a)

d=k a (vr /4) g E cosmPJ H [J' +i/3J"
m=0

—A(J +iPJ' )]

(19b)

which has the wrong angular dependence.
Therefore, to approximate the shadowing eftects in our

trial field, we premultiply the original boundary-Born tri-
al function i/ of (8b) by a simple shadow-imitating fac-
tor, thus obtaining

(p', p')=(I —pcosp')[e'" "'p f (/ I) ikocos+
]

(18)

and that for the hemicylinder follows from an additive
image relation like (8a). An arbitrary (positive) parame-
ter P is assumed to be independent of p' and y'.

With these shadowed-boundary-Born trial fields, and
their adjoints obtained according to (7), the variational
integrals in (6) lead to the same relations (11),where now,
however,

V. BOUNDARY-BORN TRIAL FIELDS
WITH SHADOWING

2K '"' illuminated

0 shadowed, (16a)

where according to the definition (10),

K '"'—:—z(k cosy'/copo)e' '"'r (16b)

The boundary-Born trial field i/ of (Sb) does not comply
with this physical-optics pattern because it yields

K
ka~ oo

~ 1IlC

'rr cos+
(17)

The manifestly wrong asymptotic (ka ))1) behavior of
t (or T ) at forward (or specular) scattering indicates
that the boundary-Born trial function i/j of (Sb) is lack-
ing a significant feature which should be important for
this scattering direction at large ka. According to the
asymptotic expressions (4), the correct asymptotic value
of the scattering amplitude for forward (or specular)
scattering is due primarily to the shadow-forming wave
(or its image) which produces shadowing eff'ects through
interference (pp. 1381 and 1551 of [6]) with the incident
plane wave (or its image). This is by virtue of the pecu-
liar distribution of the surface-current density K for
ka ))1, which approaches (p. 29 of [13], and p. 51 of
[20]) twice that of the incident-wave (i.e., geometric-
optics) surface current in the illuminated region, but
tends to zero in the shadowed region, viz. ,

with the Bessel functions of argument ka understood in
the last equation; other relevant quantities being the same
as in (13). When p=0 these expressions reduce to those
obtained with the original boundary-Born trial fields
without shadowing.

For forward scattering /=0, an asymptotic (ka ))1)
analysis of the variational integrals in (6), with the trial
field (18), yields up to the leading term

2 2

t (P =0) —ka
2(4P +~P—2)

(20)

For other scattering directions asymptotic contributions
to t are of higher orders in reciprocal powers of ka.
Therefore (20), taken with the opposite overall sign,
represents also the lead-term contributions to the
hemicylinder-embossment scattering amplitude T for
specular configurations when ka —+ oo.

The as-yet arbitrary parameter p is now adjusted so
that the correct large ka limit as obtained for t, i.e.,
t (/=0)~ —ka as ka ~ ~. This stipulation requires

P= (ir —+32—3' )/(vr 8)=0.853. . . , — (21)

the other root (P=2.507. . . ) being discarded as physical-
ly inappropriate. It might seem that choosing P in this
way restricts the applicability of this procedure to prob-
lems where the exact solution is known; however, all that
is actually needed is the large ka limit of the exact solu-
tion for forward scattering, which can be obtained from
the Kirchhoff (physical-optics) approximation.

The surface-current distribution resulting from (18)
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and (21) has certain qualitative features that one expects
from physical optics. According to (10), the surface-
current density at very large size parameters is

IC -+ (1—P cosy')K '"',
ka~ oo

(22)

with the shadow-imitating factor varying from about 0.15
for y'=0 to 1.85 for g'=~. Thus, the simple shadowing
introduced in (18) leads to an approximate agreement
with distribution (16), but is physically more plausible
(particularly for small and moderate ka's) than the famil-
iar geometric shadowing in the Kirchhoff approximation
used in the earlier variational work [23,24]. Cseometric
shadowing becomes valid only in the limit ka —+ ~, and
sometimes leads to variational divergencies [25] due to
the current discontinuity at the shadow boundary.

The corresponding small ka limit of the variational
scattering amplitude is now approximated by the leading
term as

t ~ — Co- l

ka ~0 . 277

P'cos2$

2P —P 8+ ~ +8
cosP

(23)

Due to the presence of the p-dependent term, the agree-
ment with the correct limit (3a) is now not as good as it
was with the original boundary-Born trial function. Still,
the leading term in (23) is correct, so the agreement im-
proves as ka~0, independently of p and p. Also, the
correct small ka limit, (3b), obtains for T, as can be
verified using (11) and the series expansions for n and d of
(19).

Thus, the boundary-Born trial fields with the properly
adjusted shadowing ensure the correct small and large ka
limits of the forward and/or specular scattering ampli-
tudes. The corresponding normalized cross sections for
the cylinder forward scattering and hemicylindrical-
embossment specular scattering at normal incidence are
shown in Figs. 2(b) and 3(d), respectively. The variation-
al and exact results are very close for ka ~ 1 and are in
excellent agreement for large size parameters, where a
slight error of less than 2% will eventually disappear
since the correct leading terms are guaranteed for both
ka~O and ka~ oo. The largest error (of about 5%)
occurs, for the hemicylinder scattering, in the intermedi-
ate region at ka —=4. 8; outside of this region the error is
generally much less than that. To some extent, this could
be anticipated since the main physical features, such as
the boundary conditions and shadowing, have been prop-
erly, even if approximately, incorporated into our trial
fields. Besides, the next order effects, like creeping-wave
contributions (p. 101 of [13], and p. 217 of [20]), are nu-
merically insignificant for TM scattering (p. 371 of [19]),
as is apparent from the absence of any highly developed
oscillatory structure in the exact cross section for the
cylinder backscatter.

It is especially gratifying to have such accurate varia-

with the scattering amplitude represented by (2a). For
the variational solution, it then follows from (23) that, up
to the dominant term,

2

aa 0 k (lnka)
(25)

which agrees with the exact result and coincides with o.
obtained through (5), since it is angular independent to
this order. On the other hand, from (20) and (21), we get

V 4a,
ka —+ oo

(26)

which correctly represents the high-frequency lead term
of the total cross section and is just twice the geometrical
width of the cylinder, as it should be (p. 1381 of [6]).

Up to this point our analysis was mainly concentrated
on the forward and/or specular scattering. We turn now
to scattering at an arbitrary angle and to backscatter in
particular, since this is of prime interest in monostatic ra-
dar measurements (p. 9 of [20]). As the foregoing
analysis demonstrated, the original boundary-Born trial
functions (without shadowing) provide excellent results
for ka ~ 1 for both cylinder and hemicylinder scattering.
For moderate and large size parameters they yield back-
scatter cross sections that have correct average behavior,
but are heavily contaminated by narrow-band spurious
spikes beginning with ka somewhat larger than 1, as illus-
trated in Figs. 4(c) and 5(c). Again, these results are a
marked improvement on the corresponding Born and
Born-variational approximations shown in Figs. 4(a), 5(a),
and 4(b), 5(b), respectively.

It should also be noted that the forward-scattering
cross section for an isolated cylinder obtained using the
original boundary-Born trial function (8b) exhibits broad
wiggles of relatively small amplitudes when ka ) 1. As
ka increases, these anomalous wiggles become narrower
and smaller, eventually turning into the ripple. The extra
factor of ka in the normalization (5) for this direction
reduces the apparent amplitude of the wiggles [see Fig.
2(a)]. Anomalous features in the hemicylinder specular
cross section [Fig. 3(c)] arise from both the forward
($2=0) and backward (P& =180') cylinder constituents,
but contributions from the latter constituent, in addition
to being suppressed by the normalization, are of higher
order in inverse powers of ka for ka ))1.

For backseat ter, the shadowed-boundary-Born trial
field (18) with p fixed by (21) yields variational results
that are very accurate at all frequencies, as Figs. 4(d) and
5(d) illustrate for both the cylinder and hemicylinder
scattering, respectively. For an arbitrary scattering angle

tional results (for all size parameters) for forward and/or
specular directions in view of the so-called optical
theorem [2—5,23] which relates the total scattering cross
section to the forward and/or specular scattering ampli-
tudes. This allows one to easily find the total cross sec-
tion without carrying out the angular integration which
may be quite tedious. For example, for cylinder scatter-
ing the exact total cross section is given by (p. 8 of [13])

cr„,= ——Ret (P =0),4
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different from forward and/or specular and backscatter
configurations, it is exceptionally rare that a spurious
spike still persists, as Fig. 6(b) reveals for the hemi-
cylinder cross section at 6t, = —45', 0, =60' (or,
equivalently, at 0; = —60', 0, =45' because of reciprocity
and symmetry of the problem). It is interesting to note
that one of the corresponding isolated-cylinder com-

ponents, namely, that with I)II2=8, +0; =15' [see 1(d)],
displays a similar spike in its cross section Isee Fig. 7(b)],
but at a different ka location. This could be anticipated
since, as pointed out earlier, the stationary parameters 3
are generally different for the hemicylinder and its
cylinder constituents, whose respective scattering amplio«

tudes and cross sections do not generally fit an additive
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frequency accuracy obtains.

image relation [cf. (Sa) and ff (13b)]. We also found that
replacing P=O. SS3. . . by a simple, physically plausible
P= 1 shifts or even suppresses the remaining spurious
spikes, with only marginal changes elsewhere. This fact
could be used as a means to identify such spurious spikes
in cases where exact solutions are unavailable.

Finally, it is worthwhile to note that the high-
frequency variational formula for the normalized total
cross section obtained by Papas [23] for a TM isolated-
cylinder scattering using Kirchhoff's approximation,
yields the correct leading term, o.„,/4a ~1, in the opti-
cal limit ka P oo [cf. (26)]. However, his formula does
not provide adequate correction terms for large ka,
which terms appear to depend on the more or less arbi-
trary choice of a parameter introduced in [23]. Kodis
[24] derived a more accurate result for the TM cylinder
total cross section, again using the Kirchhoff current dis-
tribution, but with the much more involved second [3]
variational principle. His result includes the leading term
plus the first correction term, 0.746(ka), which has
the right sign and the right frequency dependence, but
whose magnitude is in error by about 50%%uo. This pro-
duces an overall error in the normalized total cross sec-
tion of about 2%%uo or less for ka )40.

In our asymptotic (ka ))1) analysis of the variational
results obtained with the original and/or shadowed-
boundary-Born trial fields, only the lead terms have been
provided. To derive the explicit representations of the
forward and specular scattering amplitudes, and hence of
the total cross sections, in reciprocal powers of ka, a
more elaborate asymptotic analysis is required. Howev-
er, the first correction term for cr„, can be fairly easily de-
duced to be approximately 0.073/(lnka), which, although
rather small for large ka, has a wrong ka dependence.
Nevertheless, excellent numerical accuracy, comparable
to that of Kodis's high-frequency results at ka -40, was
obtained for TM scattering from both a circular cylinder
and a hemicylindrically embossed plane, not only for
large ka and forward or specular directions, but for all
size parameters and scattering configurations.

VI. SUMMARY

Utilizing the proposed approach to develop physically
plausible trial fields as a guiding principle, efBcient, yet
simple, trial functions have been devised, which provide
all-frequency-accurate variational results for the scatter-
ing amplitudes and cross sections for TM scattering from
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perfectly conducting infinitely long cylinders and hemi-
cylindrically embossed planes. This was achieved by
ascertaining and approximately incorporating into the
trial fields the essential generic features which play physi-
cally important roles in the scattering process, using the
classic Born approximation as a "seed." The significance
of the boundary conditions at low and moderate frequen-
cies is emphasized and the importance of the trial fields
to be capable of satisfying these conditions is reafrirmed.
The key role played by shadowing at large ka has been
recognized and shadow e6'ects have been incorporated
into the trial fields. A remarkable agreement with the ex-
act results for all size parameters has been attained for

forward and/or specular and backward scattering using
the shadowed-boundary-Born trial fields that are able to
satisfy the relevant boundary conditions and also contain
a simple shadow-imitating factor. For other arbitrary-
angle configurations an isolated spurious spike arises in
very rare occasions, the accuracy elsewhere being excel-
lent.
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