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Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support
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A simple scaling argument shows that most integrable evolutionary systems, which are known to ad-
mit a bi-Hamiltonian structure, are, in fact, governed by a compatible trio of Hamiltonian structures.
We demonstrate how their recombination leads to integrable hierarchies endowed with nonlinear disper-
sion that supports compactons (solitary-wave solutions having compact support), or cusped and/or
peaked solitons. A general algorithm for effecting this duality between classical solitons and their
nonsmooth counterparts is illustrated by the construction of dual versions of the modified Korteweg —de
Vries equation, the nonlinear Schrodinger equation, the integrable Boussinesq system used to model the
two-way propagation of shallow water waves, and the Ito system of coupled nonlinear wave equations.
These hierarchies include a remarkable variety of interesting integrable nonlinear differential equations.

PACS number(s): 03.40.Kf, 47.20.Ky, 52.35.Sb, 63.20.Ry

INTRODUCTION

The discovery [l] that solitary-wave solutions support-
ed by nonlinear wave equations may compactify under
nonlinear dispersion has made it clear that nonlinear
dispersion is capable of causing deep qualitative changes
in the nature of genuinely nonlinear phenomena. The ab-
sence of the infinite tail in the resulting solitary-wave
solutions, called compactons, and their genuine robust-
ness, calls for a more systematic study of nonlinearly
dispersive systems. Nonlinear dispersion has been known
for some time to cause wave breaking, or lead to the for-
mation of corners or cusps, but, at least within the frame-
work of integrable systems, with the notable exception of
[2] was never actively pursued. The formation of cusps

is, in a definite sense, dual to the process of
compactification, and depends on the manner of interac-
tion between dispersion and inertia.

In an earlier work [3], the second author showed that a
Lagrange transform, based on changing to a locally con-
served density as another independent variable, maps sol-
itons into compactons, which are solitary-wave solutions,
both stationary and traveling, having compact support.
The integrable soliton equation is mapped to an equation
endowed with nonlinear dispersion that supports the
propagation of compactons. Thus, for these problems, a
particular duality between certain soliton equations and
their compacton counterparts was established. In a re-
cent paper relevant to the present work, using a variant
of the Hamiltonian perturbation theory introduced by the
first author [4], Camassa and Holm [5] rediscovered an
integrable model for ocean dynamics whose solitary-wave
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solutions have a corner at their crest, i.e., a discontinuity
in the erst derivative, and therefore were called peakons.
(Interestingly, peaked solitons were obtained in an earlier
study of nonlinearly elastic media by Kunin [6], from a
similar, but presumably nonintegrable system, but their
relevance to genuinely nonlinear phenomena was not
realized at the time. ) We also note that an elementary
complex-valued transformation changes the peakon equa-
tion into the integrable compacton equation; see below.
In either case, the solitary-wave solution is no longer
smooth, being a weak solution (in the appropriate sense)
of the nonlinear system.

It is perhaps surprising that the importance of the
work of Wadati, Ichikawa, and Shimizu [2] was never
recognized. Their discovery was catalogued as merely
one more integrable system. Their work touches upon
the important issue of the balance between dispersion and
convection. While in nature systems are known to run
out of balance, thus leading to various well known break-
downs of waves or the formation of cusps, most integra-
ble systems are notorious for unconditionally preserving
this balance and thus being unable to describe such phe-
nomena. Hence the importance of the discovery by
Wadati, Ichikawa, and Shimizu; their solutions may de-
velop a cusp and thus became nonanalytical. As such a
runaway is one more characteristic feature of large am-
plitude phenomena, the failure of a typical integrable sys-
tem to describe it is merely a reAection of the generic lim-
itation of system derived through the weakly nonlinear
procedure. In fact, following the derivation in [2] one ob-
serves that, at the crucial point where the curvature of
the rope is concentrated they avoid the conventional dic-
tum and do not expand the metric. Its expansion, though
consistent with other assumptions, would have eliminated
the sought after efFect. It is a situation where consistency
becomes its own revenge. In this connection we note that
in order to regain integrability, Camassa and Holm [5]
had to retain a higher order term in their expansion car-
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ried on the Hamiltonian level, which made it possible to
avoid the pitfalls of a direct expansion. It is quite obvi-
ous that in order to model phenomena related to wave
breaking, formation of cusps, and similar wonders of na-
ture associated with nonlinear dispersion, one has to
probe deeper into the nonlinear regime, far beyond the
currently attained weakly nonlinear stage. While oc-
casionally next order terms in dispersion, typically quad-
ratic ones, may suffice to unfold additional phenomenon,
one should not expect this to be the case in general. In a
genuinely nonlinear regime, nonlinearity plays a dom-
inant role rather than being a higher order correction.

The possibility of nonanalytical solitons, whether corn-
pactons, peakons, or as yet unnamed structures, is a man-
ifestation of nonlinear dispersion in action. The integra-
ble example presented by Wadati, Ichikawa, and Shim-
izu, and the recent examples presented by Camassa and
Holm and one of us [3], are concrete evidence that the in-
tegrable nonlinear dispersive examples found so far are
merely an edge of the proverbial iceberg. Though the na-
ture of the nonanalyticity changes in each case, these
differences are technical, merely showing the different
facets of nonlinearity.

The approach we adopt here generalizes the Lagrange
transform method, and is based on a Hamiltonian form of
duality in which one rearranges the Hamiltonian opera-
tors in the original soliton system in order to produce a
dual system with nonlinear dispersion. (Indeed, an in-
teresting open question is why, when applicable, the two
approaches produce the same compacton-supporting
equation. ) The method of rearranging the Hamiltonian
operators appears in earlier work of Fokas and Fuchs-
steiner [7]. Indeed, the peakon model for water waves
can be found (modulo a slight misprint) in an earlier,
neglected work by Fuchssteiner [8]. Our contributions
include the systematization of the initial Hamiltonians re-
quired by the dual hierarchy, the identification of associ-
ated "Casimir" Aows, which include the Harry Dym
equation (a nonlinear evolution equation related to the
classical string problem and known to be completely inte-
grable) and interesting variants thereof, and the construc-
tion and analysis of dual hierarchies for soliton systems
of physical importance. Some of these systems also ap-
pear in a recent paper by Fokas [9], that came to our at-
tention after the present paper was completed.

While the original motivation for the present work was
to look for compacton-carrying integrable systems, its
scope is much wider; we aim to unfold additional integra-
ble systems endowed with nonlinear dispersion, hoping
that their integrability will provide a handle on the un-
derstanding of and provide a valuable clue to the
mathematical form(s) of such systems. One can view this
as an effort to find what integrable nonlinearly dispersive
systems look like. (In the case of Wadati, Ichikawa, and
Shimizu [2], the integrability preceded the derivation of
the physical model. ) Needless to say, it would be far more
desirable to provide a priori a systematic derivation of
such systems from physical principles, but this will await
future exploration. There is a wide disparity between the
available mathematical tools, that as a rule rely on expan-
sion in a small control parameter, and the physical reality

of an integrable evolution equation. If the two Hamil-
tonian operators J& and Jz are compatible, meaning that
any constant coefficient linear combination c,J, +c2Jz is
also Harniltonian, then Magri's theorem [10] establishes
the formal existence of an infinite hierarchy of higher or-
der commuting bi-Hamiltonian systems,

5H„+ ) 5H„
u, =F„[u]=J, =Jz, n =0, 1,2, . . . ,

5u 5u
(2)

based on the higher order conservation laws H„[u] com-
mon to all members of the hierarchy. The members of
the hierarchy are successively generated by the recursion
operator %=J2J, ' [11,12]. Indeed, a theorem by Fokas
and Fuchssteiner [13] implies that the recursion operator
arising from a Hamiltonian pair is a hereditary operator.
Consequently, if both Hamiltonian operators are transla-
tionally symmetric, i.e., do not depend explicitly on x (as
they are in all examples of interest), the hereditary condi-
tion effectively means that one can take the elementary
wave equation u, =u as the "seed" bi-Hamiltonian sys-
tem, corresponding to n =0 in (2), from which the higher
order systems u, =F„[u]=%"[u„]are generated by the
usual recursion procedure. Moreover, the recursion
operator criterion,

%,= [%,%], (3)

where % is the Frechet derivative of the right-hand side
of (1), can be interpreted as a Lax pair formulation of
the integrable bi-Hamiltonian system (1). However, it
should be noted that, in most examples, (3) does not
represent the standard Schrodinger, or Zakharov-
Shabat —Ablowitz-Kaup-Newell-Segur (AKNS-ZS) Lax

which tends to locate many of the sought after effects
beyond our reach. In fact, in all known cases where this
conAict was avoided, some ad hoc tricks were used, which
by their very nature do not translate into a general
method, applicable to other problems. With this in mind,
we start describing the mathematical approach which
generates integrable systems endowed with nonlinear
dispersion. Hopefully, some of these will find their appli-
cation in concrete physical problems.

We shall demonstrate that, from the point of view of
integrability, systems with nonlinear dispersion do not, in
fact, represent a different entity from conventionally inte-
grable systems. We implement a simple explicit algo-
rithm, based on the bi-Hamiltonian representation of the
classically integrable system, which can be used to gen-
erate a wide variety of integrable systems. In most cases,
these nonevolutionary nonlinear systems are endowed
with nonlinear dispersion, and thus support nonsmooth
solitonlike structures. In the present paper, we show how
to derive such systems, leaving the analysis of their in-
tegrability, solitary-wave solutions, scattering problems,
etc., to future publications.

Our starting point is the general bi-Hamiltonian for-
mulation [10—12]

5H~ 5H,
u =F [u]=J =J

1 1 5 2
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pair used to solve the equation by inverse scattering [14],
and its analytical solution is more dificult.

EXAMPLE I: KORTEWEG —DE VRIES (KDV) EQUATION

To illustrate the method, let us consider the usual
Korteweg —de Vries (KdV) equation

u] —u + 3uu (4)

It is well known [10,11] that this equation can be written
in bi-Hamiltonian form (1), using the two compatible
Hamiltonian operators [15]

J& =D, J2 =D +uD +Du, (5)

and the initial two Hamiltonian functionals (or conserva-
tion laws)

H, = f —,'u dx, H2= f —,'[ —u„+u']dx . (6)

Note that the seed equation u, =u is bi-Hamiltonian,
with Hamiltonian functionals H, [u] and Ho[u] = f udx;
the latter is just the Casimir functional for J, [16].

The nonlinearly dispersive counterpart of the
Korteweg —de Vries equation (4) is obtained by the fol-
lowing procedure, which shall be explained in a form that
readily generalizes. We begin by transferring the leading
term D from the second Hamiltonian operator to the
first, thereby constructing the first of the two Hamiltoni-
an operators [17]: J, =D+D . We factor J, =DS. The
self-adjoint operator S =1+D is used to define a field
variable p =Su = u +u . The second Hamiltonian
operator is constructed by replacing u by p in the remain-
ing part of the original Hamiltonian operator J2, so that
J2 =pD +Dp. The fact that J, and J2 form a compatible
Hamiltonian pair follows immediately from the compati-
bility of the original Hamiltonian operators (5) along with
a simple scaling argument to be described below. The
desired integrable compacton equation is in bi-
Hamiltonian form

6H~ 5Hi
p, =Ji =Jq

p p

with Hamiltonian functionals

H, = f —,'updx = f —,'[u'+u, ']dx dx,

H2= f —,'[u'+uu, ]dx,

(7)

(8)

The choice of plus sign in Eq. (9) leads to an integrable
equation whose solitary-wave solutions have compact
support [1,18]. On the other hand, taking the minus sign
gives the peakon equation derived by Camassa and Holm
[5], whose solitary-wave solutions have a sharp corner at
the crest. Interestingly, this latter made its debut a de-
cade ago in a work by Fuchssteiner [8], as a part of a gen-
eral scheme [19,7] introduced to derive integrable sys-

and hence forms the first member of a bi-Hamiltonian
hierarchy. Equations (7) take the explicit form

(9)

tems, but was soon laid to rest. Genuine interest in this
equation started in earnest with its derivation from physi-
cal considerations in [5]. Note that the complex transfor-
mation x ~ix, t ~it will interchange the Eqs. (9), indicat-
ing a close interconnection between compactons and
peakons. Equation (9) can be viewed as an integrable
modification of the BBM or regularized long wave equa-
tion [20], which is obtained by omitting the last two
terms on the right hand side (which are of higher order in
the original perturbation expansion), [21]. Although the
BBM equation is not integrable —its solitary-wave solu-
tions interact inelastically [22], and it has only finitely
many local conservation laws [23]—physically it has
more desirable properties than the more mathematically
intriguing Korteweg —de Vries equation. Note that the
first and second terms on both the left and right hand
sides of (9) scale differently under the rescaling ("renor-
malization") (x, t)~(Ax, k, t). Therefore, we can decouple
the scaling limit equation [1]

2
ux~ uuxx +

2 ux ~ (10)

2(D+D3) 1/2 (12)

Equation (12) with the minus sign is known to admit soli-
tons having an unusual amplitude-speed relation, whereas
(12) with the plus sign admits compactons [1]. The fact
that the Harry Dym equation belongs to the dual hierar-
chy probably explains many of its unusual properties, as
compared with other integrable systems; for instance, it
does not satisfy the Painleve property [26].

We now explain to what extent the preceding construc-
tion can be generalized to an arbitrary bi-Hamiltonian
system (1). In most situations, the second Hamiltonian
operator associated with (1) is, in fact, the sum of two dis-
tinct Hamiltonian operators: J2=K2+K3. (In the KdV
example, E2 =D and K3 =uD +Du. ) Usually this hap-
pens because the two summands scale di6'erently under
x ~Ax and/or u ) pu. Indeed, if J2 =Kz+E3 maps to

which we have integrated once. Equation (10) is a partic-
ular case of a class of nonlinear wave equations which
were shown to be integrable by quadrature by Calogero
[24]. Note that its differentiated version can be derived
directly from our tri-Hamiltonian formulation by using
J&=D,J2=pD+Dp, where p=u„, as the generating
Hamiltonian pair, and the appropriately truncated ver-
sions of (8) as Hamiltonians [25].

An interesting observation is that the second Hamil-
tonian operator J2 for (9) admits the Casimir functional
Hc= J2&pdx, which is an additional conservation law

for (9). Therefore, in addition to the standard bi-
Hamiltonian hierarchy, there is an additional "Casimir
equation, " namely, p, =J& 5HC/6p, which turns out to be
the extended Harry Dym equation,

p, =(D+D )p

whose appearance in connection with (9) was first noted
in [5]. In the scaling limit, the first order differential
operator D drops out, and (11) reduces to the usual Harry
Dym equation. If we set r = I /p, then (11)becomes
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the Hamiltonian operator J2=A, K2+A, "E3 under scal-

ing, and m An, then K2 and K3 clearly form a compatible
Hamiltonian pair. In fact, in this situation,
Ji =K(,K2 K3 form a compatible Hamiltonian triple,
meaning that each linear combination c

&
K

&
+c2K2

+c3K3 is Hamiltonian; in particular, each possible pair
of these three operators is compatible [27]. In such cases,
we can produce a hierarchy of integrable equations by in-
troducing the alternative Hamiltonian pair

J) =K)+K2, J2 =K3 (13)

For simplicity, we shall assume that K, =D and K2 are
constant coefficient skew-adjoint diff'erential operators,
and, further, that

J) =DS (14)

factorizes into a product of D with a symmetric constant
coefficient difFerential operator S. We introduce the vari-
able

p =Su, (15)

5H, 5Hp
p, =Ji =J2

p p
(16)

On the other hand, the original soliton hierarchy (2) also
begins with the linear wave equation, so we have

5H, 5H,
u, =Ji =J2 (17)

where

a, = fudx, a, = f ,'u'dx. -

to replace u, so that J2 is obtained from K3 by replacing
u by p wherever it occurs. As in (7), the resulting bi-
Hamiltonian systems are written in terms of the variable

p. The scaling limit equation is obtained by a similar pro-
cedure, omitting the K& component of the first Hamil-
tonian operator, so J, =K2, and J2 =K3; the construc-
tion of p proceeds as before.

Applying the resulting hereditary recursion operator
% =JzJ, to the seed equation p, =p„produces a hierar-
chy of commuting (possibly nonlocal) fiows p, =%"(p, ).
These will be bi-Hamiltonian systems, proUided the seed
equation is; i.e., we can write

dual for short) of the original soliton equation will thus
take form (7), where, using (18), the next Hamiltonian
functional H2 is found by solving

5H2 5H(
=J2 (20)2D

the existence of a suitable Hamiltonian H2 is guaranteed
by Magri's theorem [10]. Finally, we remark that, be-
cause of the homogeneity assumptions on the Hamiltoni-
an triple K„K2,K3, the resulting Hamiltonian function-
als Hp H& etc. are all necessarily homogeneous function-
als under rescaling u ~pu of the dependent variable.

We now illustrate the general method with four addi-
tional examples. Of the large number of known integra-
ble equations, the examples presented next are typical
members of the solitonic zoo. A wide variety of addition-
al compacton equations can, of course, be readily con-
structed starting with other soliton equations and sys-
tems, thereby leading to an equally interesting compacton
zoo, whose complete taxonomy awaits future investiga-
tion.

EXAMPLE 2: MODIFIED KORTEWEG —DE VRIKS
(MKDV) EQUATION:

The modified Korteweg —de Vries (mKdV) equation

3 2
t xxx+T x (21)

can be written in the bi-Hamiltonian form (1), using the
Hamiltonian operators

J, =D, J2 =D +DuD 'uD,

and the associated Hamiltonian functionals

H, = f —,'u dx, H~= J [ i u —
—,'u ]dx .

(22)

(23)

J, =D+D, J =DpD 'pD . (24)

The dual counterpart of the modified Korteweg —de Vries
equation takes the explicit form

The dual version is found by moving the linear part of the
second Hamiltonian operator to the first, and defining a
variable p=Su =u+u, which is to replace u in the
second operator. This leads to the two Hamiltonian
operators

5H 5H
5u 5p

when p=Su, (18)

In view of the chain rule formula for variational deriva-
tives, cf. [11], which is in bi-Hamiltonian form (7) using

H, = J —,'[up]dx = f —,'[u +u2]dx,

(25)

(26)

5H,

Therefore we should choose

Eq. (16) will be satisfied provided

5H, 5H,
p, =J) =JiS =D

5p
'

5p 5u

As in the KdV example, the second Hamiltonian
A

operator J2 admits a Casimir functional Hc= fp dx,
so the Casimir equation for the modified compacton
hierarchy is the equation

Hp — pdx, H) = ~Qpdx (19) —(D+D3)p 2 (27)

as our initial Hamiltonians. The tri Hamiltonian dual (or-According to the formal symmetry approach of Shabat
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[28], the two Casimir equations (11) and (27), are the only
two integrable cases of the general class of equations
p, =D(1+D )p". Interestingly, the symmetries arising
via the Shabat approach are local in p, whereas the dual
hierarchy starting with (25) forms an additional hierarchy
of nonlocal symmetries and conservation laws for (27).
As with (11),Eq. (27) with the minus sign admits solitons,
whereas, replacing p by r = 1/p in (27) and using the plus
sign, we obtain

0 D 2D —2D 2+DU
J)=, J2=

2D +UD mD+Dw

H, = f —,'uw dx, H2 = f [ —u„w + ,'u w—+—,'w ]dx .

(31)

(32)

Concentrating on the simpler Hamiltonian pair, (30) ap-
pears in the bi-Hamiltonian form (1) with

r, =r (D+D )r (28)
The dual version of (30) relies on the Hamiltonian opera-
tors [34]

which is a Lagrange transform of the mKdV equation
(21), and admits both traveling and stationary compac-
tons [3]. In particular, the stationary compacton is a
Lagrange image of the one soliton solution of the mKdV
equation, while the interaction of two solitons is mapped
to an interaction of two overlapping stationary compac-
tons.

In contrast to the KdV equation, whose second Hamil-
tonian operator has only trivial (local) Casimirs, the
second mKdV Hamiltonian operator (22) admits the sem-
ilocal Casimir functional

where

2D

2D +D
r

—2D +D
0

2

2D +1

0 Do
oD wD +Dc

=DS,
(33)

Hc = —f cos[D 'u]dx
We therefore define the variables

= —f" cos f" u(g)dg dx .
U=S

2v +m —2u„
U +2U (34)

Ignoring integration constants, the associated Casimir
equation is

u, =sin f u (g)dg (29)

EXAMPLE 3: BOUSSINESQ SYSTEM

There is a wide variety of bidirectional Boussinesq sys-
tems that arise from the standard perturbation expansion
for the free boundary problem describing the propagation
of shallow water waves [29,30]. From an algebraic stand-
point, the most interesting of these is the version pro-
posed by Whitham [31],which was shown to be integra-
ble by inverse scattering by Kaup [32]. Subsequently,
Kupershmidt [33] rewrote the physical system in the
form

which is just the sine-Gordon equation g„=sing for the
potential function g =u. The mKdV hierarchy forms
the associated higher order symmetries and conservation
laws for the sine-Gordon equation (29) [12]. This leads
one to interpret the Casimir equation (27) as the dual
counterpart of the sine-Gordon equation. Interestingly,
while the original Hamiltonians (23) and their duals (26)
bear an obvious resemblance, the corresponding Casimirs
are strikingly different, and certainly would not be recog-
nized as originating from the same tri-Hamiltonian struc-
ture. This shows that the original hierarchy and its dual
counterpart can be quite different in both their algebraic
and analytic properties.

2u, +w, —2w„, = —(w )„„+(2vw+w ), ,

u, +2u, =(2u w+u +2uw)„.
(36)

The dispersion relation for the linear terms in (36) are
found by setting the right hand side to zero. Eliminating
U, we find w« —4w „«, which, up to scaling, is the linear
dispersion relation for the modification of the Boussinesq
equation considered in [35] as a model for ion-acoustic
waves in plasma, and longitudinal waves in an elastic rod.
In particular, if we take U =0, we find the interesting
equation

w, —2w, =D(1—D)(w ) .

The second Hamiltonian operator J2 admits a Casimir
functional Hc = f [r/o ]dx, so the dual Casimir equation
for (36) is the unusual bidirectional equation

The associated Hamiltonian functionals are

H, = f —,'[ucr+wr]dx = f [u +uw —2uw, ]dx,
(35)

H~ = f [v w+uw —2vww, ]dx .

Using the analog of (18) to compute variational deriva-
tives with respect to o and ~, we deduce that the associat-
ed bi-Hamiltonian system has the explicit form

o, =(wo. )„, r, =(wr+u +uw), ,

or, in full detail,

u, =uu +w„—u„, w, =(uw)„+w, (30)

and showed that this system is, in fact, tri-Hamiltonian.

cr, = —2(cr r) +(o ') 2(cr ')„„—,

r, = —(o r) —2(cr r)„„. (37)
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Interestingly, when ~=0, using a Lagrange transforma-
tion the first equation can be mapped into a Burgers
equation for z =1/o. [Similarly, setting w =0 in (30)
reduces it to the Burgers equation. ]

it =0'[0'(4.+0.,)l. . (46)

In the scaling limit, and integrating once, (43) reduces to

g, =w, then g satisfies the unusual fourth order equation,

EXAMPLE 4: ITO SYSTEM u„=+—,'v +uu „+—,'u„v, =(uv) (47)

Inspired by the symmetry approach, Ito [36] proposed
an integrable, coupled nonlinear wave equation

The corresponding reduced Casimir equation (46) has
scaling limit

u, =u„„+3uu, +vv„, v, =(uv)„, (38) tt t t xxx x (48)

(39)

(40)

Introduce p=Su =u+u and o. =v as additional vari-
ables, whose forms are governed by the dual Hamiltonian
operators

that extends the Korteweg —de Vries equation for u by an
additional "enslaved" field variable v. The bi-
Hamiltonian form for (38) requires

D 0 D +uD+Du vD
J1

Q D ~ 2 Q

H& =
—,
' u +v dx, H2= —,

' u +uv —u~ dx .

which can be viewed as an integrable bidirectional ver-
sion of the Harry Dym equation

EXAMPLE 5: NONLINEAR SCHRODINGER EQUATION

The nonlinear Schrodinger equation

u, =i( u„+~ u~ u) (49)

Ji (F)=iF, J2(F)=DF +uD '(uF —uF), (50)

and

can also be treated by the general method, although its
dual "compacton" version is perhaps a curiosity. The
two Hamiltonian operators are

D+D 0 S 0
=D

pD+Dp vD

Dv 0

Setting

H, = f —,'[pu +v ]dx = f —,'[u +u +u„]dx,
A'2 = f —,

' [u '+ uv + uu„]dx,

the dual bi-Hamiltonian system takes the form

u, +u„„=3uu„+ v v„+(uu,„+—,
' u, ), ,

v, =(uv)

(41)

(42)

(43)

H) = luux dx

H, = f [ Iu. I—'+-,' lul']dx
(51)

J, (F)=(D +i)F, J~(F)=pD '(pF pF), —(52)

are the required conservation laws [10]. To verify this, it
is important to note that the variational derivative is to
be computed based on the Hermitian inner product
(u v ) = f [uv+uv]dx, so 5H/5u =E„(H) where
E =8 —DB +D 0 + denotes the Euler opera-

tor with respect to the complex conjugate variable u [37].
In accordance with the general method, we introduce

two Hamiltonian operators

v, = —[v (u+u„, )], .
(44)

Interestingly, in the above derivation, except for the
Casimir equation (44), we can set v =0 and reduce back
to the KdV hierarchy or its dual counterpart. However,
in (44) the variables p and v become coupled in an essen-
tial manner. Let us set m =1/v and invert the operator
1+D in the first equation; then (44) reduces to the inte-
grable nonlinearly dispersive system

u, =w, w, =w [w (u+u„„)] (45)

If we define the "stream function" so that itj =u, and

which e6'ectively defines an integrable enslavement of v to
the compacton-peakon equations (9). Again, the second
Hamiltonian operator admits a Casimir functional
Hc = f (p/v)dx = f [(u+u „)/v]dx, leading to an asso-

ciated Casimir equation, p, =u, —iu, =
~u~ (u +iu)

uses the dual Hamiltonian functionals

H, = f [
—iuu„+~u ]dx = f [up]dx,

H2= —,
' —t u uu+ u dx .

(53)

The tri-Hamiltonian dual to the nonlinear Schrodinger
equation (53) is particularly trivial, since, replacing u by
v =ue', we find

»xt= v vx (55)

This equation has a first integral ~v„~ . Here, in contrast
to the compacton version of the KdV equation, the
dispersion remains linear; this is because, in contrast to

leading to the field variable p=Su = —iu„+u, whose
form is dictated by the factorization
J, =D+i =( iD +1)i =S—J, . The resulting bi-
Hamiltonian system
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the previous two cases, the Hamiltonian operator J2 is a
pure integral operator. The construction of an associated
hierarchy is more problematic in this case due to nonlo-
calities.

DISCUSSION

In this paper, we have shown how a simple scaling ar-
gument leads to a tri-Hamiltonian structure for standard
integrable soliton equations. Rearranging the Hamiltoni-
an operators in an algorithmic manner leads to dual inte-
grable systems which, in most instances, have nonlinear
dispersion and thus admit nonsmooth solitons, either
compactly supported or with cusps or corners. Our gen-
eral method can be readily applied to all of the known
soliton hierarchies, and, as we have demonstrated with a
few of the more standard examples, immediately leads to
interesting integrable systems. The mathematical and
physical properties of the hierarchies remains to be

developed. Topics that will be under investigation in-
clude the properties of the nonsmooth solitary-wave solu-
tions; the analysis of the associated scattering problems,
which may be based on the recursion operators as in (3);
the locality or nonlocality of the associated hierarchies of
symmetries and conservation laws; and, of course, physi-
cal applications of these systems. In addition, we antici-
pate that a large number of interesting compacton equa-
tions can be generated by other soliton hierarchies, such
as the general AKNS system, the three wave interaction
equations, and others.
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