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Traditional Lagrangian and Hamiltonian mechanics cannot be used with nonconservative forces such
as friction. A method is proposed that uses a Lagrangian containing derivatives of fractional order. A
direct calculation gives an Euler-Lagrange equation of motion for nonconservative forces. Conjugate
momenta are defined and Hamilton’s equations are derived using generalized classical mechanics with
fractional and higher-order derivatives. The method is applied to the case of a classical frictional force

proportional to velocity.

PACS number(s): 03.20.+1, 46.10.+z, 46.30.Pa

I. INTRODUCTION

It is a strange paradox that the most advanced
methods of classical mechanics deal only with conserva-
tive systems, while almost all classical processes observed
in the physical world are nonconservative. Conservative
systems are time reversible by definition, while noncon-
servative systems exhibit the familiar arrow of time due
to irreversible dissipative effects such as friction. Friction
and irreversibility are also found in the quantum world,
since all systems that we think of as classical are funda-
mentally quantum. Even at the microscopic level, there
is dissipation in every nonequilibrium or fluctuating pro-
cess, including dissipative tunneling [1], electromagnetic
cavity radiation [2,3], masers and parametric
amplification [3], Brownian motion [4], slow neutron
scattering [5], squeezed states of quantum optics [6], and
electrical resistance or Ohmic friction [7].

Considerable effort has been expended in the search for
methods of dealing with friction and other forms of dissi-
pation in classical and quantum mechanics [1-11]. The
mechanics developed by Newton in the 17th century can
be applied to both conservative and nonconservative pro-
cesses [12]. However, such classical systems cannot be
quantized without first being expressed in terms of later
forms of mechanics. The purpose of the present paper is
to provide a general method of dealing with nonconserva-
tive forces in classical mechanics. It is hoped that the
methods developed here can be extended to quantum sys-
tems as well.

Newtonian mechanics was transformed into a much
more elegant and powerful formalism by Maupertuis,
Euler, Lagrange, and Hamilton during the 18th and 19th
centuries [13]. These more modern techniques provide a
systematic approach starting with a scalar function, the
Lagrangian. By using a variational principle, one can
directly obtain Newtonian equations of motion,
definitions of the momenta, and the Hamiltonian func-
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tion. Once the Hamiltonian is known, the system be-
comes amenable to the techniques of quantum mechan-
ics. Because of the importance of the variational ap-
proach, it has become the starting point for both specific
calculation and general theory. As one textbook states
[14], “Today most physicists would be not only willing to
accept as axiomatic the existence of a variational princi-
ple but would be also loath to accept any dynamical
equations that were not derivable from such a principle.”

For conservative systems, variational methods are
equivalent to the original mechanics used by Newton.
However, while Newton’s equations allow nonconserva-
tive forces, the later techniques of Lagrangian and Ham-
iltonian mechanics have no direct way to dealing with
them. As explained by Lanczos (Ref. [15], p. 359), “Fric-
tional forces . . . which originate from a transfer of mac-
roscopic into microscopic motions demand an increase in
the number of degrees of freedom and the application of
statistical principles. They are thus automatically beyond
the macroscopic variational treatment.”

Over the years, a number of methods have been de-
vised to circumvent the discrimination against noncon-
servative systems. One of the best known is the Rayleigh
dissipation function (Ref. [16], p. 21), which can be used
when frictional forces are proportional to velocity. For a
particle in one dimension, Rayleigh’s function is

F=1lyi?, (1)

where x is the derivative of position. Lagrange’s equa-
tion is rewritten in the form

d AL _ 3L, aF

dt 3x 9x  9x —0. @

In this case, it takes two scalar functions to specify the
equation of motion. The momentum and the Hamiltoni-
an are the same as if no friction were present, so they are
of no use when attempting to quantize friction.

Another method is to use a Lagrangian that leads to an
Euler-Lagrange equation that is, in some sense,
equivalent to the desired equation of motion [3,9]. For
example, the Lagrangian
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Lz_;_mx-Ze('}’/m)t (3)

leads to the Euler-Lagrange equation

e"/™imx +yx)=0, @)
conjugate momentum
p =mxer/mt , (5)

and Hamiltonian

H=—£—2—e_”’/’"” . (6)
2m

The desired equation of motion is obtained if the factor
e /Mt ig ignored. However, the momentum and Hamil-
tonian do not appear to be physically meaningful.

A different technique [6,10] is to introduce an auxiliary
coordinate y that describes a reverse-time system with
negative friction. The Lagrangian for the combined sys-
tem is

L =mxy+Ly(xy —xy), (7)
which leads to two equations of motion
mi +yx=0, myj—yy=0, ®)

two momenta

1

px:m.)}—%yy’ Py:mx+7}’x ’ (9)

and the Hamiltonian

PxPy 2

H=——m—+—2—%(ypy—xpx)——2%xy . (10)
The Hamiltonian leads to extraneous solutions that must
be suppressed and the physical meaning of the momenta
is unclear.

The most realistic approach is to include the micro-
scopic details of the dissipation directly in the Lagrang-
ian or Hamiltonian [1,2,4,5,7,11]. For example, if the
dissipation is due to the interaction with a bath of har-
monic oscillators with coordinates y;, the following terms
can be added to the Hamiltonian

2
¢j

Hbath:“xzcjyj+x22 2
j J j

2
pj 1 2.2
2m, T me5y;

(11)

>

This method is well suited to realistic applications that
can be modeled with harmonic oscillators. It is easily
quantized and provides a derivation of the generalized
Langevin equation. It can include the effects of driving
noise and thermal equilibrium at any temperature. Be-
cause it does not deal with dissipation as a macroscopic
approximation, it is well defined and easy to understand.
For these reasons, it has been a valuable tool in the study
of quantum dissipation. However, it is not intended to be
a general method of introducing friction into classical La-
grangian mechanics. It can be complex in practice and
does not allow the functional form of the frictional force

to be chosen arbitrarily.

None of the above techniques exhibits the same direct-
ness and simplicity found in the mechanics of conserva-
tive systems. The method presented in the present paper
will allow nonconservative forces to be calculated directly
from a Lagrangian. Hamilton’s equations are derived
from the Lagrangian and are equivalent to the Euler-
Lagrange equation. The method is based on the simple
observation that if the Lagrangian contains a term pro-
portional to (d"x /dt")?, then the Euler-Lagrange equa-
tion will have a corresponding term proportional to
d?"x /dt*". Hence a frictional force of the form y(dx /dt)
should follow directly from a Lagrangian containing a
term proportional to the fractional derivative
(d'2x /dt'/?)%. This technique overcomes many of the
objections raised for the other methods, but is not
without difficulties of its own, most notably the added
complexity brought on by the use of fractional deriva-
tives.

In general, derivatives of any noninteger order are
termed “fractional derivatives.” Such derivatives in the
Lagrangian will be seen to lead to nonconservative forces.
However, mathematical techniques for dealing with
derivatives of noninteger order are relatively unfamiliar.
For this reason, fractional derivatives are reviewed in
Sec. II. The general case of a classical Lagrangian and
Hamiltonian with fractional derivatives is presented in
Sec. III. Section IV applies the formalism to the example
of a classical frictional force proportional to velocity.
Conclusions are presented in Sec. V.

II. FRACTIONAL DERIVATIVES

This paper will make essential use of the concept of
derivatives of fractional order. The history of fractional
derivatives [17,18] starts in 1695, when I’'H&pital [19] sug-
gested to Leibniz the possibility of taking a derivative of
order 1. Although the subject was also considered by
Euler [20] and Laplace [21], fractional derivatives did not
appear in a text until 1819, when Lacroix [22] based a
definition on the usual expression for the nth derivative
of a power of t:

a"t™ _ _ m!
dt” (m —n)!

", (12)

where 7 is an integer. He defined the fractional deriva-
tive by the same formula, but for arbitrary values of n.
The factorials m! and (m —n)! must then be interpreted
as the gamma functions I'(m +1) and I'(m —n +1).
This definition allows us to calculate the nth-order frac-
tional derivative of functions that can be expressed as a
power series,
d'f() _d" " m! m—n
o 2 %amt %a FP——r t . (13)
Equation (13) is not the only possible definition of frac-
tional differentiation. Another reasonable definition is
based on the expression
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n,_at
d"e n,at

- =ae, (14)
d(t+ o)

which is valid for integer-order derivatives. [The reason
for writing the derivative as d"/d (¢t + o« )" will soon be-
come apparent.] If we consider noninteger values of n,
the formula can be chosen to define the fractional deriva-
tive of an exponential. It also defines the fractional
derivative of any function that can be expressed as a sum
of exponentials,

da" d" a_t a_t
- )= m’ — n m
FITEPS A TP Ll %c"’“me

(15)

This definition of fractional derivatives was proposed by
Liouville [23] in 1832 and was rediscovered by Ramanu-
jan [24] in 1914. Fourier [25] suggested a similar
definition using Fourier transforms in 1822.

The study of fractional derivatives would no doubt be
more popular today were it not for the fact that the
definition in terms of exponentials, Eq. (15), is not
equivalent to the definition in terms of powers, Eq. (13).
There is no equally simple definition that applies both to
functions expressed as exponentials and to functions ex-
pressed as powers. In order to obtain a definition that is
as general as possible, it has become conventional to use
an integral representation discovered by Liouville [23]
and extended by Riemann [26]. Define the fractional in-
tegral of order v by

d"'f(1)
d(t—c)™"

— 1 L w—l1 ’ ’
) fc(t )Y ()dt
[Re(v)>0]. (16)

If n is the smallest integer greater than Re(u) and
v =n —u, then the fractional derivative of order u is
defined by

da'f(t) _d" _d°f()
d(t—c)* dt"d(t—c)™"
The above notation, which will be used throughout the
paper, follows Oldham and Spanier [17]. Another com-

mon notation was introduced by Davis [27] and is used
by Miller and Ross [18]:

a7

u
Dif(n=-2L10 (18)
d(t—c)*

Both these notations emphasize that the fractional
derivative of a function is not determined by the behavior
of the function at the single value #, but depends on the
values of the function over the entire interval c to ¢, just
as a definite integral depends on values throughout the
interval of integration. It can be shown [17,18] that for
¢ =—o, the definition becomes consistent with
Liouville’s definition in terms of exponentials. For ¢ =0,
the definition agrees with Lacroix’s definition in terms of
powers. If u is an integer, then d*x /d (t —c)* is simply
the usual derivative d*“x /dt* and the constant c can be
omitted.
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The remainder of this section is a summary of some re-
sults of fractional calculus for later use. More details can
be found in Refs. [17,18]. In applications, integer-order
derivatives with respect to ¢t may be denoted with dots, so
that x =dx /dt and ¥ =d’x /dt>. Derivatives of arbitrary
order with respect to ¢ will sometimes be indicated by a
subscript or superscript in parentheses: x(, , =x (u,a)
=d%x /d(t —a)*. If the constant is omitted, it is as-
sumed to be zero: x ;) =d'*x /dt'/%.

Fractional derivatives are linear operators obeying

du
— 4 Af()+Bgl(t
dtt—op A dgu( . »
=4—4 _rh+B—% . (9
d—opd OB w0 19

The fractional derivative of a constant A4 is not zero in
general, but is

d“A A(t—c)*
= . 20
dii—cr  Ti—u) 20
However, the fractional derivative of zero is always zero:
U
40 __,. @1
d(t—c)*

Fractional derivatives can be approximated by finite
differences. A number of choices can be found in the
literature [17,28,29], since different finite-difference ex-
pressions can converge to the same limit. For the deriva-
tive in terms of backward differences we will use

d'x  _ t—a o
d(t—a)¥* N-ow N
x 3 (=" t—a 22
m2=0 m x|t —m N s )
where

u _ u! — T(u +1)
m (u—m¥m! T(u—m+1T(m+1) "

(23)

This formula is an extension of the usual backward
difference for integer-order derivatives,

X i (AN S (D" tx(t—mAn . (4)
e Atlzlo > m [X (& —mAn) .

m =0

For large N, it agrees with the definition used by Oldham
and Spanier [17], but provides a better approximation
when N is small. It can be shown [17] that the finite-
difference formula is equivalent to the definition in terms
of an integral using Egs. (16) and (17). For forward
differences we will use

d'x  _ b—t |
d(t—b)* N-w| N
_1ym+u u b—t
szzo( 1) [m X |t+m N .
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The theory of fractional integration is a fully developed
field, although all we will need are some relationships for
antiderivatives. The antiderivative of order u is written
as a derivative of order —u and satisfies

du _uf(t)
d(t—c)* d(t—c)

Derivatives and antiderivatives obey the composition rule

-=f). (26)

d“
d(t—c)

d* +v

dU
= 27
d(t—c)vf(t)] FITETETE A

when v <0 or uv = 0.

A formula we will need later is integration by parts of a
fractional derivative. The conventional formula for
integer-order derivatives is

bd"f (1) dg(t)
d
fa g (ndt — ff(
n! dr—* “‘f(t d g(z
= — 1)k 28
kéo( ) dt n—k—1 dt a @8

When either d*f/dt*=0 or d*g/dt*=0 for k =0 to
n — 1, the formula becomes

[PEL g ae=—1r 1

Love and Young [30] have obtained a fractional-order
formula using the functions f ,,+(a,x) and f, (x,b), which
can be written as fractional antiderivatives

)4 g(t agt) ;0 (29

- d °f(x)
+ , __4\V ld —_ ,
Sax)=1, )ffmx DAt —a)
(30)
1 xb)—mf e —x)P~
—( — 1 r= a1
( )fbf(t)(x 1)’ ldt
=(—1) d_”f(xz .
d(x—b)""
They prove
[ fra,xg(x)dx= [°f(x)g; (x,b)dx (31)
for 0<v < 1. In our notation, this equation becomes
b d7Vf(¢) _ d 7 %g(t)
————g (t)dt =
e WAC e
(32)

To obtain a general formula for integration by parts for
order u, we choose n to be the smallest integer greater
than » and let v =n —u. Then application of Eq. (32) fol-
lowed by Eq. (29) yields the desired result

b d'f (¢) u d g(t)
fad(t_ v —1)" ff(t) v

provided that d*f/dt*=0 or d g/dtk=0 for k=0 to
n—1.

g(t)dt= dt  (33)
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III. GENERALIZED MECHANICS
WITH FRACTIONAL DERIVATIVES

A. Introduction and notation

In Newtonian mechanics, equations of motion are usu-
ally expressed using derivatives of second order or lower.
The corresponding Lagrangians have derivatives no
higher than first order. Ostrogradsky [31] was the first to
publish a generalization of Lagrangian and Hamiltonian
mechanics to include arbitrarily high-order derivatives.
Dynamical equations with higher-order derivatives can
be used to describe particles with internal structure, such
as spin or internal motion [32]. The formalism was ex-
tended to quantum electrodynamics by Bopp [33] and Po-
dolsky [34] and to quantum field theory by Green [35].
Generalized mechanics is reviewed in Ref. [36] and re-
cent applications are described in Refs. [37,38]. The
present work can be considered to be a further generali-
zation of mechanics to include fractional derivatives of
all orders.

The starting point for generalized mechanics is a La-
grangian, which is a function of coordinates x,, the pa-
rameter ¢, and derivatives of x, with respect to ¢. The
subscript r =1, . .., R indicates the particular coordinate
(for example, x; =x, x, =y, x;=z). We will not restrict
the derivatives to integer order, but will allow any frac-
tional or higher-order derivative. If the Lagrangian is a
function of the coordinate x, and N different derivatives
of x,, then we will use s(n) to indicate the order of the
nth derivative, where n =1, ..., N. For example, if the
lowest-order derivative is d!/2x/d(t —b)!/?, then

s(1)=1. For each order of derivative in the Lagrangian,
we define generalized coordinates by
ds(n)x
.
Arstm)™ Drs(n),b = (I——b)“(") ’ (34)

where s(n) can be any non-negative real number (or
complex number with Re[s(n)]=0). We define s(0) to
be 0, so that g, (o) denotes the coordinate x,.

If a variational principle is applied over the interval
t =a to b, we will find that the Lagrangian can also be a
function of a second type of coordinate

dS’(n)xr

Drstna= J g 35)
To avoid overburdening an already tedious notation, we
will derive all results assuming a Lagrangian that does
not contain any derivatives of this second type. The
straightforward extension of each final result to Lagrang-
ians with both types of derivatives will then be provided.
In derivations that use only coordinates defined by Eq.

(34), the subscript b on the coordinates will be omitted.
The notation L ({q, (,},¢) will be used to indicate that
the Lagrangian is a function of the parameter ¢ and the
set of all g, (, for r= ,R and n=0,...,N. The
notation L({q,,s(,,)’a,q,’s(,,),b} t) will be used for a La-
grangian that is a function of both types of coordinates.
Because summations over r will always be over all values,
we will use the usual convention of summing over repeat-
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ed indices. However, we will not be able to use the sum-
mation convention for n in all cases, so all summations
over n will be indicated explicitly.

B. Fractional calculus of variations
using finite differences

The most intuitive derivation of the Euler-Lagrange
equation is an extension of the original method used by
Euler. The details of the original method can be found in
Chap. 2 of [15]. Euler’s method has been criticized for
not being entirely rigorous, since it exchanges the order
of sums and limits. However, the method is useful for
introducing a variational principle and it does not rely on
formal results from the calculus of variations. It also
provides a direct method for numerical calculation. A
more rigorous derivation is provided in Sec. III C.

Our goal is to derive a variational principle based on
the generalized Lagrangian L ({q, ;(n) 4>9rs(n).5},t): We
will start by finding the extremum of the integral of a La-
grangian with a representative fractional-derivative term

b d“x
J=| L|—————,t|dt . 36
fa d(t —a)* ] (36)

The result will then be extended to the general Lagrang-
ian. We must find a function x (¢) that will make the in-
tegral an extremum. We vary x(¢) inside the interval
(a,b), keeping it fixed at the end points ¢ =a and b.

We follow Euler’s original method, which makes a
finite-difference approximation J; to the integral and
derivatives. First divide the interval into n equal incre-
ments At at the following points: t,=a,t,,t,,...,t,=b.
The fixed increment At is At =(¢, —t,)/n. For the back-
ward difference at ¢;, the same interval can be expressed
as Ar=(t;—a)/j and for the forward difference at ¢; it
can be written A7z =(b —¢;)/(n —j). In terms of these
differences, the backward fractional difference is

d"x ~ A¥x
d(t—a)" |i=y Alt —a)* |i=y
st gl
=x/ = A mE:O(-—I) m [Xi-m
(37
and the forward difference is
d"x ~ A¥x
d(t—b)* |i=y A(t —b)* |i=y
1 o

=x b=

/ (Ar)* m =0

(38)

To apply Euler’s method to the integral, replace the
derivative by the forward finite difference x J?‘*” and then
express the integral as the sum

u
2 (_—l)m+u lm ]xj-i—m .
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Jo= 3 L(x}%t))At . (39)
j=0

Following Euler’s method [15], we perform the variation
by setting

aJ,
k
If we carry out the differentiation, we find
,b
0= é oL ax AL at; @
=0 ax (w?) 1=t Ox;, ot t=t; ax;,
Since the second term is zero, we have
n aL ) n—j (_1)m+u lu]
0= X;
jgo dx (b 1=t Ox), ,,,2:0 (A)" m [Tt
z | u dL
— ( —1 )m +u [ l 8
j§0 (Ar)* mz=o m ax(“'b) 1 J+mk
1k u oL
=(—1) (—1)"
(Ar)* ,,,2=0 [m’ ax (w? =t _ .
S [ PR — 42)
At —a)* ox t=t,

In the limit At —0, the finite difference becomes a deriva-
tive. Since the expression is true for any k in the integra-
tion interval and #;, comes arbitrarily close to any value
of ¢ in the interval, the following equation must hold:
d* oL
(—1)* = 0. (43)
d(t—a)* ox'*
If L is a function of x “% instead of x*?), then a similar
derivation shows that

d" oL _
=0
d(t—b)* ox*?
If the derivation is repeated for the general Lagrangian

L ({4, 5(n),a>9r,5n),b ), using the notation of Sec. IIT A,
we find the generalization of the Euler-Lagrange equation

(="

(44)

N ds(n) oL
(_l)s(n)
n'2=0 d(x _G)S(n) aqr,s(n),b
N , ds'm oL
F S (=15 , =0. (45
n§1 d(x _b)s (n) aqr,s’(n),a

C. Euler-Lagrange equation

Derivations of the type presented in Sec. III B are open
to the criticism that the interchange of limits and summa-
tions may not be justified (Ref. [15], p. 54). The following
derivation of the Euler-Lagrange equation follows the
same pattern as in the conventional calculus of variations
used in classical mechanics (Ref. [16], Chap. 2). Start
with the integral
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J=["L{gpym} 0t . (46)

Following the procedure described in Sec. III A, we will
initially assume that L contains only coordinates as
defined in Eq. (34). Consider the coordinates g, ;(,) to be
functions of both the variable ¢ and a parameter a, which
is varied over all paths from ¢ =a to b to make the in-
tegral an extremum. The variation is zero at t =a and b.
J is then a function a,

b
J(@)= ["LU{g, m(t;a)},t)dt . 47)
a
This function will be an extremum if
ﬂ =0 . (48)
da a=0

Performing the variation on the integral results in

aJ (a)
da d

s(n)
————dadt , (49)
2 n=0 aqr,s(n) da

where summation over the index r is implied by our sum-
mation convention. We next rewrite this expression so
that each term in the integrand contains a factor of
9g,,5(0)/0a, which vanishes for t=a and b. The n =0
term is already in this form. The other terms can be con-
verted by using integration by parts. For each term con-
taining a derivative, we can apply the formula for in-
tegration by parts, Eq. (33), to get

aqrs(n)
8] _ T
f aqrs(n) da docdt
s(n) i)
_f oL i) dr,5(0) da dt

a n— aqrs(n) a(t—>b )S(n da

ds(n)
l)s(n)
f 2 d(t__a)s(n)
oL
o |94,50d1 (50)
aqr,s(n) s
where
99, 5(0) dJ (a)
8 e == ———
qr,s(O aa da, 8.] aa da . (51)

Since the variations are independent, 8J can only be zero
if the coefficients of 8¢, ;o) are zero. Hence we obtain the
generalized Euler-Lagrange equation

N ds (n) oL

(—1)y™ =0. 52
,,Eo d(x —a)*™ 94, (52)

N N N—n _
dH = 2 qr,s(n)dp,’s(n,_”‘F E 2 (_l)s(k+n) s(n)
n=1 n=1 | k=0
oL aL
dq s dq, (n) _—dt
aqr,s(O) Ps(0) n§l aqrs(n S ot
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If the Lagrangian is a function of coordinates defined by
both Egs. (34) and (35), a similar derivation provides

§ (_l)s(n) ds(n) aL

n=0 d(x “a)s(”) aqr,s(n),b
N’ ., ds’(n) aL
n§1 d(x )s(n aqr,s (n),a

in agreement with Eq. (45).

D. Hamilton’s equations

The derivation of Hamilton’s equations begins with the
introduction of the generalized momenta. As before, we
first consider only coordinates defined by Eq. (34) and
then generalize the final results. Using a bit of foresight,
define

=Prs(n),b
N—n—1

k=0

Prsn)

(_l)s(k+n+1)*s(n+l)

ds(k +n+1)—s(n+1)

d(t _a)s(k+n+1)—s(n+l)

X L , (54)
99,5k +n+1)
where n =0,...,N —1. The Hamiltonian is defined to
be
N
H= 3 9rsmPrsin—1—L (55)

n=1

where the summation convention again implies summa-
tion over r. We next must show that these definitions
satisfy a set of generalized Hamilton equations that are
equivalent to the Euler-Lagrange equation. The proof
follows the derivation used by Goldstein (Ref. [16], Chap.
7). First differentiate the Hamiltonian

N N
dH = 2 qr,s(n)dpr,s(n—1)+ 2 pr,s(n*l)dqr,s(n)
n=1 n=1
oL
———dt . (56)
2 aqr,s(n) Trstm at

Now split off the » =0 term from the third sum in the
differential of the Hamiltonian and substitute the
definition of the momenta

ds(k+n)—s(n) 3L

d(t ~_a)s(k +n)—s(n)

dqr,s(n)

aqr,s(k +n)

(57)

The kK =0 term in the second summation cancels the last summation. In the second sum, the N =n term is then zero,
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SO we can write

N—1 [ N-—n (k+m)—s(n) ds(k+n)*s(n) oL
d L+ __l)s n)—s(n d
ngl nsm®rsin = n§1 kE—:I d(t—a)*tm=sW 1 dq, (kyn rstm
‘3L oL
—d ——dt . 58
aq,,s( 9rs(0 " 3, (58)
The Euler-Lagrange equation, Eq. (52), can be rewritten as
N s(k)
oL  _ _ (— 1)) d - dL (59)
aqr,s(O) k=1 d(t—a) aqr,s(k)
and then substituted for the third term to get
N N—1 | N—n ds(k+n)~s(n) oL
= d o+ (__l)s(k+n)~s(n) d .
n§1 qr,s (m)8@Pr,s(n—1) n§1 k§1 d(t _a)s(k+n)—s(n) aqr,s(k+n) qr,. (n)
N ds(k) oL oL
(—1)p%H vy — ———dt . (60)
p3 d(t—ar® | g, | [T B
The second and third summations can be combined to give
N —1 | N—n ds(k+n)—s(n) oL oL
— d o+ (_l)s(k+n)—s(n) — dq ——‘~dt (61)
ngl qr,s pr,s(n X EQ k§1 d(t_a)s(k+n) sm) aqr,s(k+n) nem ar
which may be rewritten as
N 3L
= E qr,s(n)dpr,s(n—l)-—gdt
n=1
-1 D —s(m ds(n+1)—s(n)
+ (__1).3‘ n —sin
n2~'0 d(t __a)s(n+l)*s(n)
N—n—1 ds(k+n+1)~s(n+1) oL
X —1 s(tk+n+1)—s(n+1) d . 62
kE:"O (=D d(t—a)ykrn+D=snd) | gq 9r,s(n) (62)
[
After substituting for momentum we obtain dOH — (1)t D=s(m) dsntD=s(n
N-1 aqr,s(n) d(t—a)sints m Prsim >
dH = 2 9rs(n +1)dpr,s(n) oH _
n=0 3 =qrsn+1) (65)
pr,s(n)
N—l( 1)s(n+1) s(m) ds(n+1)—s(n) 3H L
+ _ _
n§0 d(t —G)S(n_*_l)*S(") Wz_a‘

oL

XPrsm@rsm ™ 3, 9t - 63)
A term—by-term comparison to
dH = E aqr,s(n a9, 5(n)

yields the generalized Hamilton equations

If the Lagrangian is a function of coordinates defined by
both Egs. (34) and (35), then we must define additional
momenta

N—n—1

Prsma= 3 (=1 Lktnth=sni]
T k=0
ds'(k+n+1)—s'(n+1)
d(t_b)s’(k+n+1)—s'(n+l)
oL
X , (66)

aqr,s’(k +n+1),a

where n =0, ...
be

,N'—1. The Hamiltonian is defined to
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X If all derivatives are of integer order, then generalized
H= 2 9r,5(n),bPr,s(n —1),b coordinates can be chosen so that s(n +1)—s(n)=1. In
" _IN‘ this case, Hamilton’s equations can be used to obtain
+ 2 9r,s'(n),aPrs'(n—1),a —L. (67)
n=1
N—-1d d N-1d d
A derivation similar to that for Eq. (65) provides the ad- 4B _ _ _M_q_‘r;s(ﬁ —%%ﬂ
ditional equations dt n=o dt ! n=0 t t
_Q_L =(—1 )‘[S'(n +1)—s'(n)]
aqr,s'(n),a _ Nil dpr,s’(n),a dqr,s’(n),a
ds(ntD=s'(n) oo dt dt
d(t_b)s'(n+1)_S'(,,)pr,s'(n),a ’
(68)
dH N1 dg, i Prsina | OH
__.___:q’ nt1a - + rs'(n),a r,s'(n),a
apr,s‘(n),a nEn ¢ n§0 dt dt + ot ’ (70)
E. Time dependence and nonconservative systems
so that
The time dependence of the Hamiltonian can be deter-
mined by writing the total derivative of H as
dH _ 0H oL
dH _ Vo' dH 45w NE—‘ 3H _ dPrsn) o a o e (71
dt n=0 aqr’s(n) dt n=0 ap,,s(n) dt
N=1 3H  d4,ma Hence, if the Lagrangian is not an explicit function of
+ 3 3 : p - time and all derivatives are of integer order, then the
n=0 9rs'(n),a t Hamiltonian is a constant of the motion. However, if
N1 d there are fractional derivatives in the Lagrangian, then
+'3 oH Prs'n),a +§E . (69)  we will not have s(n +1)—s(n)=1 for all n and instead
n=0 OPrs(n),a dt at we find
J
_ (n+1)—s(n) _ -
d_H—Nzl(‘“l)s(n+l)fs(n) a ’ np’,S(n) dqr,S(n) N1 gsinth S(n)qr,s(n) dpr,s(n)
dt o d(t_a)s(n+1)—s(n) dt < d(t_b)s(n+1)—s(n) dt
_ (n+1)=s'(n) " (n+1)—s'
+N21 (___1)—[s’(n+l)—s'(n)] s s npr,s’(n),a dqr,s’(n),a N1 d*f (n )= (n)qr,s'(n),a dpr,s’(n),a +a_}¥_ (72)
<o d(t_b)s'(n-f—l)*s'(n) d(t_b) <, d(t_a)s’(n+l)vs’(n) dt ot .
I
In this case, the terms do not cancel except for special dx 2 a2
cases. Therefore, a Hamiltonian with fractional deriva- L=1Im 7l VxX)tizy | =37
tives usually is not a constant of the motion and the sys- ¢ d(t—b)
tem is nonconservative. =%mx2— V(x)+ilyx (21/2,b) (73)

1IV. APPLICATION TO LINEAR FRICTION

The formalism of the preceding section can be illustrat-
ed with an example. For simplicity, we will choose a La-
grangian that is a function of coordinates defined by Eq.
(34). We will consider the limiting case in which a—b
while keeping a <b. Hence, all fractional derivatives we
encounter can be approximated by derivatives of the
form d*/d (t —b)".

The three terms in the Lagrangian

represent kinetic energy, potential energy, and linear fric-
tion energy. We can apply the methods of Sec. III by
choosing N =2, s(0)=0, s(1)=1, and s(2)=1. The La-
grangian can be written as a function of the generalized
coordinates

L=1mg}—Vi(gy)+itvqi, . (74)

The Euler-Lagrange equation is

oL _ . d'? dL

; d OL _
9q, d(t—b)'"? 9q,,,

"“—d7—a;-0 , (75)
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which becomes

m5c'=—yx-—% , (76)
since
d1/2 d1/2 d d

dc—07 d—o0 2" diu—b ar *

The momenta are

_| aL . d”2 aL
Po= +i 172 | 3g.
39, d(t —b) q,
=iYX(1/2,0 TIMX3.p)
((;/Zb) 3/2 (78)
—|OL |_ .
Pipn= 3q, mx .
The Hamiltonian is
H=q,,p0tqp1,—L
P%/z
= m +41/2P0+V*i%?"1%/2 (79
and Hamilton’s equations are
OH _. d'  aH _
34, d(t—b)l/zpo, EY 91,2 »
(80)
oH dl? oH

q -

i D1/2s
3q1,, d(t—p)2" 1" P,

The first of Hamilton’s equations yields the Euler-
Lagrange equation, the second is an identity, and the
remaining two equations are equivalent to the definition
of the momenta. This simple example illustrates the
technique, but does not attempt to deal with the compli-
cations of more realistic scenarios that might include
driving noise, equilibrium at finite temperatures, or more
general frictional forces.

V. CONCLUSION

The example in Sec. IV shows that it is possible to con-
struct a Lagrangian that describes a classical frictional
force proportional to velocity. The Eulger-Lagrange
equation is the familiar equation of motion from
Newtonian mechanics. By using fractional derivatives of
various orders, it possible to choose Lagrangians that re-
sult in a wide range of dissipative Euler-Lagrange equa-
tions. These Lagrangians will typically describe noncon-
servative forces involving fractional derivatives, rather
than the functions more commonly used to describe dissi-
pation. Hence we are presented with possibilities for dis-
sipative equations, but also an increase in the complexity
of the mathematics needed to deal with them. Because
the method leads directly to a Hamiltonian, it may find
application in dissipative quantum processes, although
the quantization of fractional-derivative Hamiltonian sys-
tems may be correspondingly complex.
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