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Backward- and traveling-wave tubes with dielectric-lined rippled-wall waveguides
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This paper presents the concept of a dielectric backward-wave tube or a dielectric traveling-wave tube,
in which the relativistic electron beam guided by a strong magnetic field propagates through a
dielectric-lined cylindrical waveguide with a sinusoidally rippled wall, producing very high-power
coherent microwave radiation. A linear Quid model is used to study the efFects of a dielectric liner in the
device. The dispersion relation is derived and then solved numerically. It is found that, in the
dielectric-lined sinusoidally rippled-wall cylindrical waveguide, the wave modes can be excited either in
the backward-wave case or in the traveling-wave case, and the presence of the dielectric slows the nor-
mal modes of the structure, making it easier to achieve traveling-wave tube operation, Numerical results
show that a rapid increase in the growth rate occurs when the dielectric constant reaches an optimum
value, where a high-frequency mode may possess the largest peak growth rate provided other parameters
are reasonably chosen. Therefore, one would expect the device to operate in the high-frequency regime
with a much larger growth rate. However, in the limit of no dielectric liner, the results reduce to the
regular ones, which show that the growth rate of the fundamental mode is the largest. En addition, if all
of the beam parameters remain the same, the dielectric liner enhances the space-charge-limited current
of the electron beam, which may also be beneficial for the generation of high-power microwave radia-
tion.

PACS number(s): 52.75.Ms, 84.40.Fe, 41.60.Cr, 41.75.Ht

I. INTRQDUCTIQN

Backward-wave tubes (8WT's) and traveling-wave
tubes (TWT's) are successful examples of utilizing relativ-
istic electron beams (REB's) which pass through slow-
wave structures to generate high-power coherent mi-
crowave radiation. Many authors [1—10] have focused
their attention on these devices for more e%cient opera-
tion at high-power levels, and important results have
been obtained both experimentally and theoretically. In
recent years, several ideas have also been considered for
enhancing the operating e%ciency of the device, such as
traveling-wave free-electron lasers [11], Cerenkov
traveling-wave tubes with spatially varying dielectric con-
stants [12], and BWT's using nonuniform slow-wave
structures [13,14]. The introduction of a background
plasma into the BWT or TWT is another proposal for im-
proving the performance of the device. Experimental
and theoretical results [15—17] have demonstrated that
the background plasma enhances the operating efBciency
of the BWT dramatically.

In this paper, we are motivated to present the concept
of a dielectric B%'T or TWT, where the slow wave
structure is a dielectric-lined rippled-wall cylindrical
waveguide. This suggestion has an obvious advantage
that, for a certain REB, the presence of a dielectric liner
in the waveguide can partially neutralize the space-
charge effects of the REB, and therefore increase the
space-charge-limited current of the REB [18], which is
profitable for the generation of high-power microwave ra-
diation.

In fact, solving the Poisson equation, one can easily

hand

that the space-charge-limited current for a
dielectric-lined waveguide is approximately given by

IDL
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where r, and r2 are the inner radius and outer radius of
an annular REB, respectively, Ro is the waveguide ra-
dius, a (a r2 ) is the inner radius of the dielectric-liner, E

is the dielectric constant, —e and m are the electron
charge and rest mass, respectively, yo=(1 —Uo/c )

'~ is
the relativistic factor of the REB, Uo denotes the REB ve-
locity, and c represents the speed of light in vacuum.
Note that the region a & r & Ro is filled with the dielectric
material, and that the waveguide wall at r =Ro is a per-
fect grounded conductor. When E= 1, Eq. (1) reduces to

(y ~ —1) ~ mc /'e

2ri r2
ln +2 ln

r —r I
~

(2)

which is the well-known result of space-charge-limited
current in a vacuum drift tube [19,20]. The results for a
solid REB can be easily obtained by using r, =0 in Eqs.
(1) and (2).

From Eqs. (1) and (2), one can find that IDL is larger
than IL when c. & 1, and IDL/IL increases considerably
with increasing the dielectric constant or the thickness of
the dielectric liner. For example, IDL/II will be as high
as 3.0 for parameters r, /Ro =0.37, r2/Ro =0.40,
a/80=0. 5 and c, =10.0. Similarly, the addition of a
dielectric liner in a rippled-wall waveguide also allows the
propagation of the beam current which could be higher
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II. DISPERSION RELATION

Consider a dielectric-lined rippled-wall cylindrical
waveguide whose wall radius R (z) varies sinusoidally ac-
cording to the relation

R(z)=RO+h cos(koz), (3)

where h is the ripple amplitude, ko =2m. /zo is the ripple
wave number, zo denotes the ripple period, and Ro

than the vacuum space-charge limit for the same values
of electron beam inner and outer radii, and waveguide ra-
dius.

In addition, the BWT and TWT are essentially
different. In a BWT, the excited wave, having a negative
group velocity, propagates opposite to the REB, whereas
the TWT operates with a excited wave of positive group
velocity, traveling parallel to the REB. However, in the
dielectric-lined cylindrical waveguide with a sinusoidally
rippled wall, the wave modes can be excited either in the
backward-wave case or in the traveling-wave case. The
addition of the dielectric slows the normal modes of the
structure, making it easier to achieve TWT operation.

In order to understand the elementary physics of the
dielectric BWT or TWT, we have developed a linear Quid
model to derive the dispersion relation, and analyzed nu-
merically the instability in the device. Our results reveal
that the growth rate of the device Inay have a rapid in-
crease when the dielectric constant reaches an optimum
value, and that the device is expected to operate in the
high-frequency regime with a much larger growth rate.

The remainder of this paper is as follows. In Sec. II we
derive the dispersion relation of a BWT or TWT with a
dielectric-lined sinusoidally rippled-wall cylindrical
waveguide using a linear Quid model, in which the REB is
guided by an infinitely strong axial magnetic field. In
Sec. III we present the numerical results of the model.
Conclusions are stated in Sec. IV.

REB
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FIG. 1. A schematic picture of the device. A solid REB
passes through a dielectric-lined cylindrical waveguide with a
sinusoidally rippled wall. The system is immersed in an
infinitely strong guide magnetic field.

represents the average radius of the waveguide. As
shown in Fig. 1, a solid REB injects into the waveguide
with velocity vo=voz, radius rb, and density no. The
electrons in the beam are radially confined by an infinitely
strong, externally applied magnetic field, and the region
a & r &R, =Ro —h is filled with a dielectric material. In
addition, we assume that there is no gap between the
electron beam and the dielectric liner, say rb =a, and that
the system is azimuthally symmetric. It is further as-
sumed that the waveguide wall is a perfect conductor,
and that the waveguide is infinitely long.

Because of the infinite guide magnetic field, the trans-
verse motion of the electrons is negligible, and the linear
instability only excites axisymmetric TM modes in the
system, which can axially bunch the electron beam. The
periodicity of the slow-wave structure permits the field
components of TM modes and the beam perturbations to
be expanded in a series according to the Floquet theorem
[21]. Following the method used by Swegle in Ref. [10],
and Minami et a/ in Ref. .[17],one can solve the motion,
continuity, and Maxwell equations for the beam-
waveguide interaction, giving the following expressions of
the axial and radial electric fields E, and E„ for the ax-
isymmetric TM electromagnetic modes:

b, „'b,„E„JO(pz„r)exp[i(k„z cot], 0 ~ r—~ rI,

E, = g b, „E„HO(k~„r)exp[i (k„z cot) ], rb ~ r—~ R, (4)

n = —oo

E„Go(a~„r)exp[i (k„z cot) ], R, —~ r ~ R (z),

~n ~n +n knP[. n—i)
~

J
& (p~„r)exp[i (k„z —cot) ], 0 ~ r ~ rb

~in

A„E,k,—i) H~(k~„r)e p[ix(k„z cut)], rb ~ r ~—R
&

ln

z„'k„
( —i) G, ( ~a„r)e x[pi (k„z mt)], R, ~ r ~ R (z—),

n = —oo ln
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where
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FIG. 2. Numerical solution of the uncoupled dispersion rela-
tion for kpR p =8.S, a/Rp =0.3, h/Rp =0.2, a=2. 25, and
~pbRp/c =0.

Also, J, and X, are the Bessel functions of order n of the
first and second kinds, co and k, are the angular frequen-
cy and longitudinal wave number of the TM mode, E„ is
the amplitude of the nth harmonic component of the
electric field, c is the dielectric constant,
yo={1—vo/c )

' is the relativistic factor of the REB,
—e and m are the electron charge and rest mass, and c
represents the speed of light in vacuum. It may be men-
tioned that, in deriving the expressions of E,(r) and
E,(r), the boundary conditions that E,(r) and
D„(r)=EE„(r) are continuous across the interface be-
tween the beam and dielectric regions are employed.
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FIG. 3. The eigenfrequencies of the three lowest modes
TMp„TM», and TM» vs the dielectric constant E for
kpRp=8. 5 9/Rp=0. 3 A/Rp=0. 2 and pp=2. 0.
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Because the tangential electric field E, must be zero at
the perfectly conducting rippled-wall waveguide surface,
E, and E, must satisfy the following condition:

E,(r =R (z))+E„(r=R (z))dR /dz =0 .

Substituting (4) and (5) into (21), multiplying (21) by

D A=O (22)

where 3 is a column vector with elements A„=E„,and
D is a matrix with elements

exp[ —imkoz], and integrating from z = n—/ko to
z =n /ko, one can obtain

/ko k. kp i (, n —m)kozD „= dz Go(a~„R (z))+ sin(koz)G, (aj„R (z)) .emn ~k n
~Xn

(23)

The dispersion relation for the device is then expressed
by the determinant equation

det[D ] =0 . (24)

When no beam is present (co b =0), Eq. (24) can be
used to study the uncoupled modes of the dielectric-lined
rippled-wall waveguide. It is difficult to give analytical
solutions of Eq. (24), so we will solve Eq. (24) by the nu-
merical method. It is noticed that the present paper cal-
culates elements D „ofEq. (23) directly using an eKcient
computer code, differing from the model of Ref. [17] in
which the elements D „ for the case of a plasma-filled
BWT are Taylor expanded around R (z) =Ro.

III. NUMERICAL RESULTS

Although D is an infinite matrix, in practice we
must truncate D to some manageable size [10]. Typical-
ly, we use a 5X5 matrix with —2 m, n 2, because we
have carried out the numerical calculations of 7X7 ma-
trices and obtained essentially the same results for the pa-
rameters given in the examples involved.

The uncoupled dispersion relation is shown in Fig. 2,
where we have plotted coR o /c versus k, R o for
koRO =8.5, a/Ro =0.3, h /Ro =0.2, E=2.25, and
67pb R p /c =0. The five lowest modes are labeled as TMp ]
TMp2 TMp3 TMp4, and TMp5 modes, respectively. Note
that this labeling scheme is usually employed for
smooth-walled waveguide modes. In fact, the TM mode
structure in a rippled-wall waveguide di6'ers from the TM
mode structure in a smooth-walled waveguide. The label-
ing scheme used in the present paper is only for the sake
of convenience. Here, as can be seen from Fig. 2, the an-
gular frequency ~ varies periodically with the wave num-
ber k„and the space-charge wave, indicated by a straight
dashed line in the figure, interacts with the five modes,
producing high-power microwave radiation. The inter-
sections of the space-charge wave with the five modes are
considered to be the eigenfrequencies of the device. It is
worth noting that other high-frequency modes were not
calculated for presentation in the present paper. We can
see from Fig. 2 that the space-charge wave with a beam
velocity of vp=0. 4c intersects the TMp& mode at a point
where the group velocity of the wave is negative, whereas
the space-charge wave with a beam velocity of

v p
=0.866c intersects the TMp, mode at a point where

the group velocity of the wave is positive. Therefore, the
fundamental TMp& mode can be excited either in the
backward-wave case or in the traveling-wave case. Obvi-
ously, the addition of the dielectric slows the normal
modes of the structure, making it easier to achieve TWT
operation. It may be mentioned that, in the limit of no
dielectric liner, the wave modes may also be excited in
both backward- and traveling-wave cases for a sinusoidal-
ly rippled-wall waveguide [10], but the ripple amplitude,
ripple period, and beam energy must all be chosen
reasonably.

Figure 3 gives the eigenfrequencies of the three lowest
modes TMpi, TMp2 and TMp3 versus the dielectric con-
stant E for koR0=8. 5, a/R0=0. 3, h/RO=0. 2, and
yp=0. 2. We can clearly see that the eigenfrequencies de-
crease monotonically as the dielectric constant c, in-
creases. Therefore, the dielectric constant can be another
tunable parameter for changing the operating frequency
of the device.

To obtain the growth rates, one can solve Eq. (22) for
complex roots of co, assuming real values of k, . For this
purpose we must consider a nonzero value of co b, which
means the presence of a REB. The growth rate
I =Im(co) indicates the interaction of the REB with the
wave mode, providing information about the rise time of
a microwave signal in an actual device.

In the case of no dielectric liner, the relation between
the growth rate and the wave mode is shown in Fig. 4,
where we have plotted the growth rates versus the wave
number for koR0=8. 5, rb/RO=0. 3, h/R0=0. 2,
co bRp/c =0.2, c, =1.0, and yp=1. 5. It can be seen from
Fig. 4 that each curve has a peak near co=k, vp, which
represents a stronger beam-wave interaction. In addi-
tion, the higher-frequency mode possesses a lower growth
rate, and the peak growth rate of the TMp, mode is the
largest. In the case of a dielectric liner loaded in the de-
vice, the peak growth rate of each mode increases rapidly
with the dielectric constant, and reaches a maximum
value as the dielectric constant is near an optimum value,
where some higher-frequency modes may possess larger
growth rates. These are shown in Figs. 5 and 6, respec-
tively. Figure 5 displays the peak growth rates of TMp&,
TMp2 and TMp3 modes versus the dielectric constant for
kpRp=8. 5, a/Rp=0. 3, h/Rp=0. 2, a)pbRp/c =0.2, and
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FIGG. 4. The growth rates vs the wave number in the case of
no dielectric liner for kpR 0

=8.5, rb /Rp =0.3, h /Rp =0.2,
~»R 0/c =0.2, E = 1.0, and yp= 1.5.

FIG. 6. The growth rates of TMp 1 TMp2 TMp3 TMp4 and
TM» modes vs the wave number in the presence of a dielectric
liner for kpRp =8.5, a /R p =0.3, h /R p =0.2, co»R 0/c =0.2,
c=2.25, and yp =2.0.

y Q
=2.O. Figure 6 illustrates the growth rates of TM

TM T~~4 T
Ql~

Q2 T Q3 TMQ4 and TMQ& modes versus the wave
number for kpRp=8. 5, a/R p=0. 3, h /R p =02,
cl)pbRp/c =0.2, m=2. 25, and yp=2. 0. As can be seen
from Figs. 5 and 6, the high-frequency mode TM maQ3 may
possess the largest peak growth rate as long as a reason-
able value of dielectric constant is chosen. Hence one
would expect the device to operate in the high-frequency
regime with a much larger growth rate. In addition, it is
worth noting that, as shown in Fig. 5, a very high dielec-
tric constant may reduce the growth rate considerably,
which is unprofitable for the microwave instability.

To understand the numerical results of the present pa-

per, one can refer to the approximate scalings of Ref. [7].
As shown in Ref. [7], the peak growth rate of a BWT or
TWT is I,„~h'~3, . where b, is O[(h/Rpl&l I]l for a
small value of h/Rp, and n represents the nth Hartree
harmonic interacting resonantly with the beam mode
co =k, vQ. Thus the peak growth rate decreases with in-
creasing In~. This conclusion also applies to the situation
of the present paper, although the value of h /Rp is rela-
tively larger [7]. Figure 7 shows coRp/c versus k, Rp for
kpRp=8. 5 1' /bRp= .03h/Rp=0. 2 pp=1. 5 E=1.0
and copbRp/c =0, giving the uncoupled dispersion rela-
tion of no dielectric. Following the method used in Ref.
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FIG. 7. Numerical solution of the uncoupled dispersion rela-
tion in the case of no dielectric liner for k R = 8 ~ 5,0 0
~b /R 0 0 3 h /RO 0.2 yp= 1.5 E= 1.0 and ct)&bR0/c =0.
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in the case of no dielectric liner when kpRp =8.5, r&/Rp =0.3,
/Rp=0 2 yp=1. 5, and a=1.0.

[7], one can determine from Fig. 7 that the TMoi and
TMp2 modes are excited in the regime where the electron
beam interacts mainly with the first Hartree harmonic
(n = —1), whereas the TM03 mode is excited in the re-
gime where the second Hartree harmonic (n = —2) may
take effect. Obviously, the peak growth rate of the TMQ3
mode is lower than those of TMpi and TMQ2 modes. In
order to compare the growth rates of TMQ& and TMp2
modes, we can display the longitudinal electric fields of
the first Hartree harmonic for TMQ, and TMQ2 modes
since the electric fields are comparable for the same order
Hartree harmonic. The strength of the longitudinal elec-
tric field is one of the major factors that can affect the
growth rate of the device. It is seen that Eq. (22) can be
solved for all of the E„'s but one, so we can then choose,
for example, C„=A,'A„E„=1 for n = —1. The normal-
ized longitudinal electric fields E, „/C, of the first Har-
tree harmonic (n = —1) for TMO, and TMO2 modes are
shown in Fig. 8, where we have plotted E, , /C, versus
7" /Rp for kpR p: 8 ~ 5 p'b /R p =0.3 h /Rp =0.2 pp= 1 ~ 5,
and v= 1.0. It can be seen that, in the interaction region
(0~ r/Ro ~rb/Ro), the first Hartree harmonic field for
the TMQ, mode is stronger than that for the TMpz mode.
Therefore, in the case of no dielectric liner, the peak
growth rate of the TMQ] mode is higher than those of
TMQ2 and TMQ3 modes for the parameters involved in
Fig. 4. Further, the peak growth rate of the TMQ& mode
may be the highest, because other high-frequency modes,
like TMQ4 and TMQ5, are excited in the regime where the
RES interacts mainly with the higher-order Hartree har-
monics (n ( —1).

The results are quite different in the case of a dielectric
liner loaded in the device, in which some higher-order
modes may have larger growth rates. Physically, when
adding a dielectric liner in the waveguide, the dielectric
allows the mode to be well located within the interaction
region 0~ r ~a, making the mode possess a lower phase
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FIG. 9. The normalized longitudinal electric fields of zero-
order Hartree harmonic (n =0) for TMp] TMp2 and TMp3
modes vs r/Rp in the presence of a dielectric liner when
kpRp=8. 5, a/Rp=0. 3, h/Rp=0. 2, yp=2. 0, and v=2. 25.

IV. CONCLUSIONS

We have developed a linear theory to study the con-
cept of a dielectric BWT or TWT, in which the slow-
wave structure is a dielectric-lined rippled-wall cylindri-
cal waveguide immersed in an infinitely large axial mag-
netic field. The dispersion relation is analyzed numerical-
ly, and the effects of the dielectric liner in the device are
also explored. The validity of the analysis depends on the
requirement that the length of the structure be
significantly longer than its mean radius. It is found that

velocity. In this case, the electric field in the interaction
region is stronger, and the growth rate is larger. Particu-
larly, for the parameters of Fig. 6, we can see from Fig. 2
that the TMQ&, TMp2 and TMQ3 modes are excited in the
regime where the electron beam (with Uo/c =0.866) in-
teracts mainly with the zero-order Hartree harmonic. In
order to compare the peak growth rates of TMQ&, TMQ2,
and TMQ3 modes, it is also necessary to display the nor-
malized electric fields E, „/C„of the zero-order Hartree
harmonic (n =0) for TMoi, TMO2, and TMO3 modes. Fig-
ure 9 shows E, OICO versus r/Ro for koRO=8. 5,
a/R0=0. 3, h/Ro=0. 2, yo=2. 0, and E=2.25. We can
see that, in the interaction region, the zero-order Hartree
harmonic field for TMQ3 mode is the strongest, and there-
fore the peak growth rate of the TMQ3 mode is larger
than those of TMQ& and TMQ2 modes. This analysis may
explain the conclusion that the growth rates are larger
for some higher-order modes in the presence of a dielec-
tric. However, it may be mentioned that much higher-
order modes, like TMQ4 and TMQ5, are excited in the re-
gime where higher-order Hartree harmonics (n ~ —1)
could take effect, and, consequently, their growth rates
may be decreased.
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the presence of a dielectric liner in the sinusoidally
rippled-wall waveguide may modify the wave mode struc-
tures favorably, and improve the beam-waveguide in-
teraction as long as a reasonable value of dielectric con-
stant is chosen. Growth rates are observed to increase as
the dielectric constant is made larger, and peak at op-
timum values of the dielectric constant, where some
high-frequency modes may have much larger growth
rates and the growth rate of the TM03 mode may be the
largest. This is in contrast to the case of no dielectric
liner, in which the fundamental TMO, mode possesses the
largest growth rate.

In the absence of the dielectric liner, the excitation of
traveling-wave TMO, mode depends closely on the ripple
amplitude, ripple period, and REB energy. However, the
addition of the dielectric slows the normal modes of the
structure, making it easier to achieve TWT operation.

Additionally, if all of the beam parameters remain the
same, the dielectric liner can enhance the space-charge-
limited current of the REB obviously. The enhancement
of the limited current is profitable for the generation of
microwave radiation, because devices using REB s to
generate coherent microwaves usually require larger
current propagation in the tube for power enhancement.

In conclusion, the BWT or TWT studied in the present
paper can be expected to operate in the high-frequency
regime with a much larger growth rate. Although the
dielect. ic liner leads to a decrease in the operating fre-
quency of the device, the system, as mentioned above,
may excite a high-frequency mode having the largest
growth rate. Finally, it is important to note that a non-
linear theory is needed to determine the saturation
e%ciency of this device, and more detailed studies should
be done.
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