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Wavelet analysis of DNA sequences

A. A. Tsonis, ' P. Kumar, J. B.Elsner, and P. A. Tsonis
Department of Geosciences, Uniuersity of Wisconsin M—ilwaukee, Milwaukee, Wisconsin 53210 041-3

Department of Ciutl Engineering, Uniuersity ofIllinois U—rbana, Urbana, Illinois s618'01
3Department ofMeteorology, Florida State Uniuersity, Tallahassee, Florida 32306-3034

Department ofBiology, The Uniuersity ofDayton, Dayton, Ohio 454N
(Received 11 May 1995)

In this paper we use wavelet analysis in order to probe the localized structure of DNA sequences. We
demonstrate that, unlike other conventional approaches, wavelets are able to decompose seemingly
homogeneous regions in noncoding sequences into smaller distinct regions that obey their own repetition
and construction rules. The significance of this result to gene evolution is discussed.

PACS number(s): 87.15.Mi

The evolution of genetic information and the genera-
tion of genes is one of the most challenging problems fac-
ing evolutionary and molecular biologists. The principles
by which nature produced the genetic information and
subsequent generation of genes are still not well under-
stood. DNA sequences are strings of the bases (nucleo-
tides) 3, T, C, and G. Bases C and T are pyrimidines, and
bases 3 and G are purines. DNA sequences are charac-
terized as coding (intron-less) sequences and as noncoding
(intron-containing) sequences.

Since the early 1970s, scientists have attempted to dis-
cover some kind of order or hidden structure(s) in DNA
sequences, to discriminate coding from noncoding re-
gions, to find translation initiation sites, to explore and
understand function in genes, etc. [1—4]. With the ad-
vent of DNA sequencing techniques in the late 1970's,
scientists had the opportunity to probe the DNA for such
order. It soon became apparent that a periodicity of 3
reflects the use of codons, but there was no hypothesis at
that time how they might be acquired. In a series of pa-
pers, however, Ohno [3,4] showed that modern DNA se-
quences have evolved from primordial blocks of maybe
seven nucleotides. According to this, such blocks dupli-
cated many times, and as they did so they also mutated.
This led to a variety of sequences found in today's DNA.
From his studies he was also able to state that the con-
struction rule was TG-CA-CT excess and TA-CG
deficiency. True enough, CT define the first two nucleo-
tides for the codon for leucine, the most abundant amino
acid in proteins, and TA-CG are found only in promoted
regions which constitute a small part of the genome. In
an attempt to further elucidate the presence of these
periodicities in DNA sequences, Tsonis, Elsner, and
Tsonis [5] applied Fourier analysis on coding and non-
coding sequences. They found that while noncoding se-
quences showed spectra similar to those of random se-
quences, coding sequences revealed specific periodicities
of variable length and a common periodicity of three.
Furthermore, they were able to reconstruct the spectra of
a given mRNA from an artificial periodic sequence mu-
tated in such a way as to represent the actual content of

amino acids found in proteins. Spectral analysis in DNA
sequences was also used by Voss [6], who confirmed the
existence of the above mentioned periodicity of 3 and
suggested that DNA sequences exhibit spectra appropri-
ate to 1/f ' noises (see also [7,15]).

Conventional Fourier analysis, however, can only re-
veal "global" periodicities. Hidden localized periodicities
that might provide hints about underlying construction
rules cannot be extracted. Such a dif5culty can be over-
come with the use of wavelets, a mathematical approach
that can transform a signal into a sum of smaller waves
that can break up more complex signals. Just recently,
wavelets were applied to random walks generated from
DNA sequences [8] in order to investigate the proposed
in [7] long-range correlations in such walks. The purpose
of our work was quite di6'erent, in that our interest was
to search for the construction rules in the actual DNA se-
quences.

The wavelet transform [9—11] is a localized transform
in both space (time) and frequency. In mathematical
terms wavelet transforms are integral transforms using
integration kernels called wavelets. The wavelet trans-
form of a function f (t) with finite energy is defined as the
integral transform with a family of functions
V~, (u) =(1/&A, )%((u —t)/1 ), and is given by

Wf(i, , t)= f f(u)Vz, (u)du, A, )0

= f f(u) q — du .

Here A, is a scale parameter, t a location parameter, and
the functions %&,(u) are the wavelets. In case V&, (u) is
complex, we use the complex conjugate Vz, (u) in the
above integration. Changing the value of A, has the eQ'ect
of dilating (A, ) 1) or contracting (A, (1) the function
%(t), and changing t has the effect of analyzing the func-
tion g ( t) around the point t. The normalizing constant
1/&A, is chosen so that
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for all scales A. Inotice the identity !Il(t)=%', o(t)]. We
also choose the normalization f I%'(t)I dt =1.

An important property of wavelets called time-
frequency localization. The advantage of analyzing a sig-
nal with wavelets as the analyzing kernels is that it en-
ables one to study features of the signal locally with a de-
tail matched to their scale, i.e., broad features on a large
scale and fine features on small scales. This property is
especially useful for signals that are either nonstationary,
or have short lived transient components, or have
features at different scales, or have singularities. One

might see wavelets as the elementary building blocks in a
decomposition or series expansion akin to the familiar
Fourier series. Thus a representation of the process using
wavelets is provided by an infinite series expansion of di-
lated and translated versions of a mother mauelet, each
multiplied by an appropriate coei%cient. For processes
with finite energy this wavelet series expansion is optimal;
i.e., it offers an optimal approximation to the original sig-
nal in the least squares sense.

Useful information can also be extracted by interpret-
ing the wavelet transform (1) as a time-scale transform.
This was well illustrated by Rioul and Vetterli

I 12], and is
sketched below. In the wavelet transform (1) when the
scale X increases, the wavelet becormes more spread out
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FIG. 1. Wavelet analysis of the genomic sequence of the chicken c-myb oncogene, which is 8200 bases long. The wavelet used

here is the Morlet wavelet. The scale A, is related to the frequency co via the relation ct) =cop/X where cop=5. Time (t) runs from 1 to
8200. The colors can be interpreted similarly to the way peaks are interpreted in a conventional Fourier analysis. Blue corresponds
to low power, and red to high power. Such bright colors will indicate strong localized periodicities or construction rules. We ob-

serve three distinct "hot" spots centered at scales of 4200, 4400, and 4500 and times 1200, 3400, and 6000 respectively. As is ex-

plained in the text, these spots may represent local construction rules in the DNA sequence.



1830 A. A. TSONIS, P. KUMAR, J. B. ELSNER, AND P. A. TSONIS 53

and takes only long time behavior into account, as seen
above. However, by a change of variables, Eq. (1) can
also be written as

Wf(A, , t)= J &Af(ku)qf u ——du .
oo

Since the mapping f (t)~f (A, t) has the effect of contract-
ing f (t) when A, ) 1 and magnifying it when A, (1, the
above equation indicates that, as the scale grows, a con-
tracted version of the function is seen through a fixed size
filter, and vice versa. Thus the scale factor A, has the in-
terpretation of the scale in maps.

We have applied wavelet analysis to genomic (more
than 90% intron containing) and to coding (intronless)
DNA sequences. For mathematical purposes any DNA
sequence may be transformed to a sequence of integers in

the interval [1,4] (for example A =1, T=2, C=3, and
6=4). This allows us to consider the sequence as an
"observable, " f ( t ), and to apply statistical and
mathematical techniques. In our analysis we employed
the Morlet wavelet. This wavelet is given by

0'(t) =rt ' exp(

igloo—

t)exp( t —l2), coo ~ 5 .

This wavelet is complex, allowing us to extract informa-
tion about the amplitude and phase of the process being
analyzed. The Fourier transform of Eq. (3) is given by

iP(co) =~ ' exp[ —(co —coo) /2],

where co is the frequency. The Fourier transform of the
scaled wavelet 4'z o(t) is given by
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FIG. 2. Same as Fig. 1, but for a surrogate sequence obtained by shufAing the c-myb sequence. Such surrogate data have similar
statistical properties to the DNA sequence, but are random.
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e~ o(io) =Am '~ exp[ —(co—Acoo)'/2] .

The wavelet 0'z o(t) has the property that it is centered at
t with a spread A, , while when its Fourier transform is
supported almost entirely on co) 0 it is centered at coo/A,

and has a spread I /A, .
Figure 1 shows the results for the chicken c-myb on-

cogene. This is a genomic sequence 8200 bases long. We
observe three distinct and pronounced "hot" spots (indi-
cated by red color) at high scale (low frequency) values.
At higher frequencies such features are hard to distin-
guish. The question now arises: Are those hot spots sta-
tistically significant (and thus represent nonrandom
features of the sequence), and if they are what do they
correspond toT In order to answer the first part of the
question we generated surrogate sequences by shufBing
the above DNA sequence. This way we destroy whatever
dynamics or features in the sequence, thereby producing
random sequences that exhibit the same statistical prop-
erties (such as mean, variance, distribution, etc.). Figure 2

is a typical result from the surrogate sequences. Here we
observe that at 4200&(scale) &4500 there are no pro-
nounced hot spots. At other higher frequencies (smaller
scales) the features of the two figures are not significantly
different. Thus the hot spots in Fig. 1 represent
significant features in the DNA sequence. From the
analysis of a number of such sequences (another example
is shown in Fig. 3) and their surrogates, we find that
those hot spots at low frequencies are characteristic
features of noncoding sequences which are not likely the
product of a random string of bases. Thus they indicate
certain "construction" features in the sequences. A simi-
lar analysis of coding sequences (see, for example, Fig. 4)
does not reveal such pronounced features, as they often
appear indistinguishable from random strings of similar
statistical character. This is due to the fact that coding
regions are much smaller than the noncoding regions,
and thus possible repetitions or construction rules do not
provide a large enough sample size for statistically
significant differences between coding sequences and their
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FICx. 3. Same as Fig. 1, but for the genomic gotglobe gene (noncoding, 10200 bases long).
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FIG. 4. Same as Fig. 1, but for the coding sequence of human b-cardiac MHC (6000 bases long).

surrogate data. Having established the above, we
proceed with investigating exactly what those features in
the noncoding sequences indicate, and what function do
they serve.

In order to obtain insights into gene evolution and
structure, we compare the above results with those ob-
tained from conventional analyses of repeated elements
(or homologies) in DNA sequences. The most common
approach is the dot matrix analysis [13]. This technique
is explained in Fig. 5, which shows results for the c-myb
DNA sequence analyzed in Fig. 1. Two distinct areas
(units) are revealed one from 750 to 3500 nt (nucleotides)
and the other from 3500 to 8000 nt. Thus, Fig. 5 suggests
that this genomic sequence has been constructed by two
diFerent sets of repeating units or construction rules.
The first prevails in the region 500—3500 nt, and the
second in the rest of the gene. The first unit coincides
with the two 6rst hot spots seen by wavelet analysis, and
the second with the third. If we set the parameters to be

more stringent (20 matches out of 30 bases long seg-
ments) the two regions remain the same (Fig. 6). In fact
in this case the noise is cleared, and the second region be-
comes more defined in the region from 5000 to 7500 nt
which corresponds to the third hot spot of Fig. 1. Thus a
comparison of Figs. 1 and 5 or 6 indicates that the
wavelet analysis was able to decompose the erst region
into two. Another example is the gotglobe gene. In the
dot matrix analysis (Fig. 7) we see a uniform distribution
of "dots, " indicating widespread periodicities throughout
the gene. This suggests that one general construction
rule is responsible for the whole gene. %ith wavelets,
however (Fig. 3), we discover that the gene is broken up
into two diferent regions that suggests the possibility of
two general construction rules. Similar results are ob-
tained from other genomic sequences.

The above results point out limitations in the dot ma-
tr ix analysis, and suggest wavelets Bs a complimenta1 y
approach. More importantly, the results here bear
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FIG. 5. The dot matrix analysis compares a given DNA sequence f (r) with itself [i.e., with f(r)], with the help of a sliding
dow" whose length may vary. For example, if we compare a given sequence 1000 bases long to itself, and the window is assumed to
be 1000 bases long in a two-dimensional plot with coordinates [f(r),f (r)], the result will be the diagonal line. This will indicate
100%% homology. If the comparison is attempted with shorter windows (say 20 or 50 bases long), and repetitions do exist, diagona
lines are drawn in the regions where the sequences are repeated. Such an analysis can thus scan a given DNA sequence for repeti-
tions within it. In this figure we compare the c-myb DNA sequence analyzed in Fig. 1. The length of the window is 20, and we as-
sume a homology limit of 10. Accordingly, we consider the segment 1 ( t &20 and we slide the window across the sequence. If at
least ten bases in the window and in the segment 1 ( r (20 match, then the diagonal of that region in the [f(r),f (t)] plane is drawn.
Then we consider the segment 2 & t & 21 and repeat the sliding procedure, and so on, until we scan the whole DNA sequence. As we
can see, two distinct areas (units) are revealed, one from 750 to 3500 nt (nucleotides) and the other from 3500 to 8000 nt (note that
due to the relative short window length, the diagonals are very short and appear like dots). Such a result indicates that the repetitive
units must be different in the two regions (otherwise the dots will fill the plane uniformally).
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FIG. 6. Same as Fig. 5, but for a window of 30 and a homology limit of 20 (66 Jo).
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FIG. 7. Same as Fig. 5, but for the gotglobe gene used in Fig. 3. The window is 20 and the homology limit is 10 (50%). The distri-
bution of the dots is rather uniform, suggesting one construction rule (repetition unit) throughout the gene.

significance if we consider the aspect of gene evolution
and structure. In both cases wavelets were able to
decompose seemingly "homogeneous" region in DNA in
smaller distinct areas. Given the type of analysis we
presented here, these smaller areas have probably been
evolved from diFerent primordial blocks. In this respect
our data suggest that genes have been constructed not
only by one primordial block, but by more. This could
indicate that these diFerent constructions were combined
later, possibly by a similar mechanism to exon shufBing.

Such "supershufBing" could lead to generation of genes
by combining long genomic sequences that contain int-
rons and exons. This in turn would suggest that exons
and introns may have been made by the construction
principle, as proposed by Ohno [4]. Accordingly, our re-
sults ofFer support to the intron-early theories [14],which
postulate that ancient genes were made from both introns
and exons rather than the intron-late theories which pos-
tulate that modern genes have arised from initially unin-

terrupted genes by later insertion of introns.
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