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We develop the skeleton algorithm to define the number of main branches Nt, of diffusion-limited
aggregation (DLA) clusters. The skeleton algorithm provides a systematic way to remove dan-

gling side branches of the DLA cluster and has successfully been applied to study the ramification
properties of percolation. We study the skeleton of comparatively large (- 10 sites) off-lattice
DLA clusters in two, three, and four spatial dimensions. We find that initially with increasing dis-

tance from the cluster seed the number of branches increases in all dimensions. In two dimensions,
the increase in the number of branches levels oK at larger distances, indicating a 6xed number of
%g = 7.5+ 1.5 main branches of DLA. In contrast, in three and four dimensions, we find indications
that the skeleton continues to ramify as one proceeds from the cluster center outward, and there
may not exist a constant number of main branches. Likewise, we find no indication for a fixed N&

in a study of DLA on the Cayley tree, the limit of "infinite dimensions. " In two dimensions, we

encounter strong corrections to scaling of logarithmic character, which can help to explain recently
reported deviations from self-similar behavior of DLA.

PACS number(s): 81.10.Aj, 05.40.+j, 64.60.Ak, 81.10.Jt

I. INTRODUCTION

The &actal nature of diffusion-limited aggregation
(DLA) has been established by a number of studies, and
a theoretical framework is being developed [1,2]. In the
initial paper written by Witten and Sander [1], power-
law behavior of the two-point correlation functions was
found. Later, Meakin [3] observed power-law scaling
of the radius of gyration of DLA in two (2D), three
(3D), and four dimensions (4D). Enhanced on- and off-

lattice algorithms facilitated studies of larger aggregates
(Meakin et al. [4] and Ball and Brady [5]) and a striking
influence of the lattice structure on the structure of the
aggregates was found [6]. Advanced off-lattice simula-
tions by Ossadnik [7] grew clusters up to M = 5 x 10'.
All these studies indicate or confirm a fractal dimension
of dy ——1.715 + 0.004 as reported by Tolman and Meakin
[8]. Apart from the scaling of the radius of gyration
with cluster mass, &actality is revealed in studies of the
branching structure of the aggregates by, e.g. , Alstrpm,
Trunfio, and Stanley [9], Hinrichsen et al. [10], Ossad-
nik [11], and more recently Yekutieli, Mandelbrot, and
Kaufmaii [12]. Self-similarity has also been found in a
study by Argoul et al. calculating the moments of the
mass distribution of on-lattice clusters [13], by Barabasi
and Vicsek's mapping of the cluster perimeter to a self-
affine surface [14], in investigations of the fjord geometry
of DLA [15,16], and many more (for reviews, see, e.g,
[17-22]).

However, almost as old as the model itself are reports
about deviations &om a simple statistically self-similar

structure. In Refs. [5,23] lattice anisotropy and deposi-
tion habit effects on the structure of lattice clusters were
studied, Meakin and Vicsek [24] found that the tangen-
tial and radial two-point-correlation functions in DLA
display different exponents. In recent works, however,
Hegger and Grassberger [25] point out that off-lattice
DLA in strip geometry displays a slow approach to lo-
cal isotropy. Differences arise in the fractal dimensions
measured in circular or strip geometry [26]. Simple self-
similar scaling is not sufficient to fully characterize the
mass distribution within a DLA cluster, as recognized
by Meakin and Havlin [27], Vicsek, Family, and Meakin
[28], Amitrano, et al. [29], and Mandelbrot [30]. Mandel-
brot examined the lacunarity [31,32] of ofF-lattice DLA
and found a trend towards increasing compactness for
increasing systems size, which is not reflected in the mea-
surements of the radius of gyration of the clusters.

In our study we will apply the "skeleton" algorithm
[33,34] to calculate the number of main branches Nt, in
oK-lattice DLA. (Sec. II). We obtain the skeleton of a
DLA cluster by removal of all the small dangling side
branches of the cluster (we define the skeleton in the fol-
lowing section). Only the main branches that reach out
to a certain &action of the cluster radius remain. For a
self-similar, scale-invariant structure we expect that the
large-scale properties, like the number of main branches
of the cluster, are not altered under rescaling. Con-
versely, we take an increase or decrease of the number
of main branches with increasing cluster size to suggest
that the structure is not self-similar.

In 2D, we find that significant finite-size effects of log-
arithmic nature are present that may be related to some

1063-651X/96/53(2)/1795(10)/$06. 00 53 1795 1996 The American Physical Society



SCHWARZER, HAVLIN, OSSADNIK, AND STANLEY 53

of the observations reporting deviations from simple self-
similar behavior. Asymptotically, however, the number
of main branches of 2D DLA approaches a constant num-
ber (Sec. III). In contrast to the behavior in 2D, the
number of branches of 3D and 4D DLA increases with
cluster mass, indicating that these clusters may not be
self-similar (Sec. IV).

II. THE SKELETAL)N

DLA has a loopless tree structure [35]. This obser-
vation is apparent in simulations of o8'-lattice aggregates
[36,37] where an incoming particle is added to the cluster
when its distance to the cluster is below a speci6c stick-
ing distance. Its "parent" particle is the one that it was
closest to at the moment of incorporation into the clus-
ter. The child-parent relationship allows us to uniquely
assign a generation number or "chemical distance from
the seed" to every cluster particle. To this end, we as-
sign to the seed particle of the DI A cluster the number
Z = 0. The children of the seed are assigned the chemical
distance E = 1; children of E = I particles have chemi-
cal distance L = 2. In general, each particle inherits the
chemical distance of its parent and increases this number
by one to find its own. The chemical distance turns out
to be a very useful quantity in studies of the branching
properties of DLA [9—ll] and we will use it here to define
the skeleton of DLA —closely following Ref. [33].

Roughly speaking, we obtain the skeleton by removal
of all the small dangling side branches of the cluster. To
this end we first identify all the sites that are tips of
branches —those sites to which no other particle has
been attached during the growth process. The E value
of each tip Et,-p is then passed back to its parent and
grandparent and so forth until we hit an ancestor site
that has more than one child. In this case, only the
largest of the Zq,.p values of the children is retained. We
iterate this process until all cluster sites "know" their Eq,.p
value.

Now let us choose an arbitrary value E less than the
largest chemical distance A of any site Rom the seed.
Given 8, we de6ne as the skeleton those sites for which
both Et,~ & I. and E & E„holds. Thus, side branches that
have not grown out to at least E do not contribute to
the skeleton.

In Fig. 1, we display the skeletons of two randomly se-
lected growing DLA clusters at mass M = 5 000, 50 000,
and 500000. In this figure, E is chosen to be half the
"chemical radius" A/2 of the cluster. Note that the ter-
mination points of the skeleton are located almost on a
circle, although we use the chemical and not the Eu-
clidean distance from the seed to define the skeleton.
This indicates that DLA grows radially outward with-
out forming loops. Indeed, it has been found that the
&actal dimension d;„of the path connecting the cluster
seed to a given site is equal to 1 [35]. Here, ci;„ is de-
Gned by E r" '". In other words, for cluster sites at a
given distance r &om the cluster seed, the average value
(E) is proportional to r, (E) r. For the remainder of
this study, we will consider E and r as equivalent.

One physical interpretation of the skeleton in DLA can
be obtained if we consider the aggregate as a conductor
situated between the grounded seed and a circular elec-
trode (a sphere or hypersphere in 3D or 4D, respectively)
of "radius" 8 . Then the skeleton is the collection of paths
that contribute to the current through the aggregate.

The skeleton as defined above has some desirable and
some less desirable features. First, its definition is cer-
tainly simple, which is desirable. Second, we see in Fig. I
that in an intermediate range of E the number of branches
in the skeleton is small, which is another desirable fea-
ture since we claim that the skeleton identifies the main
branches of the DLA cluster. However, we see that close
to E a lot of branches appear. Their presence ultimately
reQects our ignorance as to whether a specific side branch
will keep growing or die out. Thus, these branches are a
very "physical" property, but, nevertheless, an undesir-
able feature. We will address this problem by keeping E

FIG. 1. Skeleton for two growing DLA clusters: (a)—(c)
First cluster; (d)—(f) second cluster. Growth of the cluster
has been interrupted at cluster masses M = 5000 (a), (d),
50000 (b), (e), or 500000 (c),(f). The determination of the
skeleton is based on a value of g, /A = 0.5. The skeleton is
then rescaled so that, independent of cluster mass, the same
size results.
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a variable and systematically test the dependence of the
skeleton calculations on this parameter.

We define A = l, /A and consider ensembles of DLA
clusters for which the value A is axed. For such an en-
semble, we define B(A, A; f) as the average number of
sites in the skeleton at chemical distance E from the clus-
ter seed. Note that B(A, A; /) is defined only for E & 8, .

Some general conclusions about properties of the DLA
skeleton can be drawn &om the definition and are visible
in Fig. 1: (i) For E = 0, only the cluster seed contributes,
thus B(A, A; E = 0) = 1 independent of spatial dimension
d and cluster size A. (ii) Since l r, and since DLA is
essentially loopless so that overhangs can be neglected,
we can determine the value B(A, A; E = E,) from the num-
ber of intersection points of a "cookie cutter" of radius
corresponding to 8, with the DLA cluster. As the ana-
log of a cookie cutter in 3D we consider a sphere, and
in 4D a hypersphere. The result is B(A, A; E,) E, ~

where df denotes the &actal dimension of DLA, which
depends on the embedding dimension d. The exponent
df —1 follows &om the fact that the codimension of the
intersection of two sets is obtained as the sum of the codi-
mensions of the two intersecting sets. (iii) The number
of sites in the skeleton increases monotonically with 8,
i.e. , B(A, A;E') & B(A, A;/) if E' & l. Qualitatively we
observe &om Fig. 1 that the increase is slow in the vicin-

ity of the cluster seed, but is followed by a precipitous
increase close to l, . (iv) For fixed f, and cluster "radius"
A, the number of sites in the skeleton decreases monoton-
ically when A is increased, because some branches that
contribute to the skeleton at some value of 8 fail to reach
larger values. In the extreme case, when A = 1, we obtain
B(1,A; E) = 1, independent of A and E.

In the study of the skeleton of percolation clusters [33],
a slow increase of the number of arms for small E was
found to be due to finite-size corrections. Taking this
into account, one obtains for small E a constant number
of branches. In analogy to the percolation example, we
use finite-size scaling techniques to extract information
about DLA &om our 2D, 3D, and 4D skeleton calcula-
tions, which we present in the following sections. The
DLA results in finite dimensions will be compared to the
skeleton of a random Cayley tree model, which can be
considered to be the limit of infinite dimensionality of
DLA [38].

III. SKELETON OP 2D DLA

In Fig. 2 we display B(A = 0.5, A; 8) as a function of
f/E, for A = 100, 316, 1000, 3162, and 5000. For A &
1000, we obtain our data from 500 oK-lattice clusters,

1000 1000-
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100 :
-----A

10:———p

10 10 10 10

FIG. 2. Log-log plot of the 2D skeleton B(A = 0.5, A; E) vs X/E, for different A values as indicated in the legend. For A & 1 300
data are averaged over 850 off-lattice DLA, for A ) 1300 averages over 114 clusters are taken. For comparison, we have also
averaged data in the constant M ensemble, instead of the constant A ensemble used here, and obtain similar results (not
shown). Note that in an intermediate region of the plot (//l & 0.3) a slope can be associated with B(A = 0.5, A;/) vs E/f . As
A increases, this slope becomes increasingly smaller, indicating that the asymptotic curve may be Hat in this "scaling" region.
Inset: The number of branches in the skeleton at 8 = l, B(A, A; E ) is equal to the number of intersection points of a cookie
cutter of radius E, in 8 space with the cluster, i.e. , B(A, A;E ) A ~ . The solid line is a guide to the eye and indicates a slope
of dy —1 = 0.70. Different symbols refer to difFerent A: 0.8 (Q), 0.6 ( ), 0.5 (A), 0.4 (~), and 0.2 (~).



1798 SCHWARZER, HAVLIN, OSSADNIK, AND STANLEY 53

for A & 3 162, 114 clusters are averaged. The clusters are
grown stepwise and growth is interrupted for the analysis
when A equals one of the above listed values. For A =
5 000, the cluster mass M is typically M = (1—1.5) x 10s
sites.

As a function of E/E, we find that after an initial short
transient the central part of the data displays approxi-
mately linear behavior. The linear region widens when
the cluster size A increases. The approximate linear be-
havior terminates when E/f approaches = 0.3. Beyoiid
E/E, = 0.3, B(0.5, A; E) increases sharply towards the fi-

nal value S,f . However, the linear region of the data
tends to become Hatter as we proceed to larger A. Since
B(A, A) is monotonically increasing, the slope n(A, A) in
the linear region cannot be negative. Thus, asymptot-
ically a(A, A) can either approach 0 or assume a finite
value ~ 0. We will refer to the restricted range of ap-
proximately linear behavior as the "scaling regime" of
the skeleton.

In order to distinguish between these two possibilities,
we examine the dependence of n(A, A) on system size,
here characterized by A. To this end, we determine the
slope o.(A, A) of a linear least-squares fit,

the &ozen region of the DLA cluster which effectively
stopped growing [29], so that our results should be less
efFected by possible slow structural changes in the growth
zone of the cluster [16,40,41]. Therefore, although the fit
region of B(A, A; E) becomes narrower, we assume that
a (A) = 0 extrapolates into the small A regime.

The implications of a (A) = 0 are intriguing. Asymp-
totically, we can assign a jixed number of main branches
Nb to 2D DLA growth. We deduce the actual number
of these branches &om the behavior of the intercepts
P(A; A) of the fit (1) in the "flat" region of the skele-
ton. In Fig. 3(c), P(A;A) is plotted as a function of
1/lnA for several A. The value of P(A;A) slightly in-
creases as the cluster size grows —corresponding to more
main branches in larger systems. However, the increase
levels ofF at about P (A) = 2 6 0.2, so that on average
Ns = exp[P (A)] = 7.5+ 1.5 main branches result.
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and I/I. , ( 0.3. We use the assumption, familiar from
the estimate of critical exponents from finite system size
calculations (see, e.g. , [39]), that n(A, A) may be written
as
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Here, the leading correction term f (A, A) to the asymp-
totic value n (A) is typically either (i) a power law

A ~ or (ii) a logarithmic term, e.g. , 1/lnA. Both
vanish for A ~ oo. The dots indicate corrections that
decrease faster than f(A, A) as A -+ oo.

In Fig. 3(a) we plot o.(A;A) vs 1/lnA for difFerent
values of A. Prom the almost linear behavior of n(A;A)
for large A we conclude that the leading-order correction
term can be approximated by the reciprocal of ln A (ii),
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Here, A(A) denotes an amplitude that depends on A as
evident f'rom Fig. 3(a). However, our calculations do not
allow us to exclude the possibility that f (A, A) vanishes
in the power-law fashion (i), although, in this case the
characteristic power p must be small, p ( 0.2. Larger
values of p would lead to signi6cant curvature in the large
A behavior of n(A, A) [cf. Fig. 3(b)].

From Fig. 3(a) we conclude that n (A) = 0 for 0.3 &

A & 0.8 by extrapolating the trend displayed by ci(A, A)
for the A range accessed by our simulation. Since for
A ~ 1, B(A, A; E) = 1 for all I., we expect this result to
also hold if A ) 0.8. For small A, the skeleton probes

FIG. 3. Finite-size behavior of the slopes n(A, A) of
B(A = 0.5, A;I) vs I/8 calculated from data in the range
g ) 4 and E/g, ( 0.3. The slopes cx(A, A) for different A [0.8
(Q), 0.7 ( ), 0.6 (A), 0.5 (&), 0.4 (~), 0.3 (a)] are plotted vs

(a) 1/ ln A and (b) 1/A. In (a) the slopes lie on asymptotically
straight lines indicating a finite-size correction term 1/ ln A.
This behavior should be contrasted to the calculations in (b)
where the correction term is assumed to be proportional to
1/A and pronounced curvature is displayed as A increases. (c)
Intercepts P(A, A) of the straight line fit with the ordinate vs
1/lnA. If n (A) = 0, then P (A) denotes the logarithm of
the number of arms Ng in the "Hat" region of the skeleton.
From P = 2 + 0.2 we conclude that Nq = 7.5 + 1.5.
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IV. DLA IN HIGHER DIMENSIONS: 3D AND 4D

We also perform simulations of oK-lattice DLA in 3D
and 4D. Our findings are quite diferent from the 2D case,
a result not surprising in light of earlier work suggesting
that 2D is a special case [42]. In particular, our calcu-
lations suggest that in contrast to the 2D case, where

(A) = 0, in the 3D and 4D case n (A) & 0. We dis-
cuss in the following the numerical data supporting this
result.

A. Skeleton of 3D DLA

In Fig. 4 we display B(A = 0.5, A; I) for 3D DLA. Dif-
ferent curves are characterized by diferent values of A.
The largest value of A is 560, which corresponds to DLA
clusters with M = 10 particles. The skeletons of 450
(A & 200) and 75 (A & 200) clusters have been averaged
to obtain the displayed data.

The tendency for the central part of the plot to become
Batter as A increases is much less pronounced than in 2D.
In fact, by eye there is only a very small change of the
slope visible as we increase the cluster size. We take
this as one indication that the slope may actually remain
finite in the asymptotic limit.

To some extent our observation is supported by the
finite-size scaling plots Figs. 5(a) and 5(b), which show
the A dependence of the slope o. (A; A). Similar to 2D,
we obtain the a. (A; A) from a linear least-square fit of
lnB(A, A;/) in the region characterized by E & 4 and

f/f, & 0.3. As visible in these plots, the functional form
of the finite-size correction terms in 3D is much less clear
than in 2D. Although, as in 2D, for all values of A in
Fig. 5(a) some region of linear behavior is visible, the ex-
trapolation to infinite systems is inconclusive; whereas
the curves for large A values (open symbols) seem to
extrapolate to values of o. (A) in the range 0.05—0.3,
smaller A values indicate a (A) & 0. Since a. (A) must
be positive, it seems possible that the actual finite-size
corrections are stronger than 1/ ln(A), e.g. , vanishing
in power-law fashion for A —+ cm.

In contrast to 2D, there is a more significant region
of straight line behavior apparent in the plot of o(A; A)
vs 1/A [Fig. 5(b)]. If we here assume that the finite-size
corrections are 1/A then the finite-size behavior rather
indicates that n (A) & 0 for all A.

From the simulation data of 3D DLA we have thus col-
lected three indications that in 3D the asymptotic values
of n (A) are larger than zero: (i) the very slow change in
the slopes of B(E, A; A), (ii) finite-size scaling extrapola-
tions of n(A, A) to positive values for small A (the behav-
ior of the other A's are pointing to a stronger than loga-
rithmic decay to zero of the finite-size corrections), and
(iii) for an assumed A dependence all n(A; A) extrap-
olate to possibly diferent, but nonzero positive values.
We have made equivalent plots for correction exponents
between 0 and —1 and we have not found a single con-
vincing value yielding asymptotically linear behavior for
all A values. In particular for small A, where the statis-
tics are worse due to the smaller extension of the scaling
regime, larger clusters are required to reach asymptotic
behavior. Some observations on other systems, which
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FIG. 4. Log-log plot of the 3D skeleton B(A = 0.5, A; g) vs E/8, for diferent A values as indicated in the legend. We take
averages over 75 (A & 200) and 450 (A & 200) clusters. Note that the tendency of the power-law region in the plot to become
flatter with increasing A is much less pronounced than in the 2D case 2 and is in fact rather indicating a nonzero o. (A) & 0.
Inset: Number of branches in the skeleton at E = E, We expect B(A, .A;8 ) A ~ . The solid line is a guide to the eye and
indicates a slope of 1.5 dy —1 in 3D. Different symbols refer to different A and are the same as in Fig. 2.
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will be discussed in Secs. V and VI, also indicate that in
3D n (A) could assume values larger than zero.

The significance of such positive values is that in 3D (in
contrast to the 2D behavior) the number of branches of
the skeleton increases monotonically in power-law fash-
ion as a function of I/f even in the limit of infinite clus-
ter size. However, like in 2D, very strong corrections to
the asymptotic behavior are present if we consider Finite
systems. This is certainly a surprising result when we
compare it to, e.g. , the behavior of the scaling of the ra-
dius of gyration data for DLA [36], which shows a very
clean scaling behavior without significant finite-size cor-
rections.

4.5—

B. Skeleton of 4D DLA
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FIG. 5. Finite size behavior of the slopes a.(A, A) of
B(A = 0.5, A; 8) vs f/E, calculated from data in the range) 4 and g/g, ( 0.3 for 3D DLA. The slopes n(A, A) for
different A with symbols as in Fig. 3 are plotted vs (s) 1/ ln A
and (b) 1/A. (c) Intercepts P(A, A) of the straight line fit with
the ordinate vs 1/ ln A.

The skeletons of 50 ofF-lattice DLA clusters were aver-
aged to obtain the data displayed in Fig. 6. The clusters
with A = 190 contain up to 500 000 particles. Simi-
lar to the 3D case, the slopes in the central part of the
B(A, A; /) data do not tend to become Hat with increasing
mass and this behavior is reBected in the A dependence
of n(A; A), which we display in Figs. 7(a) and 7(b). The
quality of the 4D calculations is much poorer than that
of the 3D and 2D cajculations. However, a value (or dif-
ferent values) n (A) larger than zero is consistent with
the two finite-size scaling plots Figs. 7(a) and 7(b). As in
3D, such a positive value indicates a power-law branching
of the skeleton in the scaling regime as the cluster mass
goes to in6nity.
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FIG. 6. Log-log plot of the 4D skeleton B(A = 0.5, A;L) vs E//, for difFerent A values ss indicated in the legend. As in the
3D case, the central region of the plot does not display a tendency to become Bat as A increases. However, the system sizes
seem still too small to draw a Anal conclusion, in particular if one considers the size dependence of the slopes in the power-law
region and the coinparatively poorer quality of the calculations (see Fig. 7). Inset: Number of branches in the skeleton at
e = e, . We expect B(A, A;/, ) A ~ . The solid line isa guide to the eye and indicates a slope of 2.2 = dy —1in 4D. DifFerent

symbols refer to different A and are the same as in Pig. 2.
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disregard screening of the interior parts of the tree, which
in finite dimensions is the essential mechanism to produce
low-dimensional &actal structures [43]. We have numeri-
cally grown clusters of this tree model with functionality
z = 3, 4, and 5 as large as 32 shells. As a function of the
shell number, the number of occupied sites grows expo-
nentially [38]. The skeleton shows no sign of saturation
as a function of I/E, T.he increase seems to have even ex-
ponential character, with ln H(A, A = 32; 8) oc 8/I. , and
prefactors that depend on z and A.

We are thus con&onted with two extreme situations.
On the one hand, in 2D DLA, where screening is very
important, we observe a constant number of branches.
On the other hand, without screening the skeleton grows
even exponentially as a function of E//, We. may thus
speculate that if in some finite dimension the screening
becomes sufBciently weak there will be a transition from
nonbranching to branching behavior. We argue here that
this transition occurs from 2D to 3D, albeit the branching
behavior has power-law rather than exponential charac-
ter.

2.0—

1.5—
I I

0 0.05 0.10 0.15 0.20 0.25 0.30
1/in(~)

FIG. 7. Finite-size behavior of the slopes n(A; A) of
B(A = 0.5, A;E) vs E/E, calculated from data in the range
E ) 4 and E/E, ( 0.3 for 4D DLA. The slopes n(A, A) for
difFerent A with symbols as in Fig. 3 are plotted vs (a) 1/ ln A
and (b) 1/A. (c) Intercepts P(A, A) of the straight line fit with
the ordinate vs 1/ln A.

Moreover, if we consider the intersections P{A,A) of
the straight line fits to the scaling region we observe that
they may diverge as A —+ oo. Such behavior would imply
that B(A, A;E) may not converge to a limit as A ~ oo.
Thus we expect rather strong deviations &om self-similar
behavior in 4D and for A —+ oo no self-similar limit as in
the 2D case may exist.

V. CAYLEY' THEE MODEL

The realization of the DLA growth model on a Cayley
tree is considered to be the mean-field or infinite dimen-
sionality limit of DLA. DLA on the Cayley tree has been
formulated as follows [38]. To the cluster seed (shell 0),
we link z surface sites (shell 1) z ) 2 is the functional-
ity of the model. In each growth step, we select (occupy)
one of the surface sites randomly. We then create z —1
new (empty) surface sites and link them to the just oc-
cupied site. The shell number of the new empty sites is
equal to the sheH number of the occupied parent incre-
mented by 1. Note that all occupied sites have z links
to neighbor sites and that all empty sites have exactly 1
neighbor site.

Since new cluster sites are randomly picked from the
set of all surface sites of the growing tree, we eA'ectively

VI. DISCUSSION

A. Previous results on the number
of stable branches of DLA

The number of branches Ng of DLA has been used as
an important morphological characterization of the clus-
ter [4,44—49]. Here, we want to briefly discuss the conse-
quences of our findings with respect to previous results.
In 2D using conformal mapping arguments, Ball [46] has
proposed that the maximum number of stable branches
N „ is related to the mass scaling dimension D of the
cluster by

(4)

For D 1.7 this relation predicts N „-4.9. Similarly,
Turkevich and Scher [44] have modeled the tips of the
cluster as the corners of a convex polygonal cluster en-
velope. The number N of branches then determines the
tip angles and those in turn the mass scaling dimension,
namely, D —1 = K/(N + 2). If one replaces D —1 from
Eq. (4) and assumes % = K „, we obtain K „=4.8,
in agreement with the previous prediction.

Both numbers seem to be significantly smaller than
our finding Nb = 7.5 6 1.5 in 2D. (1'Irrkevich-Scher have
pointed out that there exists a relation between the frac-
tal dimension of the cluster, which finds its expression in
the scaling behavior of the tip growth probability and the
geometric shape of the absorber. Of course there can be
7 absorbers of the same shape, but then the Turkevich-
Scher assumption of a simple convex polygonal envelope
of the cluster has to be given up. This is a necessary con-
sequence of our findings. ) It is not really clear to us why
Nb is diferent &om N „following &om Eq. (4). On the
one hand, if the actual number of branches is larger than
the maximum number of stable ones then the competition
among branches for the incoming Aux of random walkers



a802 SCHWARZER, HAVLIN, OSSADNIK, AND STANLEY 53

will cause branches to die (cf. [50]). If, on the other hand,
the number of branches is too small, then new branches
will be created because the fjords of the aggregate are
not sufFiciently screened to suppress growth. It is, how-
ever, possible that this competition process establishes a
number of branches difFerent from (and larger than) the
stability limit N „.Thus the observed number N~ does
not constitute a contradiction to Ball's arguments.

B. Relation to "lacunarity" measurements on DLA

Recently, Mandelbrot has investigated the lacunarity
of 2D ofF-lattice DLA [30]. To calculate the lacunarity
of a cluster of span A, he (i) selects the frozen interior
region of the cluster (of span kA, k ( 1) and rescales
all the particles coordinates into the unit circle, then (ii)
centers solid disks of radius e (( 1 on the rescaled par-
ticle positions and (iii) determines the area fraction f
of the unit circle covered by the e disks. For a "nor-
mal" fractal, one expects f to saturate at a value less
than unity when A increases and in this case to provide
a measure for the lacunarity of the object. For DLA,
however, f seems to increase continuously with A to a
value of unity. Mandelbrot argues accordingly that ei-
ther DLA displays a "massive transient" or a "limitless
drift" towards increasing compactness.

We argue that the logarithmic Rnite-size corrections
that we see in 2D in the approach of B(A, A;E) to its
asymptotics can explain the "massive transient" picture.
As we have seen above, B(A, A;8) increases with system
size corresponding to structurally diferent clusters with
more main branches Ng. Consequently, the area fraction
f increases.

Thus, 2D oB'-lattice DLA shows a very slow structural
change towards its asymptotic structure, similar to its
on-lat tice siblings.

C. Why is 2D DLA difFerent
from higher-dimensional DLA7

The remaining open question is why on the one hand
n (ji) -+ 0 in 2D, but, on the other hand, n (A) ) 0
in 3D and 4D and in the latter case possibly even a di-
vergence of P(A, A) with A. Let us first note that 2D is
known to be a "critical dimension" for radial DLA with
respect to the scaling properties of the growth probabil-
ities of the surface sites [42,51,52]. We find two more
indications supporting our result, one from a simple con-
sideration of the cluster density in difFerent spatial di-
mensionalities, the other &om a comparison of the cor-
related DLA tree to a random tree model, for which the
scaling behavior of the skeleton is known [34].

CLu8~er c'deneigy" and screening

We have already noted above that the number of
branches in the skeleton at its termination points at E

df —1is E . Thus, for given E = Z, there are many more

branches present in the 3D and 4D skeleton than in the
2D skeleton. In order that these branches contribute to
the skeleton in the scaling region they must originate
deep in the cluster interior.

With increasing dimension, the screening of the clus-
ter interior &om incoming particles decreases. This de-
crease manifests itself, for example, in the strong semi-
exponential screening of the cluster fjords in 2D [53—57]
in contrast to the power-law type [42] screening in 3D
or in the screening free Cayley-tree model where we
also observe n (ji) ) 0. Qualitatively, the reduction of
screening can also be seen in the mean-field expression for
the particle penetration depth p A" "f.The pen-
etration depth increases with d, because df approaches
d —1 from above. (It is, however, known from simulations
that at least in 2D this relation does not hold and the
penetration depth is A. )

Therefore we conclude that the weaker screening in
dimensions d & 2 is responsible for the further increase in
the number of branches of the skeleton both as a function
of E/I. , and as a function of cluster size A.

2. Compaviaan ta a vandom tree model

DLA has the structure of a tree. Thus, we find it in-
structive to compare our findings for the ofF-lattice DLA
skeleton to results for the skeleton of a random tree model
[34]. This tree model is defined on a 2D square lattice
and characterized by a tunable "intrinsic" dimension dg,
which determines how the mass M(E) of the tree object
depends on the chemical distance 8 from the cluster seed,
i.e. , M(E) oc I~'. To this end, we occupy randomly exactly
K(E) = E"' sites in the /th chemical shell (or fewer if
necessary) —all the other sites are blocked. Only those
sites in the 1th shell shall be occupied that do not close
loops, i.e. , that are not neighbors to sites in previous
shells. Note that apart Rom possible constraints due to
the embedding lattice at small 8, the topological struc-
ture of the clusters does not depend on the dimension of
the embedding lattice.

Reference [34] then considers the skeleton B(1,A; g) of
a tree with intrinsic dimension dg. In contrast to DLA,
here in general B(1,A; E) ) 1, because the last chemical
shell contains N(A) = E ' )) 1 sites. In these random
tree models there exists a sharp transition value d&

1.65 + 0.05 which separates two regions with diferent
types of behavior. For trees with dg & d& the skeleton
displays a Hat —approximately constant —region as a
function of E, like the one observed in the 2D DLA case
(nonbranching skeleton). However, for larger values of dr
the skeleton displays a well-defined power-law increase as
a function of /, i.e., n (1) ) 0 (branching skeleton).

Thus, if we consider DLA as such a random tree, we
expect a branching skeleton for spatial dimension d & 2,
since dg = df & d&. In 2D, df is only slightly larger than
d&, or even equal to d& within the error bars, which is
consistent with the observed nonbranching skeleton.
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VII. SUMMARY'

We have determined the skeleton of comparatively
large (= 10 sites) off-lattice DLA clusters in 2D, 3D,
and 4D. We find that, asymptotically, in 2D the skeleton
of DLA suggests a fixed number of Ng —7.5 + 1.5 main
branches and a self-similar structure. In 3D and 4D, and
possibly all spatial dimensions d & 4, the DLA skeleton
is a ramified object, which displays branching over the
whole range of 1 values for which it is defined.

For all dimensions we find strong finite-size e8'ects cor-
responding to a slow change in the structure of DLA as
the cluster size increases. The presence of strong correc-
tions to scaling of logarithmic character in 2D DLA is
in agreement with findings of deviations from self-similar
behavior reported elsewhere.

Moreover, in 4D, it is possible that the structure of the
aggregate keeps changing even asymptotically, such that
there is no self-similar limit.
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