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Geometric description of chaos in two-degrees-of-freedom Hamiltonian systems
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This paper tackles Hamiltonian chaos by means of elementary tools of Riemannian geometry. The

stability of dynamics, related to curvature properties of the configuration space manifold, is investigated

through the Jacobi —Levi-Civita equation (JLC) for geodesic spread. The case of two-degrees-of-freedom

Hamiltonians is considered in general and is applied to the Henon-Heiles model. The detailed qualita-

tive information provided by Poincare sections are compared with the results of geometric investigation;

a complete agreement is found. The solutions of the JLC equation are also in quantitative agreement

with the solutions of the tangent dynamics equation. It is shown here that chaos in the Henon-Heiles

model stems from parametric instability due to positive curvature fluctuations along the geodesics

(dynamical motions) of configuration space manifold. This mechanism is apparently the most

relevant —and in many cases unique —source of chaoticity in physically meaningful Hamiltonians.

Hence a major difference with the geometric description of chaos in abstract ergodic theory is found;

chaotic Hamiltonian flows of physics have nothing to do with Anosov flows defined on negative curva-

ture manifolds. Even in the case of fully developed Hamiltonian chaos, hyperbolicity is not necessarily

involved. FinaBy, the paper deals with the problem of finding other criteria for the onset of chaos based

on purely geometric tools and independently of the numerical knowledge of the trajectories.

PACS number(s): 05.45.+b, 03.20.+i, 02.60.Cb

I. INTRODUCTION

Motivated by the need for e8'ective analytic tools to
tackle Hamiltonian chaos, a differential geometric ap-
proach has recently been proposed and successfully ap-
plied to the study of large Hamiltonian systems [l —4].
This method combines well known theoretical facts [5]
with numeric simulations, resulting in a very powerful
approach that provides an explanation of the origin of
Hamiltonian chaos and an effective method to quantify it.

The starting point of the method is that trajectories of
a standard Newtonian system can be viewed as geodesics
of a Riemannian manifold endowed with a suitable
metric. The instability properties of geodesics (and hence
of the mechanical trajectories) are related to curvature
properties of the underlying manifold through the
Jacobi —Levi-Civita (JLC) equation for the evolution of
geodesic separation. In the cited works, due to the large
number of degrees of freedom, only approximate versions
of the JLC equation for geodesic spread have been used.
A basic question has been left open by the previous
works. We wonder whether the geometric framework
provides a complete description of dynamical stability. A

priori, the large number of degrees of freedom together
with the Inentioned approximations of the JLC equation
could hide a possible inadequacy of the approach.

The present paper is intended to clarify this point. In
particular it aims at (i) showing that the Riemannian ap-
proach also works properly for systems with few degrees
of freedom; (ii) showing that the exact JLC equation con-
veys aH the detailed information about order and chaos,
obtained through Poincare section or Lyapunov exponent
analysis of phase space at different energies; (iii) showing

that chaos in the Henon-Heiles model —chosen as a para-
digmatic example —stems from parametric instability
due to positive curvature Quctuations along the geodesics
of the configuration space manifold; and (iv) hinting at
additional criteria for the onset of chaos based on a pure-
ly geometric analysis.

In Sec. II we recall the basic definitions and concepts
of the geometric formulation of Newtonian mechanics
and of its stability problem, making use of the JLC equa-
tion for a generic two dimensional system. In Sec. III—
with the aid of a numerical study of the Henon-Heiles
model —we show that geometry contains all the informa-
tion about order and chaos. In Sec. IV a brief account is
given about the use of the integral of the negative section-
al curvature —using the Eisenhart metric —to provide
another way of detecting the stochasticity threshold.

II. RIEMANNIAN FORMULATION
QF NK%'TQNIAN DYNAMICS

Let us consider a dynamical system described by the
Lagrangian function

L (q, q) =
—,'a, k(q) j'j"—V(q),

or, equivalently, after the usual Legendre transform, by
the Hamiltonian

II(p, q) =—,'a'"(q)p;p + &(q),

where the momenta are given by p;=a,.k(q)q . The~ k

mechanical trajectories of such a system are geodesics of
the configuration space manifold endowed with a proper
Riemannian structure described by the metric tensor [5]
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g;k(q) =2[E —V(q)]&;k . (3) suming for the Jacobi field J the following decomposition:

This metric is known as the Jacobi metric, and is defined
in the region of configuration space where E & V(q). We
denote such a manifold by (M,gj ).

In local coordinates, the geodesic equations on a
Riemannian manifold are given by

d g +pt dg dg
O (4)~" ds ds

J(s)= gg, (s)e(,)(s), (7)

J
X d 2 e(')(s)

where [e(,). . . e(z)] is an orthonormal system of parallel-
ly transported vectors. In this reference frame it is

where s is the proper time, and I 'k are the Christoffel
coefficients of the Levi-Civita connection associated with

g,.k. By direct computation, using g,k=[E —V(q)]5,k,
I Jk =(1/2W)5' (BJ W5k +()k W5 —8 W5 k), and
ds =2W dt, it can be easily verified that the geodesic
equations yield

and the second term of (6) is

R (v, J)v=g (R (v, J)v, e( ) )e( )

J

(10)

d2ql QV

dt ()q'
(5) = g (R(v, e„,)v, e...)g;e„, ,

i.e., Newton's equations for the Lagrangian (1) in the
standard case a,k =5,k.

A geometrical point of view about the dynamical sta-
bility properties of natural motions, described by Eq. (5),
stems from a relationship between the stability of the geo-
desics of a Riemannian manifold and the curvature prop-
erties of the same manifold.

This link between stability and curvature is mathemati-
cally expressed by the Jacobi —Levi-Civita equation for
geodesic spread [6]. It describes the evolution of a vector
field J through which the separation between nearby geo-
desics can be measured. The JLC equation reads

2J
+R (v, J)v=0,

$2
(6)

where R (, ) is the Riemann curvature tensor, 7/ds is the
covariant derivative along a geodesic, and v =dq/ds.

In the majority of systems of physical interest (i.e., de-
scribed by standard Hamiltonians) the instability of near-
by trajectories can be studied by means of this equation.
Now a remark is necessary about the relationship be-
tween geodesics instability and chaos.

The two basic topological conditions for the onset of
chaos in any deterministic dynamics are stretching and
folding of volumes in phase space [7]. In the case of
Hamiltonian chaos, these two conditions are fulfilled by
the existence of homoclinic intersections [7,8].

In the Riemannian description of Hamiltonian chaos,
stretching of nearby trajectories is provided by instability,
and folding by not allowing the distance to grow
indefinitely; that is, by compactness. In this way, the
phase trajectories fold themselves and forget the initial
conditions; their evolution becomes unpredictable in the
long run. In the majority of systems of physical interest,
the ambient manifold (M, gz) is compact, and the insta-
bility of nearby trajectories can be studied by means of
Eq. (6).

This is what we are going to do in the simplest non-
trivial case: two-degrees-of-freedom Hamiltonian sys-
tems.

Let us begin by considering the general case, and by as-

so that Eq. (6) is finally rewritten as

d2$
2

+ g Q(jg;=0,
ds

(12)

—dq' dq'
ds dS

(13)

dq' dq2
(14)

so that g&e( )e J(&) =5~&, and Eq. (12) now becomes

d2al k 1 m n+pi(Rkl~„u e(i)u e(i) )
ds

+gp(Rk) „u "e(2)u e(", ) )=0, (15)

where Q; =(R(v, e(;))v, e( )). To tackle the exact JLC
equation at large dimension is a hard task because of the
very large number of independent components of the cur-
vature tensor. This is the reason why in previous
works —concerning many-dimensional systems —we
used only approximate versions of (6). In order to per-
form a detailed comparison between the information
given by the geometric approach and the phenomenology
obtained by standard means, here we restrict ourselves to
the two-dimensional case —corresponding to a two-
degrees-of-freedom Hamiltonian. In this case the study
of order and chaos benefits very much from the use of
Poincare surface sections, and the comparison can actual-
ly be detailed.

In two dimensions there is a simple choice for
[e(,),e(2)]. In fact, take e(, )lv and e(z)~~v; then since v is
parallelly transported by definition of the geodesic, e~2~ is
parallelly transported too, and if e&»le~2~ then e~» is also
parallelly transported. So let us explicitly write their
components with respect to a local (static) reference
frame as
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d g2 k 1 m n+42(Rklnin U e (2)U (2) }
ds

+Cl( kbnn U e (1)U e (2) )

and in synthetic notation

d 2g
+Q 11kl+ Q1242 —o

d'02
, +Q2242+Q2)k)=0.

ds

(16)

(17)

(18)

&V(q) [VV(q)]
1212 2 2 P7 (19)

with W=E —V(q); b, and V are the Euclidean Lapla-
cian and gradient, respectively. Let us remember that
Rz11z= —R1212, R2121=R121z, and R1zz1 —R1212. Us-

ing (14), (19) and q'=dq'/ds =U', a straightforward cal-
culation yields Q12 =Q21

=
Q22

=0 and

The components of the Riemann tensor are
R )k =8&I"k

—Bk I '&+ I k
I"

(
—I (I '

k', in two dimension
the only nonvanishing component is R1z1z, and computed
for the Jacobi metric of configuration space reads as

~ 1 2 ~ 1 2 ~ 2 1 ~ 1 2 ~ 2 1 ~ 2 1 Z ~ 2
Qll R1212q (1)q (1) + 2112q (1)'q (1) +R2121'q (1)'q (1) + 1221q e(1)'q (1)

~ 1 2 ~ 2 1 2=R1212(q e(1) —q e(1))

b V (VV)
2 2W

Hence Eqs. (17}and (18) become

d2$
+—,'Ag, =0,

S
(21)

(22)

d 2g

dt2
1 dW dk) (VV)
W dt dt

,
W

(23)

Passing from the proper time s to the physical time t in
Eqs. (21) and (22), we find

where Q denotes the scalar curvature of configuration
space.

It is obvious that a negative scalar curvature yields an
unstable solution of Eq. (21). This is the case of abstract
geodesic Aows of ergodic theory, which are defined on hy-
perbolic manifolds (more precisely, they are defined on
the unitary tangent bundle of Inanifolds of everywhere
negative curvature). However, in the case of physical
geodesic Qows, the scalar curvature derived from the
Jacobi metric, A=XV/W +(VV) /W, has little
chance to be negative. In fact, in order to have % &0, it
is necessary, but not sujPcient, that 5V &0, and this does
not happen for the majority of physical potentials, which
are binding in the large range and only locally may give
EV&0.

Hyperbolicity is not the only way to make unstable
solutions of Eq. (21). If %(s) is not constant, the loss of
stability of the geodesics can be also induced by paramet-
ric resonance. Let us briefly recall what parametric reso-
nance is. If the parameters of a dynamical system vary
periodically in time, then a stable solution can be made
unstable even if it is stable for each value of the parame-
ters; this is the case of a harmonic oscillator whose fre-
quency is periodically modulated in time with a suitable
period [9]. We have shown in previous papers [1—4] that
this is the dominant mechanism of instability in several
physical geodesic Aows on high-dimensional manifolds.
In Sec. III, we show that this is also the case for a typical
two-degrees-of-freedom system.

'02

t 2 (24)

gl(t}
Y(t)=pi(t) exp ,' f dt W/—W-

L

(25)

that recasts Eq. (23}in the form of a Hill equation

Equation (24) tells us that the parallel component of geo-
desic separation does not accelerate, thus only the
transversal component gl conveys information about the
behavior of nearby geodesics; and Eq. (23) describes
without approximation the stability properties of the dy-
namics of two-degrees-of-freedom Hamiltonians. It is a
scalar equation whose solutions are obtained by numeri-
cal integration simultaneously with the integration of the
dynamical system under investigation.

If the solution gl(t) computed along a given trajectory
remains bounded or grows at most linearly with time,
then this trajectory is stable. If g, (t) grows exponentially
with time, then the trajectory is chaotic, i.e., unstable
with respect to any variation —even arbitrarily small —of
coordinates and momenta operated at any given point of
it.

Unstable solutions of Eq. (23) are produced by a non-
trivial interplay of the last two terms. In fact —W/W
takes both positive and negative values, so that it acts al-
ternatively as a damping or an antidamping. In order to
clarify how this interplay works, we make the substitu-
tion [10]
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d Y +Q(r) Y=0,
dt

where

0( ) ~V+ (VV) 1 V
4 S'

1 d V
2 dt 8'

(26)
(26) together with the usual tangent dynamics equation,
we can make a quantitative comparison between the
geometric analysis and the traditional one.

We have chosen the Henon-Heiles (HH) model, which,
for historical reasons, is considered paradigmatic for the
study of Hamiltonian chaos [11]. The HH Hamiltonian
is written in the form

+ 3(VV)'+ 28

1 8 V
2W~ aqai, k

3 . BV+. BV
4W'

(27)

($1+J 2 )+ ('V1+ 72 )+ 1192 'V2 (28)

The equations of motion have been integrated by means
of a Hammings modi6ed predictor-corrector algorithm of

From Eq. (2S) we have g (1t) =VWY(t), therefore $1(t)
has the same stable or unstable behavior of Y(t) (the pre-
factor v'W has only bounded oscillations).

The stability equation (26), together with Eq. (27), is of
general use for two-degrees-of-freedom Hamiltonian sys-
tems.

I & & I

f

& & & &

I

& & & I

III. HENON-HKILES MODEL

In order to understand if all the information about or-
der and chaos of a Hamiltonian system can actually be
retrieved in the Riemannian approach, we apply the pre-
vious analysis to a very simple two-degrees-of-freedom
system. In this case, detailed information about the
phase space structure can be obtained by means of the
Poincare surfaces of the section. Therefore, by studying
the stability of the solutions of Eq. (26) along the trajec-
tories originating in regular and chaotic regions, it is pos-
sible to obtain qualitative information about order and
chaos. In addition, by computing the solutions of Eq.
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FIG. 1. Poincare's surface of section for E =0.0833 is
shown. Crosses represent some initial conditions among those
which have been chosen for the integration of Eq. (26).

Fl&. 2. The modulus
I
Y(t}~ of the solution of the stability

equation (26) is plotted vs time for E =0.0833. (a) The initial

conditions (q2,p2) used for the integration are those at point a
of Fig. 1. (b) At point b. (c) At point c. (d) At point d. Loga-

rithms are decimal.
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fourth order. In order to perform a very accurate numer-
ical integration of the dynamics, the integration time step
is typically varied in the interval 10 —10 . Together
with the equations of motion —and by means of the same
algorithm —we have also integrated the JLC equation (6)
in its equivalent form (26). We have considered three
values of the total energy: E =0.0833, 0.125, and
0.16667. Such a choice is only motivated by historical
reasons. At each energy value we have chosen different
initial conditions [p&(0), p2(0), q&(0}, and qz(0)] for the
dynamics, and we have kept Y(0)=10 and Y(0)=0 as
initial conditions for Eq. (26).

As we want to make a qualitative comparison between
the information provided by the Poincare surfaces of sec-
tion PSS and the solutions of Eq. (26), we choose the fol-
lowing initial conditions: q2(0) and pz(0), coordinates of
the points located by the crosses marked on the PSS;
q&(0) =0 (it defines the surface of section); p2(0) obtained
from Eq. (28) [once E, q&(0), q2(0), and pt(0) are given]
and assumed positive to meet the definition of the PSS.

We show in Fig. 1—marked by crosses —some.
representative points of the different disconnected regions
that appear on the PSS at E =0.0833. The solution of
the stability equation (26) is reported for each point in
Figs. 2(a) —2(d), all corresponding to the intersection of a
regular trajectory with the considered plane of section;
correspondingly the envelope of Y(t) appears to be
bounded or linearly growing in time. This is in agree-
ment with the absence of chaoticity on the whole energy
surface at E =0.0833 (to be rigorous, a stochastic layer
also always exists close to the separatrices in the presence
of very weak perturbations, but its measure is extremely
small below some energy threshold}.

In Fig. 3 we show the PSS relative to E =0.125; the
crosses represent the four initial conditions for which

~
Y(t)

~
is reported in Figs. 4(a) —4(d). The measure of the
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chaotic component of the phase space here is rather
large; points c and d are representative of this chaotic
part. The behavior of

~
Y(t)~ [Figs. 4(c) and 4(d)] is ex-

ponentially growing already at short times. At variance,
points a and b, situated in regular islands, are character-
ized by solutions of the JLC equation which are bounded
by a constant or linearly growing envelope in time [Figs.
4(a) and 4(b)].

The last case, at E =0.16667, is the most chaotic one.
The corresponding PSS is shown in Fig. 5, and again the
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FIG. 3. The same as Fig. 1, but for E =0.125.

FIR. 4. The behavior of
~
Y(t)~ solution of Eq. {26) is shown

for E =0.125. (a) The initial conditions (q2,p2) used for the in-
tegration are those at point a of Fig. 3. (b) At point b. (c) At
point c. (d) At point d. Logarithms are decimal.
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I I I I tuations ofpositive curvature

We have just seen that the comparison between the de-
tailed information given by PSS and from geometry re-
veals a complete qualitative agreeinent between the two.
Now we can wonder if a quantitative agreement between
standard and "geometrical" measures of the degree of
chaoticity of the dynamics is also possible. For this
reason, we have studied the conventional evolution equa-
tion for the vector field g of trajectory spread (tangent dy-
namics equation} at the energies and initial conditions of
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0
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FIG. 5. The same as Figs. 1 and 3, but for E =0.1667.
12
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selected initial conditions are marked by five crosses.
Only a few very small regular islands are concentrated in
a small range of q2 and p2. Points a and b are just inside
these regular regions. The behavior of

I Y(t)I, computed
for the trajectories stemming from these points, is con-
stant or linearly growing [Figs. 6(a) and 6(b)] in time. It
is worth noticing that the behavior of

I Y(t}I is peculiar at
point d, just outside the regular island but not yet in the
"chaotic sea"; in fact, I Y(t) I displays a weak exponential
growth which sets in at long times [Fig. 6(d)] and after a
phase of even weaker growth. This provides a simple and
clear illustration of the fact that the trajectories close to
regular islands tend to stick to them. When the stability
equation is integrated along the trajectories stemming
from the points c

&
and c2 that belong to the chaotic sea,

IY(t)I grows exponentially in time [Fig. 6(c)]. Notice
that the growth is now rather uniform in time for both
solutions, and that their average growth rates are equal.
We remark again that the pattern of

I Y(t)I provides a
simple characterization of the degree of homogeneity of
the chaotic part of the phase space.

It is worth mentioning that we extended our investiga-
tion to modified versions of the Hamiltonian (28) that are
integrable [12]at any energy. Consistently, only bounded
or linearly growing oscillations have been found for
I Y(t)I. More details will be given in a forthcoming pa-
per.

A trivial computation of R i2i2 of Eq. (19), and hence of
the scalar curvature % =2R &2&2/W', shows that both are
aImays positive for the Henon-Heiles model. Moreover, it
is also a numerical fact that Q(t), given by Eq. (27), is al-
ways positive, no matter whether it is computed along a
regular or chaotic orbit. Therefore, in the geodesic flow
defined by the Henon-Heiles system, chaos is due to the
parametric instability of nearby geodesics induced by Puc
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FICx. 6. The behavior of the solution of Eq. (26) is plotted for
E =0.1667. (a) The initial conditions (q2,p2) used for the in-
tegration are those at point a of Fig. 5. (b) At point b. (c) At
points c& and c2. (d) At point d. Logarithms are decimal.
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position and velocity already considered for the integra-
tion of the stability equation (26).

The tangent dynamics equations, in the case of a stan-
dard Hamiltonian, have the form

hence

dg'
lj

t

kp BV
dt Qq,.t)q i

10

—10

10 I I t
]

I I I

]
I I I

]
I I t

I I I I I t I t I I I I t I

200 400 600 800 1000

10

I',

I

0 200 400 600 800 1000

(29)

whose solutions are to be compared with those of Eq.
(26). In Figs. 7(a) and 7(b), the evolution of the norm
((g ~~=[(g') +(g) ]' is plotted vs time at E =0.125
and initial conditions of Figs. 4(c) and 4(d) (points c and d
in Fig. 3). The dotted line represents, as a comparison,
the behavior of

~

Y'(t) ~, as computed above. In Figs. 7(c)
and 7(d), the evolution of the norm of g& is shown vs time
at E =0.166 67 and for initial conditions of Figs. 6(c) and
6(d) (points c and d in Fig. 5). Again, the dotted line
shows the behavior of

~
F(t) ~. The fact that the solutions

of the tangent dynamics equation give a very good quan-
titative agreement with the solution of the JLC equation
is remarkable. At first sight this result is striking,
inasmuch as Eqs. (26) and (30) appear very different from
one another, and a priori there is no obvious reason for
such a close resemblance of their solutions. However,
this can be explained as follows. Equation (30) has a hid-
den geometric-diFerential origin in the sense that it can
be derived from the JLC equation written for the
Eisenhart metric gz on the enlarged configuration space-
time MXR [2]. In Sec. IV, we shall briefly recall that
the natural motions of a Newtonian system can be also
seen as geodesics of (M Xm, gE ). Now, since the stabili-
ty (instability) of natural motions is an intrinsic property,
one has to find the same behavior of the solutions of the
JLC equation, independently of the ambient manifold
chosen to describe the motion. Hence it is no longer
surprising that Eqs. (26) and (30) lead to the same result.

IV. TO%'ARD A GEOMETRIC
STOCHASTICITY CRITERION

o —5

I t I I t t I I I t t t I t t I 1 I l t I

0 100 200 300 400 500

I I I I

[
I I I I

/

t I I t
/

I t I t

0

I I I t I I I I I t I I

500 1000 1500 2000

FIG. 7. (a) The evolution of the norm of g» (solid line) is
shown for E =0.125 and initial conditions (q2,p2) at point c of
Fig. 3. (b) Same as above, but at point d. (c) The norm of g~
(solid line) is shown for E =0.1667 and initial conditions
(q2,p2) at point c of Fig. 5. (d) The same, but at point d. As a
comparison, the behavior of

~
I'(t) ~, the solution of Hill's equa-

tion, is shown (dotted line) for the same values of E and the
same initial conditions. Logarithms are decimal.

We have seen that all the information about order and
chaos is concealed in the geometry of the configuration
space manifold. The question naturally arises, of whether
we can obtain some information about the global degree
of chaoticity at diFerent energies simply by measuring
some geometric property of the ambient manifold. In
other words, we wonder if it is possible to obtain this in-
formation by means of static computations, independent-
ly of the numerical integration of the dynamics.

It has recently been shown that this is actually possible
when the number of degrees of freedom is high [1—3],
whereas the two-degrees-of-freedom case is more delicate.
This might appear to go against intuition, but the reasons
are simple. Since parametric resonance is the dominant
mechanism that causes chaos in physical Hamiltonians,
in high-dimensional systems one can take advantage of
the large number of degrees of freedom to make a Gauss-
ian hypothesis about the statistics of curvature Auctua-
tions along a geodesic. This approximation makes possi-
ble the analytic computation of the largest Lyapunov ex-
ponent independently of the dynamics [3], and hence an
analytic computation of the transition energy from weak
to strong chaos. In the case of two degrees of freedom,
the arguments based on the central limit theorem [3] are



186 MONICA CERRUTI-SOLA AND MARCO PETTINI 53

not applicable, and the statistics of curvature fluctuations
along a geodesic cannot be modeled by a Gaussian pro-
cess.

The Chirikov resonance overlap criterion and the
Escande-Doveil renormalization method [8] are the only
ways to describe the order-to-chaos transition in two-
degrees-of-freedom systems. Both methods tackle the
transition to chaos from the indirect point of view of the
ordered trajectories, reducing the problem to the study of
the loss of stability of the most robust EAM torus that
separates the phase space into disjoint regions.

At variance, we want to tackle the transition to chaos
directly, by studying the chaotic component of phase
space. A difticulty immediately arises: from the point of
-view of parametric resonance, we should know the whole
history of curvature fluctuations, and we could not get
rid of the dynamics. On the contrary, we shall see in the
following that an approach which uses an average
geometric property of the ambient manifold related to
the pointwise instability of the geodesics makes it possible
to point out the transition from order to chaos (at least
for the model under consideration).

Note that by simple algebraic manipulations of the
JLC equation (6) one finds the evolution equation for the
norm of the geodesic separation vector J in a form which
is independent of the metric and valid at any dimension
[2]:

2

configuration space with Sasaki metric (TM,gs, E) [15].
Although all descriptions must give the same results for
what concerns the dynamical stability, a priori we can ex-
pect that more information is obtained using larger mani-
folds. For instance, if we associate a manifold with more
than two dimensions to a given two-degrees-of-freedom
system, then there is more than one sectional curvature.
This also makes it possible to find E' ' & 0, where scalar
and Ricci curvatures are positive. In fact, if X~,~

are N
orthonormal vectors on a manifold of dimension N,
the Ricci curvature along X&,~

is given by
Kz =+~,K' '(X~,),X~,)). If Kz is positive, only the
sum of the different sectional curvatures is constrained to
be positive and not all the X' '. Therefore, looking for
negative sectional curvatures in an enlarged manifold
could provide a first step on the way of finding a stochas-
ticity criterion for two-degrees-of-freedom systems.

One of the possible choices for a larger ambient mani-
fold is the enlarged configuration-space-time (M XE,gz )

equipped with the Eisenhart metric [14]. Let us briefiy
recall some major points concerning this.

The local coordinates of the enlarged configuration-
space-time (MXE,gz) are q, q', . . . , q', . . . , q, q
where (q', . . . , q )CM, q EE is the time coordinate
and q

+' ER is an extra coordinate related to the action.
For standard Hamiltonian functions H=T+V(q),

the metric tensor gz is defined in this coordinate system
by

1 d J +K( )(J v)~~J~~
ds

(31) dsE = (g~ )„gq"dq

where K' '( J,v) is the sectional curvature given by =a;,dq'dqJ 2V(q)(dqo—) +2dqodq~+', (33)
J" dq" J" dq"

and (J,v) =0. It is now evident from (31) that any point
where K' '&0 is an unstable point. If along a geodesic
the number of such points is on the average a linearly
growing function of the proper time, then the whole geo-
desic is most probably unstable [13]. The same argument
can be extended to the energy surface X&.. we assume
that the existence of a positive measure of points of nega-
tive sectional curvature K on XE is a sufhcient condi-
tions for the existence of chaotic trajectories.

We remark that, after Eq. (31), the stability of the geo-
desics is controlled by K' ' rather than by %. Only in the
case of constant curvature manifolds does
K' )=%/N(N —1).

Let us now focus on the two-degrees-of-freedom case.
The ambient manifold (M, gz) is now a two-dimensional
space: scalar and Ricci curvatures coincide with the
unique sectional curvature (the Ciaussian curvature). On
the other hand, it is well known that natural motions of a
standard Hamiltonian system can be seen at the same
time as geodesics of different ambient manifolds:
configuration space with the Jacobi metric (M, gJ ),
configuration-space-time with the Eisenhart metric
(M XE,gz ) [14], enlarged configuration-space-time with
another Eisenhart metric (M XE,gz) [14], and constant
energy submanifold of the tangent bundle of

where p, v=0, 1, . . . , X+ 1, i,j = 1, . . . , 1V, and a," is the
kinetic energy matrix. Among all the geodesics of this
metric, those for which ds~ =2C ~dt are natural motions
of the system. Consequently, q '(t) =C it +C2—joL (q, q)dt. Ci and Cz are arbitrary constants.

If we assume that the energy matrix is diagonal, i.e.,
a; =5;., the only nonvanishing Christoffel coef6cients are

I"' =a'V, r".+'= —a, V,00 & Oi (34)

and the geodesic equations (4) yield Newton equations of
motion together with two other equations which are the
difFerential versions of q =t and q +'(t) as defined
above [1].

Another interesting characteristic of the Eisenhart
metric is that the relevant geometric quantities, such as
Riemann and Ricci tensors, have a very simple form, and
the JLC equation (6) written for the manifold
(MXE,gz) coincides with the tangent dynamics equa-
tion (30) (see [1,2)). The nonvanishing components of the
Riemann tensor are Ro;0 =8 V/Bq'Bq, so that for two-
degrees-of-freedom Hamiltonians there are now three in-
dependent components instead of one. The sectional cur-
vatures (32) have the following form (passing from proper
time s to physical time t):
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EC' '(0 as a function of E. The transition is again neatly
detected. However, (EI ') ) conveys more information,
because it also measures the total degree of instability.

(EI )) )(E) has also been obtained at different degrees
of nonlinearity. This is controlled by the parameter a in-
troduced into the Hamiltonian function as follows:

(71+72 + q 1 +'V2 +~ qfq2 q2 (38)

(a = 1 corresponds to the standard HH Hamiltonian). In
Fig. 9 we show the behavior of (XI ') ) plotted vs energy
E and computed at different values of a (from right to
left, a=0. 1, 0.85, 1, and 1.2). It is evident that an in-
crease of the relative weight of the nonlinear part of the
potential results, as expected, in a decrease of the thresh-
old energy at which the system makes a transition from a
prevailing regular to a prevailing chaotic behavior.

The result of Fig. 8 is very interesting for two reasons:
(i) for the first time, to our knowledge the transition from
order to chaos is detected in this model in a way that is
independent of the dynamics; and (ii) it shows that a
geometric stochasticity criterion can actually be found
for a two-degrees-of-freedom system. This criterion is
not yet in its most general form. In fact, chaotic systems
may exist with positive K' ' at any energy and, converse-
ly, the simple choice of Jlv that enters Eq. (36) might
give also negative values of K' ' with nonvanishing fre-
quency along regular motions. This suggests that some
classification of chaotic systems on geometrical grounds
should be possible and is necessary. On the other hand,
significative improvements could be achieved by using
richer structures than (MXIR,gz); these could be the
configuration-space-time endowed with a Finslerian
structure [lj, or the already mentioned tangent bundle
TM of configuration space equipped with the Sasaki lift
of the Jacobi metric.

V. CONCLUSIONS

We have shown that the geometric description of
Hamiltonian chaos based on Riemannian geometry is
effective, and conveys at least the same qualitative and
quantitative information that is provided by the standard
phenomenological approaches (Poincare surfaces of sec-
tion, Lyapunov exponents). This has been shown for
two-degrees-of-freedom Hamiltonians, where the corn-
parison between geometric and conventional descriptions
can be performed in great detail. The stability equation
used throughout the paper has been derived from the
JLC equation without approximations. Therefore, the re-
sults reported in the present paper are not simply alterna-
tives to the conventional phenomenological tools to de-
scribe chaos, but have a deeper meaning. In fact, the
Riemannian approach stems from first principles of clas-
sical mechanics, and as it has been shown to give a com-
plete description of the stability properties of the dynam-
ics, it provides an explanation of the origin of Hamiltoni-
an chaos which is an alternative to the conventional one
based on homoclinic intersections.

We have also put into evidence the main difference be-
tween geodesic Bows of physics and abstract geodesic
fiows (Anosov fiows). Chaos in physical geodesic fiows is
mainly due to Quctuations of positive curvature along the
geodesics rather than to the hyperbolicity, i.e., to per-
vasive negative curvature of the ambient manifold.

Finally, we have shown that the order-to-chaos transi-
tion in the Henon-Heiles model can be detected by means
of the energy behavior of a geometric quantity which can
be computed independently of the dynamics. This is a
very interesting and promising result toward a geometric
stochasticity criterion of general use for two-degrees-of-
freedom Hamiltonian.
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