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Scroll breakuy in a three-dimensional excitable medium
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We show that a scroll wave in a homogeneous three-dimensional (3D) excitable medium can spontane-
ously break up into an irregular spatial pattern. This occurs in a FitzHugh-Nagumo model with
modified dynamics of the slow variable (shortened relative refractory period of the excitable medium).
The mechanism of the scroll breakup in 3D is similar to the mechanism of the spiral breakup in 2D and
is associated with the instability of wave propagation under high frequency forcing.

PACS number(s): 82.20.—w

I. INTRODUCTION

Complicated spatiotemporal regimes play an important
role in excitable media of various types. If such a regime
occurs in cardiac tissue it causes cardiac fibrillation,
which is the main cause of death in the industrialized
world [1]. So far little is known about the nature of car-
diac fibrillation. One recent hypothesis connects ventric-
ular fibrillation to complicated three-dimensional (3D)
dynamics of a vortex filament that wiggles around and
encounters the surface in complicated ways [2]; another
shows that a quasi-two-dimensional mechanism (rapid
motion of a rotor) gives rise to electrocardiographic pat-
terns of activity indistinguishable from fibrillation [3].

One of the most generally accepted mathematical mod-
els of spatiotemporal chaos in excitable media explains it
as a process of spiral breakup. It has been shown in cel-
lular automata models [4—6] and in reaction diff'usion

models of excitable media [7—14] that a 2D spiral wave
can spontaneously break up into a complicated spa-
tiotemporal regime because of the special kinetics of ex-
citable media without any heterogeneities. This process
is an important example of spatiotemporal chaos in two
dimensions. However, several experimental studies sug-
gest that in the normal heart cardiac fibrillation is three
dimensional and does not occur in two dimensions [2,15].

Here we model a complicated spatiotemporal pattern
caused by a breakup of a scroll wave in 3D. We show that
the breakup in 3D is associated with instabilities of wave
propagation in one-dimensional media under high fre-
quency forcing. We compare the characteristics of the
scroll breakup in 3D and the spiral breakup in 2D. We
show that they have different amplitudes of oscillation of
an excitable gap and difterent ranges of existence in para-
metric and in physical space.

with f (e)=Cie when e (e, , f (e)= —Cue+a when
e, e(ez, f(e)=C3(e —1) when e)e2, and E(e,g)=E,
when e (e2, s(e, g) = s2 when e ) e2, and s(e, g) = 83 when
e & e& and g &g&. The parameters determining the shape
of the function f (e) are ei =0.0026, ez =0.837, C, =20,
C2 =3, C3 =15, a =0.06, and k =3. With these parame-
ter values the function f (e) is continuous. The shape of
the function f (e) specifies fast processes such as the ini-
tiation of the action potential. The dynamics of the
recovery variable g in (1) is determined by the function
s(e, g). In e(e, g) the parameter s3

' specifies the recovery
time constant for small values of e and g. This corre-
sponds approximately to the relative refractory period.
Similarly, c& specifies the recovery time constant for rel-
atively large values of g and intermediate values of e.
This corresponds approximately to the wave front, wave
back, and the absolute refractory period. The main
difFerence between model (1) and the previous models
[16] is that model (1) uses two independent constants Ei

'

and c3
' for the refractory state. The values of these pa-

rameters were fixed at c.,
' =75.0, c2 '= 1.0, g &

= 1.8, and
0.5&v., '&10.0.

For numerical computations we used the explicit Euler
method with Neumann boundary conditions, and the rec-
tangular grid contained 120X 120X 120 elements. To ini-
tiate the first scroll we used initial data corresponding to
a 3D broken wave front. Numerical integration was per-
formed with a space step h, =0.5 and a time step
h, =0.0222. The error in these computations, estimated
using the difference between the computed and the sa-
turated value for the velocity of plane wave propagation,
is less than 5%.

III. RKSUI.TS AND DISCUSSION

II. MODEL

Bg/Bt =e(e,g)(ke —g),
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For numerical computation we use FitzHugh-
Nagumo-type equations with piecewise linear kinetics
[16,11]:

Be/Bt =(t' e f (e) g, — —

To generate scroll breakup in three dimensions we
started with parameter values identical to those at which
the process of 2D spiral breakup was observed [11]. In
the first set of computations we initiated the simplest type
of 3D scroll, an untwisted scroll wave with a straight fila-
ment orthogonal to the boundaries of the excitable medi-
um, and we studied the dynamics of its rotation.

We found that the scroll wave broke up. However, the
picture was quasi-two-dimensional, i.e., in each section
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(longer than 100 cycles) in a square of size 2.46K. (where A,

is the average wavelength of a spiral wave in the excitable
medium; for our model it is 65 spatial points). In 30 a
similar estimate for the critical size of the medium with
cubic geometry yields the size = 1.15K,.

Time

FIG. 2. The relative size of the excitable gap vs time during
the process of spiral breakup. The thick solid line represents
3D computations on the grid of 120X120X120 elements, the
dashed line represents 2D computations on the grid of 120X 120
elements.

One of the important characteristics of wave patterns
in excitable tissue is the size of the excitable gap, i.e., the
size of the recovered part of the tissue. The excitable gap
shows how densely rotors are packed in excitable media.
We computed the excitable gap for a breakup in 2D and
in 3D. To do this, at each moment in time we counted
the total number of points that have been recovered [we
considered the point to be recovered if g (0.3 and
e (0.1, where g and e are the variables from Eq. (1)] and
divided this number by the total number of points in our
excitable media (Fig. 2). We see (Fig. 2) that the average
size of the excitable gap is about the same in 3D and 2D
excitable media. However, we see that the 2D pattern on
the grid of 120X120 elements shows oscillations with a
wider amplitude and in this case spirals disappear after
the time t =450.

The mechanism of scroll breakup described in this pa-
per is similar to the mechanism of spiral breakup in 2D
excitable tissue, and is associated with the interaction of
the front of the wave with its refractory tail. Figure 3
shows several cross sections of a scroll at the moment of
the first [Fig. 1(b)] and the second [Fig. 1(c)] major break-
ups. We see that the breaks occurred due to the interac-
tion of the front of the wave with its refractory tail. The
difFerence between Figs. 3(a)—3(c) and 3(d) —3(f) was that
at tt=160 the breaks occurred in several sections only',
this picture corresponds to the oval break in Fig. 1(b). At
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FICJ. 3. The cross sections of Fig. 1 at time t = 160 [(a)—(c), upper panel] and at time t = 168 [(1)—(f), lower panel]. The black area
represents the excited state of the tissue (e )0.6), dark gray shows the region where g ) 188 (close to the absolute refractory state),
and intermediate shading from dark gray to white shows difterent levels of g, 0 &g & 1.8 (estimate for the relative refractory period).
The number of the section of the excitable medium is 20 (a,d), 40 (b,e), and 60 (c,d).
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t =168 the breaks occurred in all sections of the media;
this corresponds to the second major breakup in Fig. 1(c).

The mechanism which accounts for such a complicated
interaction of the front with the refractory tail of the
wave was discussed in [11]. It was found that under high
frequency forcing the propagation of a pulse in one-
dimensional excitable tissue becomes oscillating, which
results in functional heterogeneities in refractoriness and
a breakup of the spiral in 2D.

We modeled the propagation plane waves in 2D under
the same high frequency forcing as in 1D. We found the
same oscillating instability of 1D pulse propagation, but
it did not have a lateral mode in 2D. In Fig. 4 we clearly
see the oscillations in a wavelength of the pulses; howev-
er, the wave front shape is an undisturbed straight line
(Fig. 4). In our model, we do not have lateral instabilities
of wave propagation; therefore we need an initial break in
transversal symmetry of our system in order to observe a
purely three-dimensional breakup. However, we can sug-
gest that for systems which show lateral instability one
can expect a purely three-dimensional breakup without
any initial breaking of symmetry.

Our paper shows that in model (1) a breakup in 3D
occurs in a wider range of parameters than in 2D and be-
comes persistent in media of smaller spatial size. These
differences can be important for understanding the

FIG. 4. Wave propagation during periodic forcing with a
period t~ =23 in the medium of 130X390 elements. Gray scale
coding is the same as in Fig. 3.

differences in fibrillation in 2D and in 3D.
It should be noted that the wavelength of a spiral wave

in myocardium is of the order of 30—60 mm (see [2]),
whereas the size of the ventricles of the canine or human
heart is of the order of 100 mm. Therefore there is
enough room for a 3D breakup to occur in the heart and
it can generate an extremely complicated spatiotemporal
pattern of excitation.
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