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Ground-state phase diagram of the ordered columnar phases of liquid-crystal materials
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We present the derivation of a microscopic Hamiltonian for the angular degrees of freedom of
the molecules in their low-temperature columnar helical phase (II phase). The ground-state phase
diagrams, in the cases of homogeneous and nonhomogeneous helices, are investigated analytically
and numerically. They feature a gradual unwinding of the helices as the intermolecular inter-
chain coupling field is increased and the presence of a critical field above which only the uniform
phase is stabilized. For the case of realistic nonhomogeneous helices, the transition to the uniform
phase is accompanied by the presence of four points from which an infinite number of higher-order
commensurate phases spring. In addition, an interesting reentrance of phases occurs at a con-
stant value of one of the interaction parameters. This calculation sheds light on the 0 phase of
hexa(hexylthio)triphenylene, as well as revealing the richness of the full phase diagram.

PACS number(s): 61.30.Cz, 61.30.Gd, 64.60.Cn, 64.70.Rh

I. INTRODUCTION

The columnar phases [1] of liquid-crystal materials,
having a two-dimensional triangular lattice structure,
combine the complexity and richness of in-plane geomet-
rical frustration with a three-dimensional helicity pattern
of intrinsically helical columns. In this class of systems,
the material composed of hexa(hexylthio) triphenylene
(HHTT) molecules of disklike shape having a stifF pla-
nar triphenylene core linked by thiol groups to six carbon
alkyl chains imposes itself as the prototype.

To guide us in the formulation of a typical microscopic
Hamiltonian for the columnar phases of liquid-crystal
materials, we follow below with a review and an analy-
sis of the available experimental results obtained for the
HHTT columnar phases. The intent is not to proceed
to a detailed understanding of the HHTT liquid-crystal
phases, even though specific conclusions will be reached
at the end of this article. This approach is made neces-
sary since this is among the early trials to model colum-
nar phases microscopically and with secondary modifica-
tions, the general Hamiltonian should be applicable to
specific columnar materials.

Orientational and positional orderings in HHTT have
received a lot of attention [2—5] recently. This material
is characterized by the formation of columns inscribed in
a two-dimensional triangular lattice. Early x-ray difFrac-
tion studies [2] of oriented strands drawn from bulk ma-
terial of HHTT liquid crystal in the low-temperature
columnar phase (62 C ( T ( 70 C) have lead to the
conclusion of the presence of a three-dimensional order-
ing of the positions of the molecules with a superlattice
reconstruction resulting from the displacement, parallel
to the columnar axis, of one-third of the columns by
half an intracolumnar lattice spacing. In Ref. [2] the
authors reported that the displaced columns had only
short-range helical order. However, in a subsequent study
[3,4] using an optimized choice of the molecular param-

eters, they proposed long-range helical order for every
column. The resulting two-dimensional helical pattern
is also of period-three, perpendicular to the columnar
axis, the displaced columns having opposite helicity to
the undisplaced columns. The helical order along the
columns is derived to be incommensurate with an inter-
rnolecular intracolumnar rotation angle n of 45.5' [3].

Subsequently, in Ref. [5], high-resolution bulk powder
x-ray difFraction experiments were conducted on HHTT
liquid crystals. The author concluded that for this bulk
powder sample, the helical pitch is commensurate with
the underlying lattice with an intermolecular rotation an-
gle o. of 45 . The molecules of the undisplaced columns
were shown to have identical in-plane orientations in
a plane perpendicular to the columnar axis, while the
molecules belonging to the displaced columns were ro-
tated by 60' with respect to the undisplaced molecules
[3]. In addition, in Ref. [5], mixtures of triphenylenes
were studied. The ordered helical columnar phase was
shown to be stable over a wide temperature range for ef-
fective tail lengths between 5.65 and 6.10 carbon atoms.

The above experimental results point to a complex sit-
uation where the helical pitch of the columns depends on
the experimental conditions, commensurate for a stress-
free bulk material and weakly incommensurate for an
elongated strand geometry. In addition, the presence of
the ordered helices shows a strong dependence on the
mixture of the triphenylenes, which, in turn, certainly
has an inHuence over the intermolecular interaction pa-
rameters.

At this point, it is interesting to recall the recent result
obtained by de Gennes and Prost [6]. Their conclusion
was the absence of conventional long-range order along
the columnar axis in the hexagonal columnar phase of
liquid crystals. Indeed, assuming an efI'ective elastic en-
ergy involving only positional degrees of freedom, where
the columns can slide freely over each other, the aver-
age squared fIuctuations of the positions in the colum-
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nar direction diverge like the length of the sample in the
thermodynamic limit. However, the interaction between
HHTT molecules stacked in piles for the columnar liquid
crystal depends on both the translational and orienta-
tional degrees of freedom of the molecules. In this con-
text, the elastic energy of the system that controls the
long-wavelength deformations-would have contributions
coming &om both the strain tensor and a tensor involving
the spatial derivatives of the angular Geld variables. As a
result, for two neighboring columns that have developed
a short-range helical orientational ordering and can still
slide freely on each other on a macroscopic length scale,
the coupling of positional and orientational degrees of
freedom would generate higher-order terms that impose
order in the positions of the molecules along the colum-
nar axis, in the form of quasi-long-range order [7]. It
is in the framework of this quasi-long-range order of the
positions of the molecules that we proceed to the determi-
nation of the ground-state phase diagram, assuming that
the molecules are periodically spaced along the colum-
nar axis with one-third. of the columns rigidly displaced
in the columnar direction by half a lattice spacing. This
lattice deformation produces a period-three superstruc-
ture perpendicular to the columnar axis and a partial
release of the triangular frustration in the basal plane. A
similar situation exists for some of the ABX3 magnetic
materials, such as RbFeBrs [8] and RbVBrs [9], with a
subsequent splitting of the chiral multicritical point. As
a result, only the orientational degrees of freedom then
participate in the interaction between molecules that are
otherwise considered to have their plane perpendicular
to the columnar axis.

Before begining the study of the three-dimensional
case, it is important to review the results obtained for
the one-dimensional models. The study of the phase dia-
gram at T = 0 of a one-dimensional chiral planar model
in a local anisotropy Geld of p-fold rotational symme-
try and constant amplitude along the columnar axis has
been completed previously using analytical and efFective
potential methods [10,11]. In the case of the absence of
self-consistency between columns, this calculation points
to a very difFerent behavior for the undisplaced and dis-
placed columns. The most striking result is that for the
displaced colunms the phase of period-eight is unstable
to the efFective local Geld of sixfold rotational symme-
try of an infinitesimal value. Otherwise, for the undis-
placed columns that are immersed in a local Geld of three-
fold symmetry, the period-eight helical structure is de-
formed by the constant amplitude Geld, but its period
remains unchanged. These results point to a complex
situation that can only be resolved by the study of a
three-dimensional model. A three-dimensional T = 0
phase diagram for the ordered columnar phase using a
proper interaction potential was obtained by Plumer et
al. [12] under the assumption that the pitch of the he-
lices does not change with the strength of the interaction
parameters remaining equal to its value of o. = 45 for
HHTT. As will be seen later, most of the structure of
the phase diagram is missed within this approximation,
in particular the possibility of total unwinding of the he-
lices to give a uniform state along the columnar axis.

In this paper the phase diagram at T = 0 is obtained
for a period-three positional modulation in the plane per-
pendicular to the columnar axis and a pitch of the he-
lices that is allowed to adjust to the strength of the in-
tercolumnar potential. In Sec. II the Hamiltonian for
orientational degrees of &eedom of a molecule having an
octupolar moment is rederived using a diferent approach.
In Sec. III the phase diagram for incommensurate phases
having an homogeneous helical configuration is obtained
analytically, allowing for a uniform phase at high values
of the intercolumnar interaction parameters. In Sec. IV,
the phase diagram that allows for nonhomogeneous com-
mensurate phases is presented. Finally, Sec. V discusses
the results, compares them with the existing experimen-
tal situation, and arrives at a general conclusion.

II. DERIVATION OF THE HAMILTONIAN

Q = qcos30, ,

Q „=—q sin 30, ,

Q~yy = q slI1 30@)

Q)lyy = —q cos 30~ )

where q is the magnitude of the octupolar moment of
the HHTT molecule and 0, is the angle between one of
the branches of the HHTT molecule and the x axis. In
Ref. [12], a model Hamiltonian was constructed to be in-
variant with respect to the hexagonal symmetry of the
lattice. In this paper, we proceed in a different way [13]
by constructing the most general invariants to lowest or-
der using the components of the tensor Q~~ and compo-
nents of the vector connecting the neighboring molecules
on the lattice. The first term, bilinear in the components
of Qg~, for the interaction between sites i and j is

) QI, ) (i)Q )g(j) = 4q cos3(0; —0,).
A;, l,m

The next term, also bilinear in the components of QI, ~

ls

): Q. (') Q...U) *,(', j) *.(', j)
k, l,m ~pq

xx„(i,j) x (i, j) x)(i, j) xI, (i, j), (3)

As indicated in the Introduction, the ground-state
phase diagram is derived under the assumption that only
the orientational degrees of freedom are &ee to adjust to
give lowest-energy configurations. The first step in deriv-
ing the Hamiltonian is to propose a proper description of
the molecular entity occupying the lattice sites. Follow-
ing Plumer et al. [12], we write the mass distribution of
the HHTT molecule in a multipole expansion. Taking
into account the D3 point symmetry of the molecule and
assuming for simplicity a re8ection symmetry in the mid-
molecular planes perpendicular to the columnar axis, the
lowest-order nonzero term is an octupolar moment rep-
resented by a rank-three tensor QA, ~ in two dimensions
(k, I, or m = x or y). The results are
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where x~(i, j) are the two Cartesian components of the
vector connecting sites i and j. It is easily shown that for
the components of the octupolar moment and for neigh-
boring sites inscribed on a lattice whose projection on a
plane perpendicular to the columnar axis has a triangular
symmetry, the above expression (3) reduces to the term

q ) cos 3(0, + 0, ). (4)

The presence of this second-order term, which is not in-
variant under a global rotation of the system, is a result
of the octupolar moment nature of the HHTT molecules
and will be seen later to give a rich phase diagram struc-
ture.

The next-order nonzero term would have to be of
fourth order in the components of Qyl since third-order
terms are not possible. Indeed, changing Oi into oi + vr

for all sites (a change that should leave the interaction
Hamiltonian invariant) changes Qr, l into —Qr,l, thus
excluding third-order invariants.

As shown in Fig. 1, the displacement of one-third of
the columns in the direction of the columnar axis by half
a lattice spacing transforms the triangular lattice into a
honeycomb lattice, the centers of the hexagons forming
a triangular lattice rotated by 30 with respect to the
original triangular lattice, their lattice sites being given
by

p = naq + ma2.

The equilibrium positions of the molecules in the ground

I"IG. 1. Deformed lattice structure for a plane perpendic-
ular to the columnar axis. The larger black dots represent
displaced columns (i = 3) and the smaller dots the undis-
placed columns (i = 1 and 2). The full lines are the J' and
G' interactions and the dashed lines the J and G interactions.
The triangle of heavy lines is the unit plaquette.

state are

1
rl, = 1'+ —8'3

i
G +P +tL

where l; specifies the coordinate in the columnar direc-
tion having a, as a lattice vector, i = 3 stands for the
displaced columns, and i = 1 or 2 represents the undis-
placed columns. The basis vectors u, are defined in Fig.
1. From the above, the bilinear first neighbor interaction
Hamiltonian is written as

II ) ) J Cos(4 lr&ne rn' (l l3nrn) + G COS(@l' nl~l + 0'lsnm )
l„n,m Z,',nl, ml

(3)

5 5 J cos(cjkl —Ql,„)+ G cos(pl „
l g )n, m l ~l, n', m'

+o.. ) —) -(~ ... -~,. -~),
l;,n, m

where t( stands for lr and l2 and pl = 30l . J' and
G' are the interaction parameters between a site at the
center of a hexagon and its 12 neighbors at the corners
of the two hexagons below and above in the columnar di-
rection. J and G are the interaction parameters between
a site at the corner of a hexagon and its three neighbors
at the corners of hexagons at the same level in the colum-
nar direction. A = 3n, where o. is the natural angle of
rotation of two molecules superposed in the columns. All
interaction parameters are measured in units of the first
neighbor intracolumnar interaction parameter, which for
simplicity is taken to be unity.

plaquette (shown in Fig. 1) of three columns with the
interaction energy written as

E = —) [Jcos(p)l —(tel) + Gcos(p)l + $3l)]

—) ) [J COS((tr3l f l) + J COS($3l 'P l+j)
l i=1

+G'cos($3l + (S'il) + G cos($3l + Qj + l)]r

—) ) cos(g, l+) —P, l
—A). (8)

III. CRQUND-STATE PHASE DIAGRAM
FOB, HDMOCENEOUS PHASES

It is easy to show [14] that the search for the ground
states is reduced to a study of the ground states of a

In this section we limit the search to homogeneous phases
with constant intracolumnar rotation angle 4, between
neighboring molecules. We write
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P;( = P;+ lA;C;,

where x = 1, 2, or 3. P, is the orientation of the molecule
at level l = 0 in column i. L; is the constant relative

orientation of neighboring molecules in column i. |;is
+1 for right- or left-handed helicity accordingly. Under
the assumption (9), the energy per site in the columnar
direction reduces to

G-— (~. +~.)~. .. , „..
,
(a2C2 ) f &2C 5

cos
~ l

cos
l Ps — 2—

r) i 2
hgcg —b peg i 2am

+ cos
l l

cos Ps — — b
(b, iCi )

4'i
2 l &ac,—&,&„2~~

-2G (~2C2i (
8,

2 2C2~
hcos

~ l

cos Ps + ch2 + h &S&3+&2 &2,

( AiCi l 3

l

cos
l Ps+& +

l
~a,c,+a,c„2 —). o ( ' — ). (10)

b is the Kronecker delta function and m = 0 or 1. In
deriving the last term of (10) it has been assumed that
the state of helicity 6; of column i is matched with the
natural handedness of the stacking in that column.

As showa in [15], the difference between the unprimed
and primed interaction parameters is certainly very small
and for simplicity they will be taken to be equal, i.e. ,J= J'andt"=a'= G . An additional symmetry allows

~ ~

us to limit the study of the diagram to G & 0. Indeed
changing G into —G only adds a constant angle vr/2 to
every angle P;, restoring the initial expression for the
energy according to (10).

~ ~

Initially, we present the general phase diagram ob-
tained by numerical minimization of (10) for the different
helicity patterns. Guided by the results exposed in Sec.

, we search only for the simple angular configurations
where the three columns have identical intracolumnar ro-
tational itch 4p ] — 2 —A3 —Lp . The commensurate
states Lo ——0 and Ao ——7t are also considered. Figure 2
presents the results for the phase diagram G versus J for

4, which is the proper value of the natural pitch
for HHTT [2,3].

As indicated, for J & 0, J & G, and small enough val-
ues of G for increasing J, the phase (+ + +) i is stable.
From (10) it is easily shown that in this phase aad un-
der the conditions prescribed above, the rotational pitch
changes continuously with J and is given by

J
sin(A —Ao) = ——sin (b,o), (13)

the relative angular pattern at level / = 0 being

42 = 4i+ &o

4s = 4i+ &o+ ~.
(14a)
(14b)

l

,=0',
1

d.=o

P -cP--P =Tc/2

In both cases above, Pi is free and contributes to the
iafinite degeneracy of the ground state (+ + +)i and
(+++)2. The above two phases could have been labeled

sin(A —Ao) = —J sin
l

2 . fAo)
E2)'

I

-2

the relative angular pattern at level I, = 0 being

42 =Pi,
Lp4. =4. +
2

(12a)

(12b)

For J&0 J& 0, J & —G, and small enough values of G for
l Jl -+ oo, the phase (+++)2 is stable with the rotational
pitch Lo given by

FIG. 2.. Phase diagram for the uniform phases. The labels
(+++),, (++—),, and (—++), refer to the helicity pattern for
the unit plaquette (1, 2, and 3, respectively). The subscript

aries between phases having a difFerent Ao. The dash-dotted
lines at G = —5J and —3J are second-order transition lines
between uniform phases Ao ——0. The dashed lines inside
phases (++ —) and (—++) are separation lines as defined in
the text.
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(———)i and (———)z.
Above the phase (+++)i, for J ) 0, and large enough

values of G, it was found that the commensurate uniform
phase Ao ——0 with Pi ——Pz ——Ps ——0 is the stable ground
state. The phase boundary between the phases (+++)i
and Lp ——0 for J )) 1 is given by

Lp ——0 existing, respectively, for J ~ oo and J ~ —oo.
The phase (—+ +) occupies a small fraction of the

phase diagram near the origin above G = +J (Fig. 2).
For G ) —J(1+2cos 2'), the phase (—+ +)i is stable
with its rotational pitch Lp given by

9
G = sin10J

sin(A —Ao) =
/ /

sin
3 j 2

(21)

In this last case the angular coordinates are frozen to
4i =42 = —4s = —,.

The rest of the phase diagram, occupied by helically
ordered phases, is shown in Fig. 2. The phase (+ + —)
appears in two forms. For G cos z' ) —J, phase (++—) i
is stable with its rotational pitch Lp given by

2G . Lp
sin(A —Ao) = sin

3 2
(17)

and its relative angular pattern at level l = 0 being

The uniform phase Ap ——0 has no helicity pattern and
all the orientational degrees of freedom are totally frozen
with P, = 0 as a result of umklapp terms present in
this case. Similarly, for J & 0 and

~
J~ )) 1, the phase

boundary between the phase (+ + +)2 and the phase
Lp ——0 is given by

3
G = sin

its angular pattern at level l = 0 being

42 = —4i
Lp

4'3 4'1 +
2

(22a)

(22b)

For G = J, the phase (—+ +)i is in equilibrium with
(+ + +)i with the same value of Ao. For G ( —J(1 +
2cos 2'), the phase (—+ +)z is stable, but no simple
analytical expression was obtained for Lp nor the angular
pattern at l = 0. Again a separation line is shown in Fig.
2. For G = —J, the phase (—+ +)2 is in equilibrium
with the phase (+ + +)z, with the same value of Ao as
the last.

On the boundary G = J, there is a point where the
three phases (+++)i, (++—)i, and (—++)i are in equi-
librium with the same value of Ap. Across the bound-
ary between (+ + —)i and (—+ +)i, Ao changes in a
discontinuous manner. It may be easily shown, using
the expressions for the ground-state energies in phases
(++ —)i and (—++)i, that the above-mentioned point
on the G = J line is given by

LpA= —4i—
2

(18b)
1

cos
2 2' (23)

G2
sin(A —Ao) = — sin Ao3J (19)

and its relative angular pattern at level / = 0 being

, 6 G
P2 ——Pi + 2 cos

~

——cos 2)'
Ao i ( G Ap)—cos

i

——cos
2 q J 2)A= —4i—

(20a)

(20b)

A separation line indicating the boundary between the
two (++ —) phases is shown in Fig. 2. For G = —J, the
phase (+ + —)2 is in equilibrium with (+ + +)z having
equal Ao. The phase (+ + —)i is bordered on the right-
hand side by the uniform phase Ao ——0 with P; = 0 and
on the left-hand side by the uniform phase Ap ——0 with
Pi ——P2 ———Ps ——2. At larger values of G (as shown in
Fig. 2), the phase (+ + —) i is limited to a narrow region
bounded above by that part of the uniform phase Ap ——0
which makes the transition from the two uniform phases

Again, the undetermined value of Pi allows for the infi-
nite degeneracy of the ground state of (++—)i. For G =
J, the phase (+ + —)i is in equilibrium with the phase
(+ + +)i with equal value of Eo. For Gcos +' & —J,
the phase (+ + —)2 is stable with its rotational pitch Qo
given by

e = ~p+ 4G+ 2J—2(J —G)2
J+G '

5G J 1(J—G)'
6 6 2(J+G)&

1 (J —G)
3 (J+G)

(24)

i.e. , Ao = s . Substituting in (11), (17), or (21), the
triple point is given by Gz ——J]:0,4482 ~ ~, which is
verified numerically in Fig. 2. The triple point between
the phases (++ +)z, (++ —)2, and (—+ +)2, for G ) 0
and J ( 0, is also given by b, o

—— s, which, from (13)
or (19), gives the location G2 ———J2 ——0.8965... , again
verified numerically in Fig. 2. Figure 3 shows a closeup of
the local structure for the pinching of the separation lines
in phases (++ —) and (—++) with the phase boundary
between phases (+ + —) and (—+ +). It clearly reveals
two separate pinching points and a common boundary
between (+ + —)i and (—++)z.

As shown in Fig. 2, an intermediate uniform phase
Ap ——0 separates the two uniform phases Lp ——0 existing
at large values of G for J —+ +oo. %e now show that the
two straight lines may be obtained from a spin-wave in-
stability mechanism. Indeed, approaching the boundary
from the positive J where Poi = Pz

o——Pso= 0, assuming
by symmetry that Pi ——Pz and fixing Ps to minimize the
energy, we get the power expansion for the energy
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1.0-

(++-}
2

i (-++}&

0.5
-0.6 -0.3

FIG. 3. Closeup of the pinching of the separation lines
(dashed lines) with phase boundary between (+ + —) and

(—+ +) (full curve).

3
4s —- ——4i

2
(25b)

For G ( —5J, the value of Pi is fixed by the minimum
of E.

A similar argument, starting from the negative J, gives
a phase boundary at G = —3J and an angular pattern,
near the phase boundary, inside the intermediate phase
given by

7r

2
7r

Ps ————+ —,
2 2'

(26a)

(26b)

where P minimizes the energy. Hence the two straight
lines are second-order transition lines, which terminate
on the first-order transition boundary of the phase (+ +
—).

In this section, by imposing homogeneous phases and
not allowing for the distortions that would pin down the
helical structures to the underlying lattice, the commen-
surate phases, with the exception of the uniform phase
40 ——0, occupy a region of measure zero in the phase
diagram. In the next section, solving numerically for G-

nite systems and allowing for distorting pinning efFects,
the commensurate phases are shown to occupy at least a
large fraction, if not all, of the phase diagram, the general
structure being maintained.

IV. NONHOMQC ENEOUS
MODULATED PHASES

In this section we study the occurrence of a non-
homogeneous phases in the ground-state phase diagram.
This is done by relaxing the constraint that forces the
angle between adjacent molecules in a column to be

with tts = (s o) tis. The coetgcient of tis changes sign

for G = —5J, while the coefficient of Pi remains positive.
As shown in Fig. 2, this is indeed found numerically.
Near the phase boundary inside the intermediate phase,
the angular pattern at level / = 0 is given by

(25a)

Each molecule now has complete rotational free-
dom, which is Gxed to minimize the energy. As indicated
above, this will stabilize commensurate phases over a fi-
nite domain in the parameter space.

In the case of homogeneous phases, the state of a
column is described by its uniform pitch Lo and the
phase angle P; in a reference plane. For nonhomoge-
neous phases, it is described by the rotation angle of
each molecule inside the column. The interaction en-
ergy between molecules on a triangular lattice (8) will
enable us to treat the coupling between the columns ex-
actly. In order to solve this problem, one has to perform
a numerical simulation on a Rnite-size lattice. We took
a system composed of three columns of N „molecules
(K „=32), with periodic boundary conditions in all
spatial directions. Due to the numerical limitations
(finite-size lattice), the higher-order commensurate (pe-
riod greater than N „)and incommensurate phases are
not found. We argue that larger values of N would
only refine the phase diagram without changing its main
features and main boundaries. There are several meth-
ods that have been used to Gnd the ground-state phase
diagram [16,17] of similar systems. We adopt a method
used to find starting configurations for Monte Carlo sim-
ulations [18]. This method was chosen because of its
simplicity and straightforward applicability to complex
tridimensional helical systems. For a specific set of pa-
rameters ( J, G, and A =

4 ), an initial angular config-
uration of the 3N „rnolecules (N „=32) is selected.
Two kinds of initial configurations were used. First, N, „
(typically K, „=25) configurations were generated by
choosing the 3N „angular variables in a completely
random fashion. Second, N~ (typically %~ = 5) con-
figurations were chosen as homogeneous helical patterns
specified by (9) with a random phase angle P; for each
column. The search for the commensurate phases of spe-
cific period in a system having global periodic boundary
conditions of 3N „molecules was approached by con-
sidering systems of finite physical size of 3' molecules
(with Nq ( N „).For each site of the system, the field
created locally by the neighboring molecules is calculated
and the energy is minimized by aligning the molecule in
its local anisotropy Geld. This iterative process was con-
tinued until self-consistency was reached. Convergence to
the true ground state was not achieved for every initial
angular configuration and we used the criteria of lowest
energy to select among those. Every physical size of the
system (3' molecules with 1 ( Ni ( N „) was then
checked in this manner to Gnd the selected ground. -state
conGguration.

This technique allows the pinning, by umklapp terms,
of commensurate phases over a wide portion of the phase
diagram. It also gives fan structures, typical of such sys-
tems, clearly visible in Fig. 4. These structures were not
possible for the case of a homogeneous phase (no umk-
lapp terms except for the uniform phase 0/1). To identify
the commensurate phases, we introduce the generalized
winding number [17] of the column i

~, = —) 8(k;(P, „ i —P;„))= —', (27)
g
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onfi urations in a particular
hase cu = —). Large numbers identify the columns an

for (a) J = —0.5 and G = 1.5 and (b) J = —1.0 an

ere is ta.e perio oh p
'

d f the angular configuration, k; is

function. or ef t' . F r example the structures in Fig. 4 clear y
1have the same winding number u = 4.

In Fi s. 5 and 6 we present the global and closeup
p ase iag eh d' grams obtained using t e qg

'
e techni ue described

indin num-The erst observation is that the win
'

gabove. e rs o s
be the same forhers of the three columns are found to be

died. Second, it is found that
the general features of the phase diagram of the homoge-

-2

FIG. 5. Global ground-state phase d gse dia ram of Eq. (8) as
f J and G. Each phase is noted by its winding

number ~. The helicity configuration is ~+
= +J and (++—) over the same dashed lines;dashed lines G = + an

re ions between i en i e pd t fi d hases are higher-order commensu-g
hases. The hatched region near therate or incommensurate p ases. e

sent6. The four full squares represenorigin is presented in Fig. . e
T points as defined in the text.

FIG. 6. Closeup ground-state phase
'

gase dia ram of Eq. (8) as
J d G. The phases and helicity configurationsa function of an . e

5 with the exception that under ineare denoted as in Fig. , wi e
~ ~ ~hers refer to the (—+ +) helicity configuration.winding numbers refer to t e
from —+ +) andAgain, the dashed lines separate (+ + + rom

(+ + —) helicity patterns.

modulated hases are maintaine . hehe uniform
'on of the parameter0/1 h occupies a large fraction o e pp ase o

I hase boundary with other phases as have thespace. ts p ase o
nd the samesame elongated structure along the abscissa an

urations for the (+ + +) and (+ + —) cases are agam
separated by t eh G = +J lines a result consistent with
the results obtained earlier 15.

in Fi . 5, a set of simple commensurate phases
occu the inside ofof winding number smaller than 1/4 occupy e

'

the elongated portion of t e p a '
ge hase dia ram along the a-

~ ~the G —4J line. The domain of sta i ityscissa and t e
emer es with ano eac o esi h f th e commensurate phases emerges wi

eter s aceinfinite sima wi roml dth from four points in parameter sp
(T points) that are denoted by squares in Fig. 5. e o-

t h been determined numericallycations of these poin s ave
by the method described earlier and are given by

(J~, G~) = (0.425, 1.55)
= (1.54, 0.557)
= (—1.22, 1.44)

(= (—1.70, 1.02).

Each of these points is situated at th~ ~ the end of a common
boundary between the uniform p a0 1 hase and the 1/4

Y oint the phases with winding
ve theer w & 1, 4 and the uniform 0/1 phase have e

same energy. On one side of an poin,
oes directely from the 1/4 to the 0/1 phase via a first-

not iree; a corna' t; omplete devil's staircase (starting wi
w = 1 4 is found. As one moves awaywinding number w = is o . a

from the T point on this side, each phase wit
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is stabilized over a finite portion of the parameter space.
To understand the transition mechanism near an T

point, we analyzed the first point in (28). Near this point,
the numerical procedure described above can give us the
lowest-energy angular configuration for a given pitch (we
considered the phases with pitch 1/q with q & 4). Those
configurations are represented in Fig. 7. They were used
with (8) to calculate the ground-state energy by minimiz-
ing with respect to 8 and P. The location of the T point
found with this technique is consistent with (28). This
technique also confirms that, for J ) J~, the system goes
directly from the 1/4 phase to the uniform 0/1, while for
J ( J~, a cascade of phases is stabilized over a finite
region between the 1/4 and 0/1 phases. The observation
of Fig. 7 also gives a hint about the transition mecha-
nism from the phases 1/4 to 0/1. In going to higher-order
commensurate phases [I/(6+ m) with m & I], each ad-
ditional molecule is placed at P, = 0. This mechanism
gives a gradual unwinding of the columns until m ~ oo
for the uniform 0/1 phase.

For the choice of physical parameter (A =
4 ), the

phase with winding number 1/4 forms a simply connected
region touching both positive and negative values of J.

The T points (28) are also the loci of convergence of
the domain of stability of the higher-order commensurate
phases springing from the G = 0 axis for positve and
negative J.

The higher-order commensurate phases (q & 4) exist-
ing inside the elongated portion centered on the G —4J
line show an interesting reentrance of phases. Indeed, for
a constant value of G, there exist two regions of J where
the phases 1/q (q & 4) are stable. One of these regions is
entirely located on the negative side of the J axis. This
reentrance behavior is a reminescence of the existence of
two distinct uniform phases 0/1 in the limits of J ~ +oo.
The first step in the understanding of the phenomena is
to recall that the interactions are dominated by terms in-
volving displaced molecules (belonging to columns 1 and
2), since there are 12 nearest neighbors in this case com-
pared to 3 for the terms between undisplaced molecules.
Neglecting the modulation, for positive value of G, the
dominant terms assume their maximum negative values
for Pi ——P2 ——Ps ——0 or Pi ——q'iz ———Ps ——vr/2. Chang-
ing the value of J (from positive to negative) drives the
system from configurations close to the first extremum
condition (Pi ——P2 ——Ps ——0) to finally a set of configu-
rations close to the second condition (Pi ——P2 ———q'is ——

7r/2) The .existence of these two distinct sets of config-
urations explains the reentrance of a second domain of
stability for the 1/q phase with decreasing valu'4 of J.

Figure 6 shows a closeup of some of the phases appear-
ing near the origin, below the simply connected region
occupied by the 1/4 phase mentioned above. For G « 1
and J « 1, the 3/8 phase has a finite domain of stability.
It is to be noted that, depending on the choice of interac-
tion parameters, the two helicity patterns predicted for
homogeneous phases are observed. Indeed, for G (

I JI
the helicity pattern (+ + +) is seen and for G &

I JI the

2 1

3~~
5

2 10~~63~~
5

3 5

6

)I

) p 3/8

1r 3-.:
CO

(3/8j

1/6+m
2 1

3~~ 6am

4 5

2

3~~ 6+m

4 5

1/10

FIG. 7. Lowest-energy angular configuration, for a given
pitch 1/q with q ) 4, near the T point situated at (Ji,Gr)

(0.425, 1.55). Large (small) numbers represent columns
(molecules). In going to higher-order commensurate phases
[1/(6+ m) with m & 1], each additional molecule is placed at
;=0.

FIG. 8. Pitch of helices for the homogeneous modulated
phases (Ao/A, where A = —) (solid curve) and winding
number for the nonh'omogeneous modulated phases (w/8)
(horizontal lines) against G along the G = —41 line. The he-
licity configuration transition between the (—++) and (++—)
patterns occurs at G — for the homogeneous phases, while
the transition in the nonhomogeneous modulated phases hap-
pens somewhere between the 3/8 and 1/3 phases.
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helicity pattern (—+ +) is predicted. There is another
region of the 3/8 phase observed inside the limit seen
in Fig. 6. However, it is rejected as being an artifact
of the finite-size lattice since its domain of stability is
shown to decrease enormously with increasing size (e.g. ,„=50). Further away from the origin, the 1/3 phase
is shown to occupy a fully connected region starting at
1 ) 0 and ending at J & 0. For G )

~
J~, regions of he-

licity (++ —) and (—++) are shown to exist. This 1/3
phase is bordered on its outside by a 2/7 phase, which
occupies also a fully connected region as far as can be
determined with finite-size calculations.

Figure 8 shows the variation of the relative pitch Ao/A
for homogeneous phases as a function of G on the G =
—4J line. The jump near G = 0.666 appears when going
from the helicity pattern (—+ +) to the helicity pattern
(++—). Otherwise, the curve is continuous and given by
(17) in the helicity pattern (++ —). On the same figure,
we have added the horizontal plateaus for the winding
number w/s with their finite width as a function of G
for these nonhomogeneous phases.

V. DISCUSSION AND CONCLUSION

For both the homogeneous and nonhomogeneous three-
dimensional commensurate phases, we have presented
above the effect of self-consistent intercolumnar inter-
molecular interactions. Indeed, globally, they reduce the
average intracolumnar intermolecular relative angular
orientation from its value in the absence of intercolumnar
interactions, leading to a progressive unwinding of the
helices with increasing values of the intermolecular inter-
action parameters. The above results from treating the
field acting on a given column self-consistently with the
global angular configuration of the columns. The general
behavior may be extracted from single column calcula-
tions. As indicated in the Introduction, single column
calculations in a non-self-consistent field were performed
before and lead to results whose comparison with the
above is interesting. Two features of the phase diagrams
(Figs. 2 and 5) can be explained by treating the inter-
columnar coupling as an on-site field having the sym-
metry of the environment experienced by each molecule.
The first feature is the existence of a critical Beld above
which the only phase stabilized is the uniform phase. The
second is the gradual unwinding of the helices as J or G
increases, reported explicitly in Fig. 8.

As seen from the positions of the molecules in the two-
dimensional network, the displaced columns are subject
to a sixfold anisotropy field, while the undisplaced ones
are subject to a threefold anisotropy field (see Fig. 1).
Within a non-self-consistent approximation, the inten-
sity of the equivalent crystal fieM can be roughly taken
as proportional to J and G. Since the HHTT molecules
have threefold internal rotational symmetry, one can map
those systems of columns on one-dimensional chiral pla-
nar spin models in a ~~-fold anisotropy Geld with p = 6
or 3, respectively. The ground-state phase diagram of a
chiral planar model in a twofold anisotropy field (easy-

axis field) has been reported by Hebert et al. [10]. They
concluded to a gradual winding of the helix as the field
is increased for 2 & 4 & vr and to the existence of a
multiphase point at infinite field. In contrast to this, the
ground-state phase diagram of a chiral planar model in a
onefold anisotropy field (equivalent to a magnetic field),
as investigated by Yokoi et al. [19], shows the unwind-
ing of the helix as the field is increased for 0 & 4 & m

and the presence of a critical field above which only the
ferromagnetic phase is stabilized.

The presence of two undisplaced columns (three-
fold anisotropy field) for each displaced column (sixfold
anisotropy field) and the fact that displaced columns only
interact through the undisplaced columns when inter-
actions are limited to first neighbor interactions, thus
are enough to force the whole system to unwind. with a
unique periodicity for all columns. Along the G = —4J
line in Fig. 8, this unwinding of the helical phases is
halted at a finite value of G, where the uniform phase
becomes energetically favorable as exists when the dom-
inant undisplaced columns are treated individually [10].

As indicated before, the orientational ordering of the
angular degrees of &eedom for the triangular columnar
phase of liquid crystals such as HHTT should have a lot
in common with the antiferromagnetically &ustrated tri-
angular structure of some ABXs compounds [20]. Like
in some ABAs compounds [8,9], the triangular frustra-
tion is partially lifted in the ground state of the columnar
liquid crystal as a result of a superlattice deformation dis-
placing one-third of the columns in the direction of the
columnar axis. In addition to this partially lifted frus-
tration, for the liquid-crystal material such as HHTT,
it was shown in Sec. II that a nonrotationally invariant
term appears to second order in the intercolumnar poten-
tial energy. As shown in Secs. III and IV, this addition
brings about quite a number of diferent features in the
ground-state phase diagram.

Let us first consider the situation with G = 0. For
positive values of J, an ordered phase with fully paral-
lel orientation is achieved, as shown by Eqs. (12a) and
(12b), additional Ao/2 for column 3 resulting from the
displacement by half a lattice spacing in the c direction.
For J & 0, the ground-state angular configuration when
redrawn in the l = 0 plane is as given in Fig. 9(a).

1, 2

FIG. 9. Angular configuration at level / = 0 for some of
the incommensurate homogeneous phases: (a) (+ + +)i, (b)
(++ —)„and (c) (—++),.
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J) ) [COS(/~i) COS($3$) + Cos(fg+i) COS($3()]
i=1
3

—) ) cos(P,~+i —P;i —A) (29)

and the angular configuration of pitches 1/q for q & 4 are
similar to those of Fig. 7.

This is typical of partially frustrated antiferromagnetic
triangular lattice and agrees with the result obtained by
Tanaka and Kakurai [9] for the low-temperature phase
when the exchange interaction between a displaced site
and an undisplaced site is larger than between undis-
placed sites. This is certainly our case since the dis-
placement of the columns efFectively doubles the number
of first neighbor sites for the displaced molecules. In
our case, the deviation from collinearity Ao/2 is deter-
mined by the intracolumnar relative angle of neighboring
molecules in the homogeneous helical state.

Finite value of the nonrotationally invariant term G
and large enough values of

~
J~ pin the homogeneous

phases into the uniform phase with Ao ——0. For this
uniform phase, umklapp terms contribute and the angu-
lar configurations are frozen in diferent configurations
with respect to the lattice in the limit of J + koo. The
transition &om one angular configuration, for J ~ oo, to
another configuration, for J ~ —oo, is achieved through
two successive second-order transitions at large G (see
Fig. 2).

For finite values of G, helically ordered phases with
mixed helical pattern (+ + —) and (—+ +) are found.
YVhen redrawn in the l = 0 plane, the angular configura-
tion for the phase (+ + —) i is as shown in Fig. 9(b) and
that of the phase (—+ +)i is as in Fig. 9(c).

The study of the nonhomogeneous phases reveals the
major role played by umklapp terms in these systems. In-
deed, in Sec. IV it was shown that commensurate phases
with finite winding number p/q occupy a very large frac-
tion of the phase diagram. It may even be argued that
for systems of infinite size, the incommensurate phases
could be reduced to a phase space of measure zero. How-
ever, due to the limitations of finite-size systems, this is
a question for which there is no definite answer in the
present calculation.

In Fig. 5 four points are shown explicitly where the
first-order transition boundaries between the 1/4 and
the 0/1 phase terminate. They are also the convergence
points of an infinite number of phases with winding num-
ber p/q & 1/4. This points to the fact that for the choice
of parameters, the 1/4 phase stands as that phase with
the largest pitch that occupies a fully connected region of
the phase diagram. This can be understood, in general
terms, by the balance between the J and G terms, which
together force the angular configurations to be P,i = 0 or
vr and the intracolumnar term that gives P, t+i —P, t = E.
Let us follow the line J = G for the (++ —) phase to fa-
cilitate the interpretation of the nonhomogeneous phase
diagram. The energy (8) is then given by

—J) cos(gii) cos($2i)
l

For phases of pitch 3/8 & p/q & 1/4, the system is able
to accommodate every term in (29). This compromise
permits the gradual unwinding of the helix in a devil' s
staircase. As far as can be calculated with a Gnite system,
these phases are stabilized over a fully connected region
spanning over positive and negative J.

The pitch of the last fully connected phase to be stabi-
lized, 1/4 in our case, is certainly a function of b, solely.
In fact, L leaves a signature on the angular configura-
tion of the 1/4 phase (top panel in Fig. 7). In con-
juction with (29), we can see that when the J and G
terms cannot lower the energy (Pii ——$2i ——0, and

= vr —0), the system discards these contri-
butions (using $3i —2) to lower the intrachain energy
[Qi2 —$ii —A = 7r —(20 + A) = 0].

The angular configuration of the 1/5 phase along the
J = G line, near the boundary between the 1/4 and 0/1
phases, is represented in the second panel of Fig. 7. This
configuration slightly lowers the energy via the J and
G terms, but greatly increases the intrachain interaction
energy, adding up to a global increase in energy. In sub-
sequent additions of spins along the x axis (portions of
the 0/1 phase to generate phases 1/6, 1/7, 1/8, etc.) this
global increase in energy is reduced, thus favoring the
direct passage from the 1/4 phase to the uniform 0/1
phase. This explanation can be extended to J g G and
J positive and negative.

Finally, let us return to the physical system studied:
HHTT columnar liquid. crystal in the low-temperature
phase. As indicated in Sec. I, the intracolumnar turn
angle between adjacent molecules has been reported as
n = 45 (A = 135'). The phase diagram in Figs. 5 and
6 has been calculated with this value. Two observations
can be made. First, the 3/8 phase is stable over a minute
portion of the J-G phase diagram for the three columns.
This leads us to conclude that a self-consistent field stabi-
lizes the 3/8 phase even for the displaced column. This is
not what was predicted for non-self-consistent field [ll],
but is in agreement with published experimental data
[2—4]. Second, the helicity configurations are not the one
observed experimentally [the (+ + —) phase]. Only the
(+ + +) and (—+ +) helicity configurations of the 3/8
phase are reported. However, this can be overcome by
making o. slightly less than 45, which is certainly admis-
sible from the basic molecular calculations [21], in order
to have the intermolecular intracolumnar interaction pa-
rameters stabilize the 3/8 phase in the (+ + —) region of
the phase diagram.

In conclusion, we have clearly shown &om the study
of a simple but realistic three-dimensional model that
the helical pattern (++—), where the displaced columns
have opposite helicity to the undisplaced columns, results
from the nonrotationally invariant terms in the Hamilto-
nian. Furthermore, the mechanism by which the system
is driven in a particular commensurate phase under the
action of the intercolumnar interactions is demonstrated.
Finally, the study of the full phase diagram reveals a rich
situation justifying a systematic experimental approach,
in particular by taking advantage of the great diversity
oftered by material synthesis for these columnar liquid
crystal systems.
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