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Solution of the Oldano-Barbero paradox
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The appearance of the splay-bend elastic constant K&3 in the theory of elasticity of nematic
liquid crystals causes a serious problem. This problem is known as the Oldano-Barbero paradox.
The approaches of Barbero et al. , Faetti, and Pergamenshchik for solving this paradox are analyzed
in view of two starting points of the continuum theory. The analysis clearly shows the imperfections
of their treatments. In order to remedy these imperfections a proposal is made to eliminate the
paradox in accordance with the assumptions of the continuum theory. The solution requires a
modification of the surface free energy density, namely, the derivatives of the director field normal
to the surface must be excluded.

PACS number(s): 61.30.—v, 03.40.Dz

I. IN TROD U CTION

The inHuence of the surface on the equilibrium direc-
tor field of a liquid crystal is represented by the boundary
conditions. There are two kinds of boundary conditions,
one kind pertaining to strong anchoring of the liquid crys-
tal at the surface, and the other kind to weak anchoring
of the liquid crystal at the surface. The boundary condi-
tions for strong anchoring are fixed, i.e. , the director Geld
is assumed to be fi.xed along a certain preferential direc-
tion. The boundary conditions for weak anchoring, on
the other hand, follow from the minimization of the total
free energy, which is the sum of a bulk part and a surface
part. Thus weak anchoring involves the contribution of
surface elasticity to the surface free energy. A serious
problem, however, arises with the incorporation of sur-
face elastic terms, notably the splay-bend term. Then
the continuum theory appears to lead to a discontinu-
ity of the director Geld at the boundaries. This result is
known as the Oldano-Barbero paradox (OB paradox) [1].

Two ways of approach have been proposed for solving
this paradox. The first is due to Barbero et al. [2,3]
and Faetti [4,5] and the second to Pergamenshchik [6].
Neither approach turns out to be entirely satisfactory.
The first allows for a large variation of the director Geld in
a microscopically thin region near the boundary and thus
violates a starting point of the continuum theory. The
second one does not describe an equilibrium situation, as
the total torque is unequal to zero.

The aim of the present paper is to solve the OB para-
dox by combining the attractive features of the existing
treatments and removing their unattractive ones. The
paper is organized in the following way. In Sec. II the
necessary conditions are discussed for the validity of the
approximated elastic free energy. The OB paradox is
discussed in Sec. III. The two mentioned solutions are
analyzed in Secs. IV and V, followed by a discussion in
Sec. VI. Finally Sec. VII contains the main conclusions.

II. CONDITIONS FOR THE VALIDITY OF THE
APPROXIMATED ELASTIC FREE ENERGY

The elastic contribution to the free energy E,~ is de-
fined as the increase of the free energy due to the spatial
variations of the director field:

I",i = dV fg,

where fd is the deformation free energy density, which
can be expressed as a series expansion in the spatial
derivatives of the director field n(v). Usually fd is ap-
proximated by an expression which only contains terms
with low-order spatial derivatives. Consequently F,~ can
be written as

E( ——E pp+ B, (2)

where F pp is the approximate elastic free energy based
upon the approximated fd and R is the result of the re-
maining higher-order terms. The approximation is valid
provided that

This means that two necessary conditions must be satis-
Ged.

(i) The deformation of the director field must be small,
or mathematically

I &)a,

where I is the smallest wavelength of the relevant Fourier
components of the director Geld and a the average inter-
molecular distance. Condition (4) is necessary for the
validity of (3), as can be seen by estimating the order
of magnitude of the diferent terms. Consider to that
end a term in fd containing k spatial derivatives. Each
spatial derivative 8 introduces a factor L . The kth
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order elastic constant can be expected to be of the order
Ua~, where U is of the order of an intermolecular interac-
tion energy divided by the average volume per molecule.
Then the considered term is of the order U(a/I)", im-
plying that the higher-order terms cannot be neglected if
I ~Q.

(ii) The approximated elastic free energy must have a
minimum, i.e., there must be a finite energy Fm;n such
that

+app + +min-

+Kg3 n~p~tipt, ~Bpn~)
i=1,2

(11a)

and f,~ only depends on ppDpn

1f.
~~

= -(K»+K,4)p [(n. V)n —n(V n)]2

+K,s(p n) [V n —p (p V)n]
1= —(K22 + K24) ) (t;~p~ —p~t, ~)n~t;pOpn~

i=1,2

This condition follows directly from the apparent stabil-
ity of nematic liquid crystals.

f,~ = Kis(p. n)p (p V)n
= Ki3n p ppp~6pn~. (11b)

III. THE OLDANO-BARBERO PARADOX

As to the contribution due to externally applied fields,
only a magnetic field will be considered. The magnetic
contribution to the free energy density can be written as

1 2+—Kss [n x (V x n)]
2

(6)

and the additional divergence terms [8]

10 f, = —(K22 + K24) V [(n V)n —n(V n)]2
+KisV [n(V n)] . (7)

Here Kii, K22, K33, K24, and Ki3 are the elastic con-
stants for splay, twist, bend, saddle splay and splay bend,
respectively. According to Gauss's theorem the diver-
gence terms only contribute to the surface free energy
density. Therefore these terms are called surface terms.
The elastic free energy can now be written as the sum
of a bulk part, containing the three Frank terms, and a
surface part, containing the two new terms:

The usual approximation of the elastic free energy den-
sity consists of all terms containing two spatial deriva-
tives. The deformation free energy density can then be
expressed as the sum of the Frank free energy density [7]

=1 2 1 2
fb = Kll (V n) + K22 [n ' (V x n)]

2 2

-Frnag = dV frn&

with the magnetic free energy density f given by

f = —— (H n),
2 pp

E n, h —— dSO, (14)

where the anchoring free energy density is usually sup-
posed to be of the Rapini-Papoular form [9]:

1 2o = ——C(II n),
2

(15)

where Ay is the magnetic anisotropy, that is assumed to
be positive for reasons of convenience, pp the permeabil-
ity in vacuum, and R the magnetic field.

The contribution to the free energy due to the interac-
tion of the liquid crystal with the surrounding material
is called the anchoring energy. It can be expressed as the
surface integral

with

I', 1 = dV fb+ dS f„

f. = p f.

(8)
with II a unit vector along the so-called easy direction
and C the anchoring constant.

The total free energy can thus be expressed as

+el + +mag + ranch

where p is a unit vector perpendicular to the surface,
pointing outwards.

An important step for solving the OB paradox appears
to be a decomposition of the surface free energy den-
sity f, in two terms. The first term f,

~~

relates to the
derivatives of the director field that are tangential to the
surface, whereas the second term f,i only concerns the
derivatives normal to the surface. Thus

f. = f.ii+f. 1 (10)

where f,
~~

only depends on tigon and t2pBpn, with
tq and t2 two orthonormal vectors tangential to the sur-
face:

dV (fb+ f )+ dS(~+ f, ) (16)

Strong anchoring can be described in the limit of an inG-
nite anchoring constant C. Then the equilibrium director
field can be found by minimizing the bulk part of (16)
under the constraint that n = +II at the boundary.

In order to determine the equilibrium director Geld in
the general case of weak anchoring, the total free en-
ergy (16) must be minimized using a variational proce-
dure. The director field is parametrized by two angles,
the tilt angle 0(v') and the twist angle P(v'):

n(v ) = ( sin 0(v ) cos P(r), sin 0(v ) sin P(v'), cos 0(v ) ).
(17)
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In the case of strong anchoring only variations bg and bP
that vanish at the boundary need to be considered, as
the director Geld at the boundary is assumed to be fixed
along the easy direction. In the case of weak anchoring,
on the other hand, more general variations bg and bg
must be considered. Now variations at the boundaries
must be taken into account as well. The variation in the
total free energy can thus be expressed as

Bx~
2CX

qi
with i = 1, 2. (21)

Using the chain rule

points on the surface, are introduced. The dependence
of the surface coordinates on the Gaussian coordinates,
x (qi, q2), is chosen such that the two orthonormal vec-
tors t j and t2 can be expressed as

dV
i

ib i
ibB

(BBp&) (22)

+) '
ibm+~

'
IbBpx .

B~ ) (BBp~)

(18)

and the expression for the Kronecker tensor

~ p= .~' ~'p+& &p

Using Gauss's theorem it follows that

dV
i i

bBpy = dVBp by
i

(Bfb l Bfb
BBpg )

dVBp
~

~
by( Bfb l

dS pp by
Bfb

pX

dVBp
i i

by.
&Bfbl
4 BBp&)

Then the variation in the free energy can be written as

i=1)2

). t'pt' + ups bB x
BBpy (, )

BBpy Bq,
dS pp

'
bp„O„y

Bf.i
pX

which follows from the orthonormality of tq, t2, and p,
it follows that

bF= )
+ )
+ )

Bf Bfb f Bfb

(BBp~)
Bo. Bfb Bf,dS + pp + by
x pX X

dS '
bBpy.

Bf,
pX

(20)

(24)

for y = 0, $.
Now the relevance of the decomposition (10) becomes

clear. Namely, the first term on the right hand side
of (24) can be incorporated into the second term on the
right hand side of (20) by means of a partial integration,
whereas the second term cannot. Using

Next it is important to realize that the last term on the
right hand side of (20) can be partly incorporated into the
other surface term on the right hand side of (20). To that
end the two Gaussian coordinates q1 and q2, that label all

dS = J(qi, q2)dqidq2,

where J(qi, q2) is the Jacobian, and assuming that the
surface is closed or that bo and bP vanish at infinity in
case the surface extends to in6nity, it follows that

dS ) t;p b = dqidq2 ) J(qi, q2)t;p
'

(by)
BBpy Bq,.

B Bf8~~
dqidq2 ) J(qi, q2)t;p by

dS ) t;„B„J(qi,q2)t, p
=1 2 q1) q2 PX

)
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for y = 0, P. The variation in the total free energy (20)
can thus be expressed as

and the Euler-Lagrange equation is

~F= ) Of Ofb
O

& Ofb &

OX OX (OOpx 9

+ ) Ocr Ofb OJds 0 +PPBB + 8

—) t;„O„J(qg,q2) t,p
)

+ ) . d~
I ppOO' I

~p~Opx.
Of ~)

) (27)

,I LyBKe" +»n6 coso = O.
po

(31)

2Csin(2[0(d) —0&]) + (K+ Kqs cos [20(d)]j 0'(d) = 0,

(32a)

The various solutions are characterized by two arbitrary
integration constants, as the Euler-Lagrange equation
is a second-order ordinary difFerential equation. Both
boundaries involve two boundary conditions, adding to a
total of four boundary conditions:

& Ofs l Ofb

(OOpx) Ox

Of
x (2s)

for y = 0, P, and the boundary conditions

Expressions for the variation in the total free energy sim-
ilar to (27) can also be derived using tensor calculus in a
general curvilinear coordinate frame [6] or using Stokes's
theorem [10].

The third term on the right hand side of (27) is solely
due to the appearance of the surface term of the splay-
bend type, i.e., it does not contain the elastic constant
K24 but only the elastic constant Ki3, as can be seen
from Eqs. (11). This result has also been derived in Refs.
[3,6]. Clearly, the functional F is extremal if the tilt and
twist angles satisfy the Euler-Lagrange equations

&Csin(2[0(0) —0&]) —(K + Kzs cos [20(0)])0'(0) = 0,
(32b)
(32c)

(32d)

2Kqs sin [20(d)] = 0,

2 K) s sin [20(0)] = O.

These four boundary conditions originate from the four
degrees of freedom of the surface free energy, namely,
0(0), 0(d), 0'(0), and 0'(d). However, the Euler-Lagrange
equation only allows for two degrees of freedom, because
of the two arbitrary integration constants. In general a
solution of the Euler-Lagrange equation that satisfies all
four boundary conditions does not exist.

Apparently, the director field that minimizes the free
energy cannot be found by variational calculus. It can
even be shown that the free energy has no minimum. To
that; end a particular director field is considered, namely,

Oa. Ofb Of,
+pp + ~

—) t,„O„J(qg,q2)t;p = 0, (29a)

Of.i
Pp gg

(29b)

for y = 0, P. The second boundary condition, which is a
consequence of taking into account the K&3 term, leads
to the Oldano-Barbero paradox [1].

Consider, for example, the geometry with boundaries
at x = 0 and x = d, an easy axis II = cos 0&e + sin O„e
and a magnetic field H = Be . This geometry is called
the splay-bend geometry. Assume, for the sake of sim-
plicity, that K» —K33 —K, and that the director field
only depends on the tilt angle 0, which itself only de-
pends on the x coordinate. Then the free energy is given
by

CL

dx —K0„'
1KPn x
2 d p

1 KP2
2 d 2n —1
1 KP'
4 d

(34)

(35)

(36)

The elastic contribution of the splay-bend term reads

—Kqs (sin [20„(d)]0„'(d) —sin [20 (0)]0„'(0))

Kys slI1(20') p n 37.
2d

The magnetic and anchoring energy remain finite for all
n. Clearly, the free energy for large n is given by

where n is a large positive integer. The Frank free energy
of the field is given by

+—Csin [0(0) —0„]+ —Csin [0(d) —0„]
1 . 2 1 . 2

1 f 1+—Kqs sin [20(d)] 0'(d) ——Kqs sin [20(0)]0'(0) (30)
2 2

1 KP 2Kqs sin(20')
4 d2 KP

Choosing P such that

Kqs sin(20')P ( 0,

(3s)

(39a)
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2~Kis sin(20')
~

K
it follows that

lim F = —oo.
nMoo

(4p)

In the limit n m ao it also holds that

lim 0„(z) = 0g —P if 0& x(d
ifx=d. (41)

Clearly, the director field with a free energy diverging to
minus infinity has a discontinuity at x = d. This discon-
tinuity is referred to as the Oldano-Barbero boundary
discontinuity.

The OB discontinuity also appears in the general case
where the Euler-Lagrange equations are a pair of coupled
second-order partial differential equations. The bound-
ary discontinuity is attended by a free energy that di-
verges to minus infinity. This divergence is caused by
the dependence of the surface term f,~ on the derivative
of the director field normal to the surface [6].

The OB paradox boils down to the appearance of a
discontinuity in a theory that is based upon the absence
of large deformations. Evidently the elastic free energy
cannot be approximated by the five terms containing two
spatial derivatives of the director field. The second cri-
terion for the validity of the approximation is not met,
i.e., there is no lower bound of the free energy. Finally,
we mention that a variety of different ways of analyzing
the OB paradox can be found in [11].

o' = o+&p. (42)

ing Euler-Lagrange equations are difFerential equations
of fourth order. Consequently four arbitrary integra-
tion constants specify the different solutions of the Euler-
I.agrange equation relating to the splay-bend geometry
considered in Sec. III. Now the variational problem has
a well-defined solution. It should be remarked that the
choice of the particular higher-order elastic term is ad
hoc. Moreover, the combined action of the Ki3 term and
the term introduced by Barbero et al. gives rise to a
large variation of the director field in a microscopically
thin region near the boundary. Such a large variation of
the director field in a microscopic region near the bound-
ary is called a strong subsurface deformation.

According to Faetti [4] more higher-order terms must
be introduced in the approach of Barbero et al. [2,3].
For the splay-bend geometry Faetti also finds a strong
subsurface deformation of the director field. Following
Barbero et aj. [12] he states that the macroscopic effect
of this deformation cannot be distinguished Rom the ef-
fect of anchoring forces. In a subsequent paper Faetti
[5] generalized the approach to arbitrary geometries. Ac-
cording to Faetti the effect of the surface term f,~ and of
the higher-order terms is a strong subsurface deformation
in any geometry. The only observable macroscopic efFect
of this strong subsurface deformation can be seen as an
additional contribution to the anchoring energy. Denot-
ing the sum of f,~ and the higher-order terms by 7~ an
effective anchoring function can be defined by

IV. THE FAETTI APPROACH
This effective anchoring energy 0 can be approximated
after Rapini and Papoular [S] as

Faetti's approach for solving the OB paradox is in the
line of Barbero et al. [2,3]. These last authors solved
the OB paradox by introducing one single higher-order
elastic term, namely, a term quadratic in the second-
order derivatives of the director field. Then the result-

eB 1 ~efr(~eB )
2

2 (43)

where II' is the effective easy axis and C the effective
anchoring constant. Now the variation of the free energy
can be expressed as

bF= ) dV + —Bp
~

+ ) dS ( + PP + ' —) t,„O„J(gi,q2)t;P
'

) by.
~f&

Consequently the Faetti boundary conditions read

1 Bf,
ii, q;„O„J(q„q,)q;& ——' = p (45). ..JiV» V2)

for y= 0, $.
It should be emphasized. here that Faetti's approach

does not distinguish clearly between microscopy and
macroscopy. Namely, a macroscopic theory, the con-
tinuum theory, describes a microscopic phenomenon,
the strong subsurface deformation. Thereupon this mi-
croscopic deformation is interpreted macroscopically in
terms of a contribution to the anchoring energy. In other
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words, the. strong subsurface deformation is not consis-
tent with the first condition for the validity of the ap-
proximation of the elastic free energy, stating that defor-
mations must be small.

V. THE PERGAMENSHCHIK APPROACH

f i = &((0 (ql q2) 4' (ql q2))) ~ (46)

The still unknown surface angles are determined by min-
imizing the total free energy with respect to 0'(qr, q2)
and P (qr, q2). This rninirnization requirement can be
expressed in the form of boundary conditions. The min-
imization procedure results in

Pergamenshchik [6] assumed that the higher-order
elastic terms are indeed extremely important but that
their eR'ect can be taken into account in terms of a con-
straint on the director field at the boundaries. Conse-
quently these higher-order terms do not appear explic-
itly in the bulk equilibrium equations and the boundary
conditions. So the equations for the bulk are the orig-
inal Euler-Lagrange equations (28). Pergamenshchik's
approach boils down to a constraint on the normal deriva-
tives of the surface tilt and twist angles appearing in the
surface term f,~. These normal derivatives can no longer
be considered as independent variables. Instead they de-
pend on the surface tilt angle 0'(qr, qz) and. the surface
twist angle P'(qr, q2).

According to Pergamenshchik the functional depen-
dence of f,~ on the surface tilt and twist angles can
be found by solving the Euler-Lagrange equations (28)
in terms of 0'(qr, q2) and P'(qr, q2), where these surface
angles are taken as fixed boundary conditions. Next the
resulting expression of the director field is used to calcu-
late the normal derivatives of the surface angles in order
to determine f,~ In gene.ral the dependence of f,~ on
the surface angles is nonlocal and cannot be given explic-
itly. In the following the proposal of Pergamenshchik for
f,~ will be denoted as

A WIIl&g m
E~Pp AP

BA~

(n B)(n x B)&x
pp

(49)

on the nematic. This magnetic torque density is per-
pendicular to the plane spanned by the magnetic field
and the director, i.e. , it tends to align the director along
the magnetic field. In case Ay & 0 the tendency will
be to align the director perpendicular to the magnetic
field. The magnetic torque density can also be expressed
in terms of the tilt angle 0 and the twist angle P as

Of 1 OfM s= (esxn)+ . (e~xn),
sin 0 O

(5o)

where eg and ey are two orthonormal vectors perpendic-
ular to n and defined by

for y = 0, P. It should be remarked that a similar bound-
ary condition was frrst postulated by Hinov [13].

According to Pergamenshchik the solution of the
Euler-Lagrange equations (28) which minimizes the ap-
proximation of the free energy (16) gives rise to a mini-
mum of the true free energy. This assumption cannot be
tested directly, as explicit expressions for the higher-order
elastic terms are unknown. However, an indirect test is
quite possible by examining whether the Pergamenshchik
approach is in agreement with the requirement for me-
chanical equilibrium. If this condition is not satisfied the
proposed director field does not minimize the free en-
ergy. This test is originally due to Faetti [4]. A general
formulation of the test is derived in the following.

A deformed nematic can only sustain its deformation
if external forces and torques are applied to the nematic.
In equilibrium, the forces and torques due to the elastic
deformation are balanced at each material point by the
external forces and torques. There are two sources of
external torques.

The first source is the externally applied magnetic Geld.
This field exerts a local torque density

+ )

Of Ofh ( Ofh i+
&»vx)

Oo' Ofh Of
~~ds

0 +pubs + 0' +b

th

eg ——

80
1

e@ ——
sin0 OP

= (—sin p, cos p, 0).

= (cos 0 cos P, cos 0 sin P, —sin 0), (51a)

(5lb)

) ti~O~ J(qr, q2)t,p'
r

The second source is the body on which the nematic
is anchored Amec. hanical surface force density f
gives rise to a mechanical surface torque density

Mmech fmech
) (52)

Using the Euler-Lagrange equations (28) the Pergamen-
shchik boundary conditions can be expressed as

whereas the anchoring gives rise to an anchoring surface
torque density

Oa Ofb Of
ii

&
Bg 00p g Og 8g

+pp + +

1) J, , qipOp J(qr~ q2)qip
~2) pX

)

A ~anCh t9p= —E @~A e
t9A~

= C(n II)(n x II),
= o (48)

or in terms of the tilt angle 0 and the twist angle P

(53)
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anch 1 00M "'"= (es xn)+ . (e~ xn).
sin itt 0

The anchoring torque density (53) tends to align the sur-
face director along the easy direction II.

In equilibrium, the total externally applied force on
the nematic and the total externally applied torque on
the nematic must be zero. Consequently, the equations
describing the mechanical equilibrium of the nematic are

(56); and (57) it follows that

M "'+ dv M-g = 0. (58)

An expression for M'" will be derived below in order to
test the mechanical equilibrium.

To that end the combined system is subjected to a ro-
tation with infinitesimal angle bee around the axis parallel
to the unit vector k. Then the change in the total free
energy is

dg ymech O (55a) bF = M'"'b(u (59)

dSM ""+ dSM "'"+ dVM g =0. 55b

Besides the torque balance equation (55b) referring to the
neinatic, similar equations must be formulated referring
to the anchoring body. According to Newton's third law
the anchoring body experiences a torque exerted by the
nematic. This torque M"' is equal in magnitude to the
torque exerted by the anchoring body, but of opposite
sign, i.e. ,

M"' = — dS M ""— dS M "'" (56)

Clearly this torque on the anchoring body must be bal-
anced by another torque M'" which is mechanically ap-
plied to the anchoring body:

Mcxt + Mncm g (57)

Now the relevant equations for the Faetti test can be
formed. These equations describe the equilibrium of
torques of the combined system, i.e., the system con-
sisting of the nematic and anchoring body. Using (55b),

where bu = bu k . In order to derive an expression for
M'" it must be realized that a rotation of the combined
system over an angle b~ around the axis k is equivalent to
a rotation of the magnetic field over an angle —b~ around
the axis k. Then the change in the magnetic field is

The corresponding change in the Eulerian angles
parametrizing the director field can be expressed as

by = bBp,
x

OBp
(61)

where y is the solution of the Euler-Lagrange equa-
tions (28) and the boundary conditions (48). Next the
change in the total free energy is calculated in terms of
bH. For that purpose it must be realized that the free
energy depends both explicitly and implicitly on H. The
explicit dependence is brought about by the contribu-
tions f and w, for w depends on the normal derivatives of
the surface angles, which follow from the Euler-Lagrange
equations. The implicit dependence is due to the Eule-
rian angles 0 and P. Using Eqs. (28) and (48) it follows
that

bF = dV bB + dS bB + )
x= 4

&fm ~fb g
~ ~fb l ~X

b
Bg Bg (Mpg ) BB~

+ ) d+& +pp +BOOfh f ~~'

x=~ 4
X pX X

~fa))

J( )
zp p ('ll) 'V2) xp gg +

b
~

g
bBcI

t i
8f ct7.

dV 8'ct,p~ Bp b&~ — dS 8'~p~Bp b&~.
BB~ (62)

The integrand of the first term on the right hand side
can be rewritten using Eq. (13) for f and Eq. (49) for
Mmag.

bE = — dV M gbcu — dS~ p~Bp ~ . 64
BB~

Bf Bf
p'Bp aB 8 p npa n~

Mmag
CX (63)

Using (59) it follows that M'" satisfies

M'"'+ dVM = — dS~ p~Bp

Then it follows: According to the Faetti test equilibrium of torques exists
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provided that

B7 = AB (66)

where A is an arbitrary number. Equation (66) implies
that w only depends on the magnitude of H, i.e. , 7 only
depends on H .

According to Pergamenshchik the contribution 7. to the
surface free energy does depend on the direction of the
magnetic Field as well. The reason is the constraint sat-
isfied by the normal derivatives of the surface angles.
Therefore his approach does not give rise to a director
field that minimizes the free energy.

It should be remarked here that Faetti's approach does
not violate the requirement for mechanical equilibrium.
His contribution to the surface free energy w~, which cor-
responds to the quantity ~ of Pergamenshchik, is a local
function of the director field only. The independence of
r~ on the magnetic field implies directly that Eq. (66) is
satisfied.

VI. DISCU SSION

In the preceding sections it is shown that none of the
existing approaches is completely satisfying. The essen-
tial element in the approach of Barbero et al. [2,3] and
of Faetti [4,5] is the strong subsurface deformation, that
is not consistent with the requirement of small deforma-
tions. The approach of Pergarnenshchik [6] does not give
rise to mechanical equilibrium, i.e. , the proposed direc-
tor field does not lead to the minimum of the free energy.
Despite these imperfections successes have been achieved
in describing some experimental results. The approach
of Barbero et al. seems to be useful in the description of
so-called anchoring transitions [14,15]. Anchoring tran-
sitions involve changes in the easy axis with variations
in temperature. The variation of this preferential di-
rection as a function of temperature is nonanalytical at
the anchoring transition temperature. The approach oi
Pergamenshchik, on the other hand, seems to be useful
in the description of instabilities in thin hybrid aligned
nematic liquid-crystal films [16]. However, these experi-
ments cannot be considered conclusive evidence for either
approach.

The approach of Faetti may be reformulated without
any reference to strong subsurface deformations. This
reformulated approach constitutes a solution of the OB
paradox which is in agreement with both conditions for

the validity of the approximated elastic free energy. The
basic assumption is that the bulk elastic free energy can
be approximated according to Frank [7]. Then the equi-
librium equations for the bulk are the Euler-Lagrange
equations (28). Accordingly, strong anchoring can be
seen as the limiting case of an in6nite anchoring con-
stant, as the anchoring constant only enters the bound-
ary conditions and not the equilibrium equations for the
bulk. The inclusion of higher-order elastic terms, as in
the theory of Barbero et at. [2,3], would result in strong
subsurface deformations. This is prohibited by the first
condition on the validity of the approximated elastic free
energy, stating that deformations must be small.

In order to arrive at a well-defined solution of the
OB paradox we must require that the number of de-
grees of freedom in the surface free energy must corre-
spond to the order of the differential equations for the
bulk. For example, consider the case where the Euler-
Lagrange equations are second-order ordinary difFerential
equations. Then the number of surface degrees of free-
dom must be equal to the number of arbitrary integration
constants appearing in the general solution of the Euler-
Lagrange equations. In the present case the number of
boundary conditions (29) is not appropriate, as the bulk
equations (28) are differential equations of second order.
In order to obtain the correct number of boundary condi-
tions an additional constraint on the surface free energy
density is needed. The superfIuous boundary conditions
can be removed by assuming that the surface elastic free
energy density does not depend on the derivative of the
director field normal to the surface This .means that the
surface free energy density f,~ must be excluded Now.

the resulting free energy can be minimized using varia-
tional calculus, without being confronted with the OB
paradox. The inclusion of a term in the surface free en-

ergy density, which is linear in the normal derivatives of
the director field, leads to a free energy that is unbounded
from below. This is forbidden by the second condition
on the validity of the approximated elastic free energy,
namely, the condition that the approximated elastic free
energy must have a minimum. Taking into account the
surface term f,~ in another way, as in the approach of
Pergamenshchik [6], results in a violation of the require-
ment of mechanical equilibrium. It should be noted that
our proposal is not just to set f,~ equal to zero, but in-
stead not allowing this term to appear in the surface free
energy density, for the reasons discussed above.

Summarizing, the present proposal is to approximate
the elastic free energy by

d& fa+ d~ f.
~~

dV K] i V ' 74 + K22 Ar ' V x YL + K33 n x V x n

+ dS ( —(K22+ K24)p. [(n. V)n —n(V n)] + Kis(p n) [V n —p (p V)n]) . (67)
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Then the equilibrium equations for the bulk are the
Euler-Lagrange equations

VII. CONCLUSION

& ~fb & ~fb

& ~~a~)

for y = 0, P, whereas the boundary conditions are

BCr Bfb &f
~~+ pp~~ +

(68)

After a discussion of the OB paradox the existing ap-
proaches for solving this paradox are analyzed in view
of two starting points of the continuum theory. Namely,
the deformations of the director Beld must be small and
the approximated free energy must have a minimum. The
present analysis clearly shows the imperfections of the ap-
proaches of Barbero et a/. , Faetti, and Pergamenshchik.
A reformulation of Faetti's approach is proposed which
is in agreement with the assumptions of the continuum
theory. The proposal boils down to a modiBcation of the
original form of the surface free energy density, namely,
the derivatives of the director Beld normal to the surface
must be excluded.

q,„B„J(qg,qz) q,p
——0 (69)
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