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The Flory lattice method has been utilized to study phase equilibria in solutions of disklike
molecules. It is found that the critical disk diameter-to-width ratio z for the formation of the stable
nematic phase is about 3.015. Temperature-concentration phase diagrams are studied for several
values of z. For z < 8.6 the isotropic and nematic phases are separated by a biphasic range of
concentrations. Above z &~ 8.6 a reentrant nematic feature appears, i.e., at a given temperature
either of two pairs of phases, isotropic-nematic or nematic-nematic, occurred. The locations of the
corresponding critical and triple points are computed.

PACS number(s): 61.30.Cz, 64.70.Md

I. INTRODUCTION

Given the prevalence of close packing at normal liquid
densities and the short range of the intermolecular repul-
sion compared with the range of attractive intermolecular
forces, it is commonly accepted that the spatial arrange-
ment of molecules in liquids is dictated by their shapes
rather than by forces of attraction [1-4]. Consequently,
thermodynamic properties of liquids are frequently stud-
ied theoretically by first considering the configuration of
a system of hard particles (characterized by a repulsive
contact interaction), with other kinds of interactions in-
troduced a later stage as perturbative effects [2-6]. In
such a model, the configuration partition function usu-
ally reduces to the product of a combinatory factor and
the Boltzmann exponential of the intermolecular energy,
customarily represented by a mean field.

Flory and co-workers explored over the years such a
model of liquid crystalline nematic and isotropic phases
consisting of rigid and semirigid rodlike molecules either
as the sole constituent of the neat liquid (thermotropics)
or as a solute (lyotropics) [5-23]. Because of the particu-
lar shape of these molecules, they found a lattice method
especially useful for evaluating the configuration parti-
tion function, especially the steric factor describing spa-
tial configurations without molecular overlaps [5]. The
lattice discretization of molecular orientations requires
breaking the molecule up into a number of segments par-
allel and perpendicular to the preferred direction (the
director) in the ordered phase. The disorder index of a
molecule, y, is defined as the projection of the rod of axial
ratio z in a plane normal to the director. In the model,
the disorder index characterizes the degree of orienta-
tional order of the long molecular axes more naturally
than the commonly used (nematic) order parameter S.
As a result of the discretization procedure, the hard-rod
fluid with continuously varying molecular orientations is
then replaced by a fluid characterized by perfect orienta-
tional order but polydisperse length. Since the distribu-
tion of segments in any given row of the lattice cells par-
allel to the director is assumed random and uninfluenced
by conditions in the neighboring rows, a nematic phase
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in the neat system of rodlike molecules is the only stable
phase that is predicted above a critical axial ratio (the
length-to-diameter ratio), the particular value of which
depends on details of each model considered [5,11,14,24].
The formation of a translationally ordered phase, e.g., the
smectic phase, would require the introduction of appro-
priate intermolecular interactions such as impenetrable
boundaries [25]. For the Flory method, this program has
yet to be accomplished.

It is well known that not only rodlike, but also disk-
like molecules exhibit liquid crystallinity at properly cho-
sen conditions (e.g., temperature, pressure, or composi-
tion) [26-31]. Such systems are, however, much more
difficult to study theoretically. While the thermody-
namic behavior of rodlike particles has been studied for
many years [4,5,12-19,32-35], relevant studies of discotic
molecules have been less frequent [36—45].

Compared to rodlike systems, the lattice method is
not as easy to implement for discotic systems because of
the particular shape anisotropy of the disklike molecules.
Only simplified versions of the original Flory approach,
in particular, treatments in which the orientations of the
disks are limited to the orthogonal axes of the usual cubic
lattice, have been explored in modeling the phase behav-
ior of discotic micelles in lyotropic solutions [36,46].

In this paper we report what is to our knowledge the
first lattice treatment in which continuous variation of
disk disorientation is allowed. We have carried out an
approximate treatment of systems containing hard disks
present either as a solute or as the sole constituent of
the neat liquid. The complexity of the problem arises
from the fact that in the case of disklike particles one
has to accommodate on a lattice a particle which is quasi-
two-dimensional. Due to the cylindrical symmetry of the
disks and the axial symmetry of the nematic phase, the
perfectly ordered disklike molecules are approximated by
rectangular parallelepipeds of the breadth-to-width ratio
z. Disorientation is described via two independent rota-
tions about the X and Y laboratory frame axes, respec-
tively. Consequently, two disorder indices are required.
The degree of disorder is allowed to vary continuously,
and the disks assume a distribution of disorientation de-
pendent on z and the concentration. Initially, the only in-
teraction accounted for is contact repulsion and the con-
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figurational partition function is evaluated. The theory
predicts a threshold value of .. ~ 3.015 for the forma-
tion of the nematic phase of the neat system of disks. The
solvent-solute interaction energy is incorporated into the
theory later.

As will become apparent later, there is a profound reci-
procity between a number of approximations in this work
and those used by Flory in the original version of the lat-
tice model for rods [5]. We believe that this feature guar-
antees consistency in the lattice treatment of the nematic
phase for both kinds of molecules, and thus is fundamen-
tal for future work which will construct a consistent Flory
lattice method description of the phase equilibria of a so-
lution of rodlike and disklike micelle mixtures, and of
a solution of biaxial discotic particles, in particular the
appearance of the biaxial nematic phase.

II. THEORY

The phase equilibrium theory developed here con-
cerns a system of identical disks dispersed in a sol-
vent. Following the case of rodlike particles, we stipulate
that solutions of sufficiently asymmetric disks should ex-
hibit phase separation and coexistence of a less concen-
trated isotropic phase of unoriented disks and a some-
what denser nematic phase consisting of partially ori-
ented disks. The phase equilibrium between the isotropic
(I) and nematic (V) phases requires the chemical poten-
tials of the same component of the solution in both phases
to be equal:

(i — ) = (s — p)N (1)

where ¢ = s or « denotes solvent or solute, respectively.
By definition, the chemical potentials are

pl¥ —pd (OGN _ dlnzZN
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where G is the Gibbs free energy, R is the universal gas
constant, Z is the partition function, and T and V de-
note the absolute temperature and sample volume, re-
spectively. The subscript “eq” signifies the orientational
equilibrium of disks in the nematic phase.

In general, the partition function Z is considered to
be composed of three factors: the combinatory or steric
factor Z.oms, the orientational factor Z,,. and the fac-
tor introducing the exchange free energies of interaction
between the solvent and disks, Z;,;:

7 = ZcomeorZ'int . (3)

In estimating the steric factor Z.,m,, our theory ben-
efits from the original Flory method [5]. Adopting a
customary simplification, we consider a solution consist-
ing of n, approximately isodiametric spherical solvent
molecules and n, rigid disklike molecules of the same

thickness and z times as wide. The volume occupied by
the solution is then subdivided into a cubic array of no
cells of linear dimension equal to the diameter of the
solvent particle (and the disk thickness). We assume
that each solvent molecule can only fully occupy a cell
of the lattice. Similarly, each disk consists of contiguous
fully occupied cells. Therefore ng = n, + z%n,. Let the
nematic director be the lattice Z axis. Because of the
disk’s cylindrical symmetry and also the axial symmetry
of its orientations about the director, the order of the
long axes and disk rotations about the short axis are not
germane to the present problem. A perfectly ordered disk
of molecular volume v is sufficiently well approximated
by X X 1: a rectangular parallelepiped with the long
edges parallel to the X and Y lattice axes, cf. Fig. 1. In
other words, the number of cells occupied by the disk, or
its molecular volume, is

v=zx>. (4)

(Note that, contrary to the original Flory notation, x
describes now the flatness, the diameter-to-width ratio
of the real disklike molecule [5].)

We start from the perfectly ordered system, i.e., all the
disks are parallel to the lattice reference plane XY and
the disk normal is parallel to Z. Let us next introduce
a small orientational disorder of the disks. All spatial
orientations of a disk can be realized by a superposition
of two independent, orthogonal declinations of the disk
from the perfect order, (1) by an angle 8, about the X
axis of the lattice, and (2) by an angle 6, about the Y
axis of the lattice. Thus a disk rotated by a small 6, is
approximated on the lattice as a “stairway” made out of
rods of length z, cf. Fig. 2.

The second rotation by 8, inclines the stairway struc-
ture sideways, producing a secondary segmentation of the
stairway steps, cf. Fig. 3.

Both declinations can be parametrized by their respec-
tive disorder indexes, yx and yy. The disorder index yr
corresponds to rotation about either the I=X or Y axis
and is defined as the ratio between the projection of the
surface of the disk onto the IZ plane and z, cf. Fig. 3.

The overall disorder of the disk, y, we define as the
arithmetic mean of the two:

y = (yx ;yY) . (5)

Note that our definition of disorder, which is anal-
ogous to the disorder index introduced by Flory and
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FIG. 1. Perfectly ordered model disk with z = 8.
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FIG. 2. Disk with = 8 after rotation around the X axis
by 6. yelding the disorder index yx = 4. Projections of the
disk onto the XZ and YZ planes are also shown.

Ronca, affords the correct description of the relation-
ship between y and the spatial orientation of the disklike
molecule [14,47].

Thus for the perfectly ordered disk we have, cf. Fig. 1,

yx =yy =y =1, (6)

and for a phase with cylindrical symmetry we expect for
the system in equilibrium

Ix =0y =9, (7)

where the bar denotes the ensemble average.

We note at this point that the assumption that disks
with the same y are equivalent, although in accord
with the Flory model philosophy, contains an inaccuracy
which, for significant orientational disorder of disks, can
be quite severe [14]. Because of the cylindrical symme-
try of the nematic phase, the solid angle swept out by the
end of a unit vector normal to a real discotic molecule as-
suming all possible equivalent molecular orientations is a
cone about the director (about the Z axis), i.e., the dec-
lination angle is constant. For the lattice approximation
considered here, however, because of the chosen defini-
tion of the declination angles (6,,60,) the solid angle is
a pyramidal cone about the Z axis, i.e., the declination
angle varies along the pyramid square base. Fortunately,
for the small declinations which are of the greatest impor-
tance in the nematic phase, the discrepancy is of minor
significance. For the isotropic phase, however, where by

FIG. 3. The same disk after a second rotation around the
Y axis by Oy, yy = 2.
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definition declinations are large, the problem needs care-
ful consideration.

A. Nematic phase
1. Combinatory or “steric” factor Z.,ms

Let us assume that j disks have already been assigned
locations on the lattice. We estimate the number (v;41)
of sites available to an additional disk j+1, the orienta-
tion of which is specified by yx and yy. The disk is di-
vided into (yx +yy — 1) trains of contiguous subparticles
(segments) located in neighboring elementary XY slices
of the lattice (orthogonal to the director Z), cf. Figs. 3
and 4. In the spirit of the Flory approximation, we con-
sider the trains to be independent of each other, their
distribution in any given XY slice to be random, and
uninfluenced by conditions in neighboring slices. Fur-
thermore, due to the positional disorder of the nematic
phase, the composition of each slice should be the same
(no smectic order).

Thus the problem reduces to placing these new (yx +
yy — 1) trains in XY slices, given that the slices are
already populated by trains from the previously “dis-
solved” j disks. The justification for this model rests on
the plausible assertion that the probability of vacancies
throughout the designated set of =2 lattice sites compris-
ing yxyy segments should closely approximate the prob-
ability that a given cylindrical disklike volume chosen for
occupation by a real disk inclined at the same angles
(64,6y) from the plane normal to the director is empty,
taking the short-range order of the liquid into account in
an appropriate way. The error should be negligible for
small values of §/z, but for highly disordered disks, e.g.,
in the isotropic phase, the approximation is less certain.
We will address this point further in the following. In
the highly ordered nematic phase, the approximation is
excellent.

Due to the cylindrical symmetry of the system about
the Z axis, the orientations of trains in the XY slices
are uniformly distributed about the axis. Because of the
phase symmetry, the X and Y axes are interchangeable,
so that the particular orientation of the trains of disk
j + 1 should be of no importance for the final result. Let
the X axis be the reference axis. Then the train orien-

type I

ZE
TT TN T T T T T T P T T 1T 11T

type |

FIG. 4. XY slice of the lattice with trains (in black) ori-
ented in the I, positive, and II, negative, sense. A failed at-
tempt to place the shaded train is also shown.
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tation in a slice can be either I positive or II negative
with respect to the reference axis, cf. Fig. 4. For con-
venience let us assume that the orientation of the train
under consideration is positive.

Due to the fact that the segment sides are always par-
allel to either the X or the Y axes, we may assume that
only neighboring occupied segments reduce the proba-
bility that sites required for the next train segment are
already occupied by other trains in the slice, cf. Fig. 4.
For example, the influence of the first train segment on
the conditional probability of finding free space for the
third segment is negligible. Therefore we assume that
the probability of finding vacant cells in the slice for ev-
ery segment of the train is the same, P;, except for the
first, P;. Consequently, all yxyy segments of the disk
j+1 are either of the “first” (yx + yy — 1 of them) or
“other,” second kind, and the number v, of sites avail-
able to the additional disk j+1 can be simply written
as

viy1 = no Pl(yx+yy—1) Pz(yxyy—yx~yy+1) ) ®8)

Our goal is thus reduced to calculating P;, ¢ = 1 (first)
or 2 (other).

The segment assignment to a location on the cubic
lattice was considered by Shih and Alben [36,46]. Using
their approach, we implement a convenient algorithm for
placing cells of the uth segment. Moving along the long
axis of the train from the lower left-hand end onward we
identify the cells as follows, cf. Fig. 5: the bottom corner
cell (we will call them cells of type pa); the remaining
cells of the left (ub) or of the right (ub’) side of the seg-
ment (with respect to the long axis), alternating the label
cell by cell between b and b’ to preserve the interchange-
ability of X and Y (and thus of yx and yy) [46]. Finally,
we identify the remaining cells of the segment, starting
again from the bottom corner and labeling them (uc).

The segregation of cells into different types is not ac-
cidental; the probability of finding vacant sites for cells
of a given type is not broadly distributed. We may then
introduce the mean probability of finding a vacant site
of a particular type which greatly simplifies subsequent
developments. The probability of finding vacant cells for
the uth segment will then be a product of the (mean)
probabilities of finding vacant sites of type pa, pub, ub',
or pc, which we estimate in turn.

a b
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FIG. 5. Implemented segregation of (a) first (b) other seg-
ment cells into different types.
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The probability that a given site is free for the 1la cell
of the first (u = 1) segment, p1q, is

_ (o =gat) 9)

Pia

The conditional probability that each succeeding site
is vacant is given, in accord with the original Flory ap-
proach [5], by the mole fraction of vacant sites in a ran-
dom distribution of segments and empty sites: :

no — jz + »_ Ki(z,v%,vy)
£

where the subscript ¢ denotes the kind of segment cell
considered, £ numbers disks in the system, and the oc-
cupation factor K!(z,y%,v}) is the number of ways the
given site can be occupied by the fth disk.

If we are allowed to preserve the specified angular dis-
tribution of molecular symmetry axes throughout the
process of addition of the solute molecules, the average
¥ introduced in Eq. (7) remains fixed. Moreover, the ge-
ometric mean of K over the distribution may be used;
hence y% and y{ in Eq. (10) should also be replaced by
their means. Given that the occupation factors turn out
to be second order polynomials in yx and yy (cf. the
Appendix), and the following relations obtain:

Ng Ny
S Wk +vh) =2m.9 and D (vkyd) =n.y, (11)
7 i

the expression for p; takes the form

(no — jz*)
no — j[z? — Ki(z,7)] ’

pi = (12)

where K;(z,y) is the average disk occupation factor, de-
rived in the Appendix.

We remind the reader at this point that, since the p;
are conditional probabilities, evaluation of the K;(z,%)
factors can only occur after the cells have been appro-
priately assigned, i.e., for a given ¢ one assumes that all
preceding cells of the train are already placed; for ex-
ample, all 1a, 1b, 1¥’, 1c, and 2a cells should already be
placed before we calculate Kap or Kop.

Because of the cylindrical symmetry of the system and
the symmetries that exist between segments of the same
train, some K; factors are identical. In particular, one
finds that the K; factors should satisfy the following iden-
tities:

ch(ac,ﬂ) = KZC(:E’y) (13)
and
Knb(a:vy) = Knb’(wvg)v n = 172 (14)

This allows further simplification of P; and P;:

P, = pia p(lz/yx+z/yy—2) p(li/yx—l)(w/yy—l) , (15)
P, = po, p;:/yxv“m/yy—z) p(laz/yx~1)(w/yy~1) , (16)
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where each p; has the form of Eq. (12) with the relevant I N T _
K; (cf. the Appendix) Kaa(2,9) = 325 - D@ +29-1), (19)
Yy
z 7 = o 4 302 —
Ku(2,9) = (37 +20 - 1), (17) Ka(@,9) = o~ +3@y 1] (20)
N1, _ The combinatoric partition function Z.omp =
ch(:c,y) - '2_(y + 2y - 1) ) (18) (nz!)—l H_,;;l v; is thus
J
Beoms = H{ (V) (g _ g2y - (e/vkoelvt —2) kot )
nal 0
xFl—c(yic—w)(yi}—w)FZ—b(w/yﬁﬁm/y{/—Z)(yi(—1)(y{/—1)F2;(y§(~1)(y{}—1)} , (21)
[
where F; = ng + jM;, M; = —z% + K;(z,7), and ygc and and
y3- are the disorder indices of the jth disk. n " ¥
We note at this point that, as is the case for the 1 Ny 1 .
combinatoric partition function for long hard rods [5], H(a + i) H(a +P4)
concentration dependencies of second and higher order ’ ’
do not appear in Eq. (21), which is an inherent fea-
ture of the commonly used Onsager [4,42] and Flory ap- _ [ (/B +mnz))” (23)
proaches. This approximation, as already pointed out by - (a/B)! ’

Onmnsager [4], can be justified for long hard rods, but re-
quires careful evaluation when applied to disks, as was
shown by a Monte Carlo study of a system of thin hard
disks [39].

In order to manipulate Z.,,,, into a more tractable
form we note that the right-hand side (RHS) of Eq. (21)
is dominated by factors quadratic in . Lower order
terms in x are merely correction terms. Furthermore, the
dominant factors can be written in the form (a + 8j)?,
while the remaining terms, exclusive of the first term

n(()ky;‘_y{’), are of the form (a + (37)7, where 8 and v
are, in general, j dependent, i.e., varying from disk to
disk within the system, cf. Eq. (21).
Consequently, the following approximations can be ap-
plied:
[+ 80 ~ II e
3

CE T I

(22)

The approximation of Eq. (22) is not severe, because the
Jj dependence of 3 is preserved. The approximation of Eq.
(23) referring to a simplified system of “average” disks (vy
independent of j) is more severe, but since it is applied to
the less important correction terms its use is allowable.
The dominant factors in Eq. (21) are (no — jz2)* and

Flﬂc/[“; the latter is isolated from F;C(y]xﬂv)(y{’_m)
arranging exponents, viz.,

by re-

Fl—c(y§—¢)(y§}—w) _ Ff‘f“ch(yg‘ﬂ{')_y;‘y{’—K“(w’y) . (24)

Upon applying Eq. (7) and Egs. (22)—(24) to Eq. (21),
followed by introduction of Stirling’s approximations for
the factorials, the “steric” partition function becomes

—1n Zeomp = 2n4(§ — 1) + ns Invs + ng In(v, /22) + no(§ — 1)2M2711Q2a InQ,, + no(g — w)szlelc InQ;.

+no(2z/7 — 1)[(7 — 1)*

where
n
Qi =1+ —EM, y (26)
o
and v, = nyz/ng and vy, = nzx?/ny denote the volume

concentrations of solute and solvent, respectively.

My Q20 In Qap + (27 — 1) M Qs In Q1p)

(25)

2. Orientational factor Z,,

The orientational part of the partition function is ap-
proximated in exactly the same way as Flory has done
for rods [5], viz.
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ng!

Zop = == (27)

k

where ng i, denotes the number of disks whose symmetry
axis orientations occur within the element of solid angle
dwy. To relate Z,,. to the disk disorder parameter, we
assume that the orientational distribution function of the
disk symmetry axis, f(1), is uniform over solid angle out
to some angle 19 and zero beyond, where % is the angle
between the symmetry axis and the director. Z,, is then
proportional to w™ where w is the solid angle within
¥ (1po. For small angles w is to a good approximation
proportional to (sint)2, where the notation () indicates
averaging over the allowed orientations. As w increases,
the approximation is less good [5].

For rods (sin®) is simply equal to the average disor-
der index. To find the relationship between (sin) and
i for disks we proceed as follows. Let siny = H(y), such
that for a perfectly ordered molecule we have H(1) = 0
(siny = 0; y = 1, cf. Fig. 1). For small disorder angles
(¥ 2 0 = y = 1), which is the case of greatest signifi-
cance in the nematic phase, we can write

_dH

siny 2h(y—1), h=— . 28
vEh -1, b= (28)

Although the proportionality constant h is of no impor-
tance for further calculations [5,14], it can be estimated
if one makes the plausible assumption that all disks with
the same average disorder index are equivalent. A model
disk can be thought of as being made up of either of two
mutually perpendicular sets of z rods of length z, one
of the sets declined with respect to the X axis, and the
other with respect to the Y axis. By using a relationship
between sin and the disorder index for rods [47,24] and
averaging it over the two basic declinations of the disk,
we get, cf. Eq. (5),

sini/;:(yx_l-{—yy-—l)/Q:y—;—l, (29)

x xr

ie, h=2a"1.

The orientational partition function for the nematic
phase becomes, therefore,

—In(Zor) ~ —In(w™) ~ —2n,In(g — 1) . (30)

B. Isotropic phase

Our approximate treatment of the combinatory par-
tition function is relevant for a highly ordered system,
i.e., for which §/z <« 1. Despite this fact we would like
to extend the use of Eq. (25) to a completely disordered
system as was done routinely by Flory and co-workers
[5,14]. The main problems are the form of the orienta-
tional part of the partition function and an appropriate
definition of the disorder index for the isotropic phase.

Flory’s early work on solutions of rods [5] showed that

the nematic configurational partition function reduces to
that for a randomly disordered polymer solution when ¥
is equal to z [48]. Obviously, this argument is inadequate
for disks.

A more rigorous argument that § = z is a sufficient
condition for the nematic phase partition function to be
the partition function of the isotropic phase as well was
given for rods by Flory and Ronca [14] and Warner and
Flory [15]. Since the arguments of Warner and Flory are
quite general [15], we employ their approach to evaluate
the configurational partition function (Z;s0 = ZcombZor)
and the random disorder value of ¥;,, for disks in the
isotropic phase.

First, one intuitively expects that, just as for rods, ran-
dom disorder for disks is described by #;,0 = . Next, if
one adopts the considerations which led us to the relation
between the disk disorder index and sin, Eq. (29), one
can also stipulate that for randomly disordered disks

Yx =Yy = Fiso =T - (31)

One must keep in mind, however, that the definition of
the average disk disorder in Eq. (6) is only valid for low
disk disorder, i.e., the solid angle of a pyramid circum-
scribed by the symmetry axes of the equivalent “square”
disks is very close to the solid angle of a cone circum-
scribed by the symmetry axes of the corresponding phys-
ical disklike molecules. With increasing disorder, how-
ever, the discrepancy between the two solid angles in-
creases, and the expression for the average disorder in-
dex as a function of the declination angle given by Eq.
(29) becomes less and less accurate. The intuitively ac-
ceptable condition §;s, = = for the isotropic phase must
therefore be verified to see if it does indeed minimize the
free energy of mixing.

Following Warner and Flory we write Z,, as [15]

Ng! owyng )Y

T = e ] {Z2=1T
H[(wy)nzy Nay'] 1;[ Nay

y

where 1,y denotes the number of molecules with the same
Y, wy is an a priori probability of finding a molecule with
the chosen y, and ¢ is an unimportant normalization fac-
tor [14].

Note that Eq. (32) is more general than Eq. (27), i.e., it
does not require the simplifying assumption of a uniform
orientational distribution of disk symmetry axes over a
cone ¥ < 1. Instead, cylindrical symmetry of the dis-
tribution about the Z axis is stipulated, so that a given
y describes all molecules inclined by 3 from Z. Detailed
calculations of the critical parameters for the formation
of the nematic phase showed that the critical concentra-
tion and the axial ratio calculated with the aid of Eq. (27)
and of Eq. (32), respectively, differ by less than 7%, while
the difference in the disorder index is slightly higher but
nevertheless never exceeds 10% [6,14]. Because of the nu-
merous simplifications already introduced in the course
of the combinatory partition function evaluation, espe-
cially the K; functions, we find the use of Eq. (32) in the
nematic phase to be an unnecessary complication. It can
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TABLE I. Numerical solutions of Eq. (36).
T giso
v, = 0.01 v, = 0.99

4.0 4.01 4.06
6.0 6.32 6.34
8.0 8.74 8.76
10.0 11.27 11.23
12.0 13.89 13.82

be used, however, to advantage in the isotropic phase.

The configurational partition function (Z = ZcombZor)
can in general be written down with the aid of Eq. (3),
Eq. (32), and the Stirling approximation as follows:

NgWy

_an=—ancomb+anyln( )-—nlln(a).
y

(33)

The orientational equilibrium distribution function
(ngy/ng) can be found from the usual condition [15]

o-mz) »
Ongy
a general solution of which can be written as [14]
Mg — _
= fwy exp[—A(e, 9)y] (35)

where f; is a normalization factor. Since in the isotropic
phase the orientational distribution is uniform over all
angles, A(z,¥) in Eq. (35) should be equal to zero [14]:

A(z,5) =0. (36)

In the case of disks, Eq. (36) cannot be solved analyt-
ically. Substituting the expression for Z.oms, Eq. (25),
into Eq. (33), and solving Eq. (36) numerically, we find
that the equilibrium value of y;;, is always somewhat
larger than x, and does not depend essentially on the
volume concentration of disks, cf. Table I. For small
values of z, the difference between the two is very small.
With increasing z, the difference increases slightly, e.g.,
even for z = 12, the discrepancy between the two is only
about 15%.

The absolute values of the chemical potentials for the
isotropic phase depend on the value assigned to ¢ in the
limit of complete disorder. The use of §;5, = « instead of
the exact value from the solution of Eq. (36), cf. Table
I, causes an insignificant variation in (u; — p2)? and in
(125 —p2)!. Thus changes in the equilibrium compositions
are also insignificant. In order to avoid tedious numeri-
cal calculations, and to preserve a tractable form of the
formalism, we can safely use §;5o = = and Eq. (31) in
subsequent work.

C. Solute-solvent interactions Z;,;

We would also like to investigate the effect of small in-
teractions between solute and solvent molecules. We as-
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sume that the intermolecular forces are sufficiently weak
that they do not seriously disturb the assumed random-
ness for a specified degree of orientation. Consequently,
we restrict our considerations to nearest neighbor inter-
actions, i.e., only between those molecules in direct con-
tact with each other. In the Flory lattice method this
corresponds to considering interactions between parti-
cles which have a common wall between their constituent
cells.

Let N;; and €5, %, j = x, s, be, respectively, the number
of common walls and the energy of interaction between
solvent s and solute x unit cells. The total interaction
energy associated with the solvent-solute mixing can then
be written as

AFE = Nyy[€sx — (€xz — €55)/2] = NszAe . (37)

The solvent-solute common walls number N,, can be
expressed in terms of the volume concentrations of the
solvent and solute. The number of disk walls accessible
to other particles is

2Nye + Nsp = 22(z + 2)n, . (38)

On the other hand, assuming that N, is proportional to
the disk volume concentration we have
Nypow ~ z(z + 2)n5v0, . (39)

Combining Eq. (37), Eq. (38), and Eq. (39) with the
definition v, = n,z?/ne yields

xr+ 2

AFE = N,,Ae = 2Ae¢ no(1 — vz )vy, = RTx(z)nsvs ,

(40)

which is the well known van Laar form of the heat of
mixing, where RT'x(z) can be identified as the energy
change per cell on transferring a solute molecule from
the pure solute to the infinitely dilute solution. Since
the x(z) dependence on x is weak and for large = can
be assumed to be independent of the molecular size, we
consider it to be a constant for simplicity, i.e., we adopt
the thin disk approximation.
The relevant part of the partition function is thus

Zint = exp(—Zvgv,) , (41)

where 2 = xnyg is a temperature dependent scaling factor
[16,49].

Combining Eq. (3) and Eq. (41) we may finally write
down an expression for the Gibbs potential, cf. Eq. (2).

D. Phase equilibria conditions

The conditions for NI biphasic equilibrium are stipu-
lated by the simultaneous equality of the chemical poten-
tials of the same component in both phases, Eq. (1). At
the same time there must be orientational equilibrium of
the disks in the nematic phase, which requires [5]
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G
with 82G/83% > 0 as a subsidiary condition. The so-
lution of Eq. (42) gives the equilibrium value of 7 for
the nematic phase. Since the coexistence of two different
nematic phases has been predicted [15,50] and observed
[50] for solutions of rods, we also look for possible roots
of the NN’ biphasic equilibrium equations

(i — )N = (i — u))N, (43)
oGV oGN'
oy " oy O (44)

where ¢ = s or = denotes solvent or solute, respectively.
It remains to solve numerically the set of equations for
the various cases of interest.

III. CALCULATIONS
A. Athermal solutions

Calculations are carried out for z varying in the exper-
imentally interesting range from 2.5 to 14 [30,31]. Nu-
merical solutions of the phase equilibria equations Eq. (1)
and Eq. (42) in the absence of solute-solvent interactions
(E = 0 i.e., athermal solutions) and various values of the
molecular volume v = z? yield the results summarized in
Fig. 6 and Fig. 7.

Unfortunately, we are not able to calculate analytically
the minimum disk size for absolute stability of anisotropy
in the pure solute, z... This can only be done numeri-
cally.

It is important to note that one of the unphysical con-
sequences that results from the assumption of rectangu-
larly shaped particles is that they can be packed more
tightly than round particles. The model, in fact, gives
results for which the particle volume fractions approach
unity. Although the density scale is clearly off in this
limit, these results still form a successful qualitative rep-
resentation of the high density behavior to the extent
that they are interpreted as corresponding to the close-
packing limit that occurs at lower volume fraction for
rounded particles.

Thus, by setting the disk volume fractions v} = v}* ~
1, where v} and v}* are, respectively, the lower and up-
per boundary of the biphasic range, and searching for the
appearance of a minimum in the free energy with respect
to §/x, one finds the critical size of the disk. As an ex-
ample, the Gibbs free energy vs §/z for several values of
z below and above z., is shown in Fig. 8. We find the
minimum critical value of z.. ~ 3.015 (i.e., ver =~ 9.09)
for the coexistence of two phases in the neat system of
disks. For z > =z, there always exists some minimum
volume concentration of disks v} above which the orien-
tationally ordered phase of the volume concentration v}*
can exist, i.e., there is a minimum of the Gibbs function
inyg, 0<g<a.
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FIG. 6. Athermal mixtures of disks: volume concentrations
of phases in equilibrium, v,, in relation to the molecular vol-
ume v (solid lines). I and N denote the isotropic and ne-
matic phases, respectively. Critical concentrations v} and v}~
set boundaries of the coexistence range I + N. For compar-
ison threshold concentrations are shown for rods in solution
(dotted curves).

For x > z., between the isotropic and nematic phases
there is a range of concentrations (v},v:*) where both
phases coexist. The concentrations of both phases are
constant across the range and equal to v} and v}*, re-
spectively; the overall concentration of the solution is
defined by the volume fraction of conjugated phases, cf.
Fig. 6.

With increasing v, the concentrations of both phases
decrease substantially, cf. Fig. 6. The concentration of
the nematic phase is never much greater than that of the
isotropic phase, although the difference increases with
initial increase of z above z.,; the v:*/vX ratio appears
to approach 1.3 for = 8.6 as the upper limit. At large =
we found that both v} and v}* are inversely proportional
to the disk volume, v} ~ 9/v and v}* ~ 11.5/v, cf. Fig.
8.

In the nematic phase the nematic order parameter S
decrease monotonically with increasing disk volume, and
the rate of decrease decreases with v [51]. This behav-
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FIG. 7. Athermal mixtures of disks. (LHS) order param-
eter S and (RHS) normalized disorder index (§ — 1)/z, as a
function of molecular volume in the conjugated nematic phase
for v, = v;". For comparison results are also shown for rods
in solution (dotted curve).
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FIG. 8. Athermal mixtures of disks. The nematic phase
Gibbs free energy as a function of the normalized disorder
index g/z is plotted for a few typical values of z, 4 (solid
line), 3 (dotted line), and 2.5 (broken line) in the vicinity of
Zcr. The volume concentration of disks is 0.99.

ior is essentially different from that observed by Flory
for solutions of rods, where orientational order remains
fairly constant [5], cf. Fig. 7. For the purpose of com-
parison, we also carried out phase equilibria numerical
calculations for solutions of rods, for the Straley [47] and
Romanko and Carr [24] lattice models. A detailed com-
parison of results for disks and rods will be presented in
Sec. IV.

B. Nonathermal solutions

In order to study effects associated with the solvent-
solute interactions, we use a reduced inverse temperature
© = E/RT rather than the free energy of interaction.
We find that a physically plausible range of the inverse
temperature is 0 < © < 0.5, which corresponds to co >
T > 50 K for typical solvent-solute interactions, cf. [52].

Figure 8 shows the utility of plotting the free energy
as a function of §/z in order to find z.. for the stable
orientational order in solution. Similar plots of the free
energy vs concentration for different  and © facilitated
examination of the common tangency condition for phase
coexistence. It helped us to clarify the nature of the roots
of Eq. (1) and Egs. (42)—(44), especially the coexistence
of more that one pair of phases, cf. Fig. 9.

The numerical results from the concentration-
temperature phase equilibria calculations for x = 8 and
10 are summarized in Fig. 10. For smaller disks, the
isotropic and nematic phases continue to coexist from
© = 0, which corresponds to the vanishing of soft
solvent-solute interactions, through the whole range of in-
verse temperatures studied. The initially narrow bipha-
sic range (I + N) becomes very wide as the reciprocal
temperature is raised, i.e., as the physical temperature is
lowered, and this feature is more and more pronounced
as z increases. For z = 8 indications of more complex
behavior for even larger disks are evident. Detailed cal-
culations not included here show that a reentrant fea-
ture appears just above the diameter-to-width ratio of
about 8.6, and becomes pronounced for z>>9. The narrow
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FIG. 9. Nonathermal mixtures of disks. The Gibbs free
energy is plotted against volume concentration for (dotted
curve) the isotropic and (solid curve) nematic phases for
z = 10. © = 0.10 is characteristic for the coexistence of two
nematic phases below the triple point. Common tangency
conditions are indicated by common tangent lines: (solid)
stable, (broken) metastable, and (dotted) unstable pairs of
phases.

biphasic range (I+ V) continues to exist as © is raised un-
til a pair of reentrant, concentration dependent, nematic
phases appears at a critical inverse temperature ©.,, cf.
Fig. 10 and Fig. 11. At a given inverse temperature,
just above the critical point, either of two pairs of phases
(I,N) and (N, N') may occur. This situation continues
as O increases until a triple point at @y is reached. The
solid lines in Fig. 11 mark the metastable continuations
of the phase lines above and below the triple point. For
© > Oy, the isotropic phase coexists with the denser
and more highly ordered nematic phase N’. This com-
plex phase behavior becomes more and more pronounced,
i.e., the difference between O., and ®; becomes greater
and greater, as = increases. We find that the tempera-

0.25 0.25
020} o020
015} Ho.s
© o)
0.10f Ho.10
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0.00 0.00
020} x=10 4 E i qo0.20
015 -
@ }
.10} .
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1 1 Il
000558 0.9 1.0
s

FIG. 10. Nonathermal mixtures of disks. (a) The inverse
temperature vs order parameter S, and (b) the inverse tem-
perature-concentration phase diagram for z = 8 and 10. Solid
lines, disks, and dotted lines, rods with the same molecular
volume.
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FIG. 11. Nonathermal mixtures of disks. Enlarged phase
diagram for z = 14 to illustrate the complex phase situation
for large disks. The critical P., and triple Py points with
their coordinates are visualized. Metastable coexistence is
shown as thin solid lines.

ture and volume concentrations corresponding to the (cr)
critical and (III) triple points are roughly linear in the
reciprocal disk volume, cf. Fig. 12.

The dependence of the order parameter on inverse tem-
perature for the minimum concentration of the nematic
phase v** is also shown in Fig. 10. Lowering the tem-
perature, i.e., increasing ©, is accompanied by increasing
orientational order of the nematic phase. For z below
the critical value for the reentrant feature, where there is
a rapid broadening of the biphasic range with ©, the in-
crease of S becomes dramatic, which is the manifestation
of a transition from the temperature range where steric
effects are dominant to a range where solvent-solute inter-
action begin to have a significant effect on the formation
of the ordered state. When the reentrant phenomenon
is present, there is a discontinuity in S (and ) on going
from the less ordered high temperature nematic phase N
to the more ordered low temperature nematic phase N’;
cf. Fig. 10(a), where the S vs © curves overlap over the
(IV, N') coexistence range.

We show © vs S along the bottom boundary of the
nematic-nematic coexistence range in Fig. 13. From O,

(/X | S — %,
o.10} do.30
0.09 | 1025

o 7T H0.20 &
0.07 |
0.06 L Ho0.15
0.05 L ) —40.10
YY) B S —— 0.05

1/v

FIG. 12. Nonathermal mixtures of disks. Critical temper-
atures (0cr,0; O11,e) and concentrations (ver, A; vi, A) Vs
inverse molecular volume.
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FIG. 13. Nonathermal mixtures of disks. Order param-
eter S and normalized disorder index (§ — 1)/z of the two
coexisting nematic phases (N-N') as a function of inverse
temperature. Dotted lines: more ordered low temperature
nematic phase; solid lines: less ordered high temperature ne-
matic phase. For each z lines meet at the critical point.

onwards up to the triple point inverse temperature, the
order parameter of the high order nematic phase in-
creases, while that of the low order phase decreases.

IV. DISCUSSION

Experimental data on disklike molecules, macro-
molecules, or aggregates, which could be relevant for the
critical evaluation of our results, are sparse and essen-
tially limited to the lyotropic discotic micelle nematic
phase Np of different two- and multicomponent systems.
We will also compare our results, as far as possible, with
results of other theoretical work and Monte Carlo simu-
lations.

Perhaps the most interesting feature of the present the-
ory is the prediction of a critical disk size for the for-
mation of a stable nematic phase which coincides nicely
with the observed size anisotropy of disklike micelles in
the nematic lyotropic phase predicted from other theoret-
ical work. Since the micelle energy is proportional to its
surface, the micelle tends to reach the shape of minimum
surface (close to a sphere) but anisotropic enough to form
the nematic phase. The measured size anisotropy of mi-
celles formed by amphiphilic, lyotropic substances falls in
the range from 2.65 to 3.2, depending on the composition
and temperature of the lyotropic solution [28,31,53-56],
which should be compared with our value of z., = 3.015.
Similar conclusions have been reached in previous the-
oretical work. Y-expansion calculations predicted the
threshold value of z for the formation of the nematic
phase, z., > 2.75 [57]. A similar value was obtained by
integral equation methods [58]. Results of Monte Carlo
simulations on a system of rodlike and disklike molecules
show that a stable Np phase should exist for x > 2.75
(hard ellipsoid-of-revolution fluid) [59] or even =z > 3
(hard spherocylinder fluid) [60].
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One of the more striking results of this work is the high
degree of apparent conformity in the phase diagrams for
rods and disks of the same molecular volume. Notably, a
symmetry in the thermodynamics of neat systems of ei-
ther rods or disks has been observed in Monte Carlo sim-
ulations [59]. Furthermore, Frenkel and Moulder pointed
out that the observed symmetry at low densities is due to
the identity of the second virial coefficients for the oblate
and prolate ellipsoids of revolution they had been study-
ing. The symmetry in the phase diagram should be ex-
pected also at higher densities in those parts of the phase
diagram where there is a high degree of orientational or-
der. In light of these findings as well as the relatively
low volume fractions and high degree of orientational or-
der predicted by us for the lyotropic Np, the conformity
between the phase diagrams for rods and disks is more
than fortuitous.

We found indeed that rods and disks have “equal”
anisotropies, i.e., they have equal tendencies to order
when their molecular volumes are nearly the same, i.e.,
a close similarity between phase diagrams for disks and
rods is then observed, cf. the dotted lines in Fig. 6 and
Fig. 10. In particular, in the athermal limit, i.e., when
only steric interactions are present, the stable nematic
phase appears only when a certain critical anisotropy is
reached, corresponding to almost the same critical molec-
ular volume: 8.75 for rods [24,61] vs 9.1 for disks.

Also, the free energy behavior near the triple point
for disks is very similar to that obtained by Warner and
Flory for rods [15] which, we believe, reflects a similarity
in the assumed solute-solvent interactions for both kinds
of solute molecules; compare Fig. 9 here and Fig. 1 of
Ref. [15].

A notable but subtle difference can be found, however,
in the orientational order parameter dependence on the
particle anisotropy. While the order parameter of the dis-
cotic nematic phase increases substantially with the disk
anisotropy, for rods the order parameter remains almost
independent of the anisotropy, cf. Fig. 7 and Ref. [5].

Similar forms of solute-solvent interactions result in
very good agreement of the calculated phase diagrams
in the biphasic region of two conjugated weakly and
strongly oriented nematic phases, where one finds coexis-
tence for nearly identical molecular volumes of rods and
corresponding disks. The condition for this coexistence,
discussed thoroughly in [50], originates from changes
in the chemical potentials induced by soft interactions,
which are similar for rods and disks.

We believe that discrepancies between the phase dia-
grams probably reflect the different degrees of approx-
imation employed in evaluating Z.,ms for model rods
and disks, especially the K; functions, cf. Egs. (17)-
(20). These differences manifest themselves in a rel-
atively greater divergence between the phase diagrams
when the molecular size anisotropy is small and vol-
ume concentrations large, i.e., when the lattice method
approximations are most suspect, cf. Fig. 6. The two
models seem to agree much better for molecular volumes
v > 16 [62]. Nevertheless, the degree of conformity be-
tween the phase diagrams is a confirmation that the ap-
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proximations and assumptions that enter into our model
correspond conceptually to those made in the model for
rods.

Finally, we would like to comment on the variation
with temperature (and concentration) of the micellar ax-
ial ratio and the influence of this effect on the orienta-
tional order of micelles in the nematic phase. There is
mixed experimental evidence for the temperature depen-
dence of z. In some experiments a relatively constant and
well-defined average axial ratio was obtained within the
discotic nematic phase. The results of Hendrikx et al. [53]
indicate a remarkably concentration independent effec-
tive shape of the micelle within the entire range of Np.
Also Galerne et al. concluded that within the phase the
globally averaged effective micellar axial ratio is nearly
temperature independent [55]. On the other hand, Boden
et al. [54] observed that = grows slowly on cooling across
the nematic phase temperature range. The variation with
temperature of z for the micelles is followed by the vari-
ation of the orientational order parameter. Moreover, S
increases, on cooling, much faster than the molecular or-
der parameter of thermotropic nematics. The results of
Rosenblatt suggest in turn, that the aggregation number
of micelles and thus £ may be growing with concentra-
tion [56].

The results shown in Fig. 10 suggest that the enhance-
ment in the temperature dependence of S may indeed
have its origin in the variation with temperature of the
micelle diameter. The effect of growth of the diameter
of the micelle on cooling is to shift the NI transition to
higher temperatures and, consequently, drive the order
parameter to larger values.

In summary, the lattice model presented here clearly
demonstrates the importance of repulsive interactions in
the formation of the nematic phase in discotic systems.
In further developments of the model some of the ap-
proximations introduced will be eliminated in order to
provide us with a better insight into the nature of the
isotropic-nematic phase transition in these systems. The
model also opens the way to study the formation of the
biaxial nematic phase by considering a mixture of rods
and disks or anisotropic platelets.
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APPENDIX

Since an exact evaluation of the occupation factors K;
is cumbersome and the final results are unwieldy, we pro-
pose a number of simplifications which yield K;’s that
have simple dependencies on § and z only, while keeping
the error thus introduced in the evaluation of the parti-
tion function to a minimum.



53 PHASE EQUILIBRIA IN SOLUTIONS OF DISKLIKE PARTICLES

First, in order to calculate the mean occupation factor
for a particular cell type, say ¢, we will consider a central
cell of type i for which the occupation factor should be
a reasonable estimate of K, e.g., for cells of type 1b or
16’ we will consider the middle cell of a particular edge.
For cells of type 1c or 2¢, we will consider a cell in the
middle of the segment. As we shall see, the K; are sec-
ond order polynomials in §; the polynomial coefficients
emerge from the analysis. We have verified that p; is not
particularly sensitive to 15% changes in the values of the
coefficients. Since we believe that the middle cell factor
should be reasonably close to the mean occupation prob-
ablility, one may conclude therefore that the proposed
estimate will not be a source of significant error in the
partition function.

Next, since we assume that the average § remains fixed
during the process of addition of the solute molecules, it
implies that the disorder index of any particular disk, say
J, should not significantly differ from the average disorder
index of the whole system, i.e.,

vk + vl =29 (A1)

The occupation factors are directly related to the num-
bers of ways N} and NiII in which average molecules [i.e.,
such that yx = yy = @, cf. Eq. (12)] built of trains of
type I or II, respectively, could block a site to be occupied
by the midcell of type 7. As it turns out, NiI and N} are
directly related to the constituent number of cells in each
segment, and to the number of cells of each type in the
placing sequence that partitions the segment. We recall
that a model disk of given = and disorder indices yx and
yy is built up of yxyy segments joined together to form
yx + yy — 1 trains, each of the trains lying in different
neighboring XY slices (cf. Figs. 4 and 5). The dimen-
sions of each segment are (f; X oo X 1) which precisely
defines the number of unit cells per segment. The seg-
ment cells are in turn partitioned into different “kinds”
by the placing sequence. For example, the uth segment
consists of one cell of pa kind, (z/yx —1) cells of ub kind,
(z/yy — 1) cells of pb’ kind and (z/yx — 1)(z/yy — 1)
cells of pc kind.

Due to the cylindrical symmetry of the nematic phase,
we take K; as the arithmetic mean of N}, and N}

K; = 3N/ +NI). (A2)

We may now proceed to consider, in turn, each type of
cell, always assuming that preceding cells in the sequence
are already placed in the XY slice, cf. Fig. 5.

1. Occupation factors K;;, and K,y

Given the symmetry of the nematic phase, K3, and
K,y are equivalent; thus it is sufficient to consider sites
for 1b cells only, cf. Eq. (14). All cells up to the midpoint
of the 1b and 1b’' edges should already be in place by
definition. Now, a site for the next cell of type 1b can
already be occupied by any cell of type 18’ from segments
of I-type trains present in the given slice:
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Niy=n, 4, (A3)
Yy

where y! denote the average y; for I-type trains, i = X, Y,
and n, is a number of segments in the I-type train present
in the slice. By assumption all XY slices are equivalent,
so that this procedure takes into account all trains from
disks that have already been placed. The contribution
from one “average” disk is then:
NL = Lok —g—?— since n, = YL yk. (A4)
Yy
In the case of type II trains the situation is different.
When the angle between the long axes of the type-II
trains and the X reference axis is greater then 45°, then
their segments are longer along the Y axis, i.e., yy < 7.
The site can then be blocked only by 1b cells from their
first segments; the fact that 15’ cells are already in place
from the segment under consideration excludes access to
the site by the other segments present in the slice, cf. Fig.
4 and Fig. 5. Thus the contribution from such segments
is

x
(yifl + yg} - 1) I (A5)
Yy

where (y3f + y!f — 1) is the number of the first segments,
i.e., the number of trains making up an average molecule
of type II. For trains of declination angle smaller than
45°, i.e., yy > ¥, the situation is the same as for type-I
trains, cf. Eq. (A4):

m i z
YxYy 11

" (A6)

Since we are considering a system of average disks, all
possible lengths for a segment side are equally probable,
provided that yx + yy = 2§ =const, the average N1} is

the arithmetic mean of Eq. (A5) and Eq. (A6), and
Ny = @¥ox + 9% + 9% — g - (A7)
Yy

Combining Eq. (A2), Eq. (A4), and Eq. (A7), and us-
ing the cylindrical symmetry of the system, we finally
obtain

Kip(z,9) = K (z,9) =

X
4«17(3_172 +25—-1). (A8)

2. Occupation factors K,;. and K,

A careful inspection of Fig. 5 reveals that occupation
factors for cells of type 1lc and 2c¢ are the same. We
reiterate that la, all of the 16 and 1b’ cells, and a certain
number of 1c cells are already in place in the slice before
we can evaluate Ki.. The site for the next 1lc cell can
only be occupied by either the bottom left corner of the
type-I trains (la cells) or by the bottom left corner of
any segment of type-II trains.

Consequently,
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Nt = g% 7% (A9)

and
N =gy +9x™ -1, (A10)

With the aid of Eq. (A2) and using Eq. (13) the occupa-
tion factors are

Kic(z,9) = Kao(z,9) = (7> + 25— 1) . (A11)

3. Occupation factor K,

The first segment of the train is now in place in the
slice. The site for the next cell, i.e., the second segment
of the first cell, 2a, can only be occupied by the following
types of cells: any of the cells of the 1b or 15’ edges of
segments of type-II trains, or by the same cells of the
first segment of type-I trains. Note that access to the
site for cells from the other segments of type-I trains is
effectively blocked by placing the first segment, cf. Figs.
4 and 5. Therefore

T T
N3, = (Fy +9x — 1) (T + 5 - 1) (A12)
Yx Yy
and
T x
N3, = 9y oy (—_n +t o 1) ) (A13)
Yx Yy
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where (2/§x +x/§y —1) is the average number of 1b plus
10’ cells. Averaging yields

Kaa(2,9) = 3(22/5 - 1)(5° + 25 - 1) . (A14)

4. Occupation factors K3, and Koy

Placing cells of type 2b or 2b is similar to placing 1b
or 1¥ cells. For type-II trains NZIII7 is exactly the same as

NYU of. Fig. 5:

Nip = Ni = @V + 9% -1 IR g (AL5)
Y
However, the presence of the preceding segment in the
slice causes restrictions for the cells of type-I trains. Due
to the presence of this segment, access to the candidate
site by cells of any segment but the first one is excluded.
The first segment of a type-I train can occupy the site
only with its 1b cells, and we have

xT
Ny = (9y +9x — 1) (A16)
Yy
and
X
Kop(z,9) = @[172 +3(25 - 1)] . (A17)

Equations (A8), (A11), (A14), and (A17) complete the
set of occupation factors for the problem.
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FIG. 2. Disk with z = 8 after rotation around the X axis
by 6. yelding the disorder index yx = 4. Projections of the
disk onto the XZ and YZ planes are also shown.



FIG. 3. The same disk after a second rotation around the
Y axis by Oy, yy = 2.



