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Analysis of a pattern-forming lattice-gas automaton:
Mean-field theory and beyond
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An analysis is presented of a two-dimensional lattice model of random walkers that interact
through a nearest neighbor attraction. The model exhibits a dynamical phase transition to a spa-
tially unstable state, leading to pattern formation and domain coarsening. A mean-field theory is
formulated. It is applied to predict the critical temperature and to explain observed anisotropic
behavior. The occurrence of a striped phase in the presence of an external driving field is clarified,
and a linear response theorem relating the induced particle flux to the variance of equilibrium Huctu-

ations is derived. To account for deviations from mean-field theory, an Enskog-Boltzmann equation
is derived that accounts for the eKect of static pair correlations existing in equilibrium due to the
lack of detailed balance. For temperatures above the critical temperature we obtain corrections to
mean-field theory for the difFusion coeKcient. Below the critical temperature the theory is used to
explain the initial stages of phase separation.

PACS number(s): 05.20.Dd, 05.60.+w, 05.70.Ln

I. INTRODUCTION

Pattern formation occurs in lattice-gas automata
(LGA) for immiscible fluids [1], liquid-gas transitions [2],
reaction-diffusion systems [3,4], and trafIic jams [5,6]. A
great advantage of LGA over continuum descriptions, like
partial differential equations or lattice-BGK (i.e. , sin-
gle relaxation time) models [7—9], is that due to their
Boolean nature I GA possess intrinsic fluctuations. Since
in most cases pattern formation results from the ampli-
fication of microscopic fluctuations in a spatially homo-
geneous initial state, due to unstable macroscopic diKu-
sive or hydrodynamic modes, LGA are ideally suited to a
mesoscopic study of pattern formation phenomena where
both aspects are important. Each cell on the lattice plays
the role of a volume element that is large enough to con-
tain a considerable number of microscopic particles, but
on the other hand is small compared to all macroscopic
length scales in the system.

A feature that is shared by almost all pattern-forming
LGA is lack of detailed balance When a .LGA satisfies
detailed balance its equilibrium state is completely de-
scribed by the Gibbs distribution known from standard
statistical mechanics. The Gibbs distribution is univer-
sal, in the sense that it only depends on the microscopic
state through global invariants like the total number of
particles. When a model lacks detailed balance the equi-
librium distribution is non-Gibbsian and depends on the
details of the microscopic collision rules. There exist
(often strong) spatial correlations between microscopic
variables, which acct the macroscopic behavior of the
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model. Therefore it is important to understand these
correlations theoretically.

A first step towards a theory for non-detailed-balance
LGA was made by Bussemaker, Ernst, and Dufty [10].
They derived approximate equations for the coupled time
evolution of the single particle distribution function and
the pair correlation function, by neglecting all third and
higher order correlations. By considering a stationary
solution to these kinetic equations an estimate for the
pair correlation function in equilibrium was obtained, in
good agreement with simulation results.

Even in LGA that satisfy detailed balance there are ef-
fects of dynamic correlations that are generated when a
nonequilibrium state relaxes towards equilibrium. The
contribution of ring collisions to transport coeKcients
was first calculated by Ernst and co-workers [ll—16]. No
theory beyond the mean-Geld approximation exists for
transport coeKcients in LGA that lack detailed balance.

The present article provides a theory for transport
coefEcients that takes equilibrium pair correlations into
account in the simplest possible manner. All dynamic
correlations and higher order static correlations are ne-
glected. We expect that for models that strongly violate
detailed balance the dominant correction to mean-field
theory comes from the static pair correlations.

We analyze a two-dimensional diffusive model intro-
duced by Alexander, Edrei, Garrido, and Lebowitz [17]
as a limiting case of the immiscible Quid LGA of Rothman
and Keller [1]. Random walkers interact through nearest
neighbor attraction. The strength of the interaction is
tuned by a temperaturelike parameter. For each value of
the initial uniform density, there exists a critical temper-
ature where a dynamical phase transition occurs, from a
spatially homogeneous equilibrium state to a phase sepa-
rated state where high and low density phases coexist. At
temperatures below the critical temperature the spatially
uniform state is unstable against long wavelength excita-
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tions. The system tries to reach the two-phase equilib-
rium state by a process of coarsening, during which the
typical size of domains grows in time so that local equi-
librium is reached on a larger and larger spatial scale.

The organization of this article is as follows. In Sec. II
we deGne the model. In Sec. III the model is analyzed in
the mean-Geld approximation. The resulting nonlinear
Boltzmann equation is a closed time evolution equation
for the single particle distribution function. By analyz-
ing the behavior of small deviations from equilibrium,
we obtain an expression for the difFusion coefIicient as
a function of the macroscopic parameters (density and
temperature), and we calculate the critical temperature
in mean-field approximation. The eigenvalue spectrum of
the linearized Boltzmann collision operator contains in-
formation about the typical length and time scales at the
onset of phase separation, and about the isotropy of the
patterns. In Sec. IV the efFect of an external driving field
on the behavior of the model is analyzed in mean-field
approximation. A linear response relation is derived for
the induced particle flux, and the occurrence of striped
patterns is explained using the eigenvalue spectrum.

Section V starts with the derivation of a ring kinetic
theory for the static pair correlations in equilibrium,
along the lines of Ref. [10]. By expanding the master
equation around mean-field theory an Enskog-Boltzmann
equation is derived that is used to estimate the correc-
tions to the difFusion coefIicient due to the equilibrium
pair correlations. Finally in Sec. VI the Enskog theory is
applied to predict the time evolution of the static struc-
ture factor during the initial stages of coarsening. For
large times the predictions of dynamic scaling are tested.
We end with a discussion in Sec. VII.

II. THE MODEL

(2)

During collision the number of particles at each node r
must remain constant,

i.e. , no creation or annihilation of particles is allowed.
There are no other constraints. Before the collision step
can be performed the gradient field in the local density,

p=1
(4)

The probability that 0 is the outcome of a collision at
node r, when s is the precollision state at r and G (r) the
local density gradient, is given by

must be calculated from the local densities p(r + c„,t)
at the b neighbors of each node. The collision rules are
defined in such a way that particles preferably move in
the direction of increasing density, i.e., parallel to C,
which mimics attraction between particles and gives rise
to antidifFusion. The degree of preference is tuned by
a temperaturelike parameter T = 1/P. Let the particle
Hux J(cr) corresponding to a postcollision state cr at a
single node be given by

We consider a lattice-gas automaton (LGA) defined on
a two-dimensional lattice with periodic boundary condi-
tions. Let b denote the coordination number: on the
square lattice b = 4 and on the triangular lattice b = 6.
There are V = L x L nodes in the lattice, labeled r.
At each node there is room for up to b particles in the
velocity channels c; = (cos2a(i —1)/b, sin 2vr(i —1)/b)
with 1 & i ( b corresponding to nearest neighbor vec-
tors. A channel (r, c;) can either be empty or occupied
by at most one particle with velocity c;. The state of the
entire lattice at time t is denoted by a set of occupation
numbers s;(r, t) = 0, 1 denoting the absence or presence,
respectively, of a particle in channel (r, c,).

A time evolution step in the model consists of a col-
Iision step followed by a propagation step. The collision
step transforms a precollision state s;(r, t) into a postcol-
lision state o, (r, t) according to stochastic collision rules.
During the propagation step all particles are moved to
nearest neighbors in the direction of their velocity. In
terms of occupation numbers this is represented by

s; (r + c;, t + 1) = cr; (r, t) .

Let the number of particles at node r be denoted by

where 8 denotes the Kronecker symbol. The normaliza-
tion constant is given by

In the limit of high temperature (P = 0) the gradient
G does not have any efFect on the outcome of the col-
lision: the outcome cr is chosen with equal probability
among all states that have the right number of particles
p(o) = p(s). In this limit a random walker model is ob-
tained with a positive difFusion coefFicient. In the limit of
loia temperature (P = oo) the outcome tr is chosen among
the smaller subset of states that make the inner product
J(cr) .G (r) maximal. As it turns out, in this case the dif-
fusion coefIicient is negative, leading to spatial instability
and pattern formation. There is a critical temperature
T, = 1/P, where the difFusion coeKcient changes sign
&om positive to negative. The former case is stable; the
latter is unstable against large scale density fIuctuations
and leads to phase separation for P ) P, . One of the
main goals of this article is a calculation of P, .
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III. BOLTZMANN THEORY pletely factorized distribution

A. The nonlinear Boltzmann equation

Let n;(r, t) denote the microscopic state of the system
in a way analogous to s;(r, t). The state {n(r, t) j of all
nodes of the lattice simultaneously can be thought of as
a point in a discrete phase space consisting of all 2
possible different microstates. Since we are interested
in the time evolution of an ensemble of microstates it
is convenient to introduce a probability distribution on
this phase space: p({n(r, t) j, t). We define (. .) as the
ensemble average,

so that all pair, triplet, and higher order correlations are
neglected. The factors f;(r, t) and 1 —f;(r, t) are a con-
sequence of the Fermi exclusion rule and account for the
probabilities of finding, respectively, a particle and a hole
in channel (r, c,).

We define ()Mp as a mean-field average for observables
that depend on both the precollision state {s(r)j and the
postcollision state {o(r) j at time t,

A formal expression for the phase space distribution is
then given by

with the factorized single node distribution I"(s, r, t) de-
fined as

F(s, r, t) =

Although it is straightforward to write down the master
equation that describes the time evolution of p({s(r)j, t),
this equation is of little use if one wants to calculate
transport quantities like the diffusion coeKcient. It keeps
track of all information about the state of the system,
which makes it completely intractable.

The average equation of motion for the single particle
distribution function,

(10)

can be constructed by averaging Eq. (1) over an arbitrary
initial ensemble, with the result

In Eq. (14) the distribution over postcollision states is
obtained by applying the collision matrix A, (C) to the
completely factorized precollision distribution Eq. (13)
for all nodes in the lattice. Note that when P g 0 the
postcollision distribution contains correlations between
occupation numbers at the same node and at nearest
neighbor nodes, due to the asymmetry resulting from the
biasing factor in Eq. (6). By using the normalization

A, (C) = 1, it can be verified that (s;(r, t))Mp =
f'(r t).

We obtain a closed evolution equation for f, (r, t) by
using the Boltzmann approximation, i.e., by replacing
the average () in Eq. (11) by ()Mp. We obtain the well-

known nonlinear Boltzmann equation,

f, (r + c;, t + 1) —f; (r, t) = (o;(r, t) —a;(r, t)), (ll)

where the collision term on the right hand side is defined
as

f, (r + c, , t + 1) —f; (r, t) = 0,. (r, t),

with the nonlinear collision operator 0, defined by

0,'0(r, t) —= (a.;(r, t) —s, (r, t))Mp.

(16)

For a given average number of particles per node p the
nonlinear Boltzmann equation Eq. (16) has a spatially
homogeneous stationary solution f;(r) = f,~ = p/b, sat-
isfying

The simplest approximation to the master equa-
tion, which, however, captures the essential physics
and often provides surprisingly good predictions is the
Boltzmann approximation or mean field approxim-ation
(Stoaszahlansatz), in which fluctuations are neglected
and distribution functions are completely factorized.
It amounts to discarding all information contained in
p({s(r)j, t), except for the single particle distribution
function, and approximating p({s(r)j, t) by the com-

B. The linearized Boltzmann equation

In a first attempt to understand the solutions to the
Boltzmann equation Eq. (16) we study small deviations
from equilibrium by linearizing around the equilibrium
solution. Introducing the fiuctuation bf; (r, t) = f, (r, t)—
f,q we have



53 ANALYSIS OF A PATTERN-FORMING LATTICE-GAS. . . 1647

hf;(r + c;, t + 1) —hf, (r, t) ing to

f;(k, t+1) = ) I'~(k)hf, (k, t). (26)
)9 0 (i')
gf (rl )

eq

hf (r t). (19)
The one-step Boltzmann propagator I'P&(k) is defined as

Since the outcome of a collision at node r only depends on
the state of node r itself and of its nearest neighbors r+cp
with 1 & p & 6, the r' summation can be restricted to
node r and its nearest neighbors. The resulting equation
is the linearized Boltzmann equation

b

hf;(r+ c;,t+ 1) —bf, (r, t) = ) ) 0, 'Pbf~. (r+ cp, t),

(20)

where co ——0 by definition, and the linearized Boltzmann
operator 0, '" is defined as (hs, = s; —f)

FB(k) —ik c;

—ik ce

b
ik.cp gil, p

U J x2

p=0
b

—+ ) e'"'" ~"
p=1

where the second equality follows from Eqs. (23) and
(24). The propagator is a nonsymmetric matrix. Intro-
ducing a bra-ket notation with left eigenvectors (@„(k)l
and right eigenvectors l@„(k))corresponding to eigen-
value e &~ ~ we can write the propagator as a spectral
decomposition

8 A,io(r)
Bf,(r+ c„), (28)

with the single particle fluctuation g q given by

u., = f.q(1 —f.q).

The second equality in Eq. (21) follows from the defini-
tion of ( )MF in Eq. (14). The equilibrium average ( )MF,

„

is defined by Eq. (14) with I"(s, r, t) = F,~(s).
In Appendix A the symmetry properties of the matri-

ces 0 '" are discussed. One result is that 0,. ' does not
depend on P or f,z, and is given by

11,0 1
0, ' = ——8'~.

For 1 & p & b the matrix 0,- '" does not depend on its
second index j. Therefore it is convenient to define the
symbol u,". as

where p runs over b difFerent modes. The eigenvectors
satisfy a biorthogonality relation

W~(k)l&-(k)) = 4- (29)

I';, (k) = I@ (k))' ' '"' (@ (k)I (30)

where the inner product is defined by (alb) = P, i a;b,
(no complex conjugation).

Since the Boltzmann propagator I', (k) does not de-
pend on its second index (see Appendix A), the vector
(1, . . . , 1) necessarily is a left eigenvector; it is associated
with a difFusive mode p =D. All other modes relax in-
stantaneously, i.e. , e*&&kl = 0 for p g D. This is due
to the fact that the outcome of the collision step only
depends on the densities p(r + c„)at the central node
and its nearest neighbors; all other information about
the precollision state is completely lost. Consequently
I'P~(k) has the structure of a projection operator,

ld = —) 0
2

As is shown in Appendix A, on the square lattice (b = 4)
there are only two independent elements u1 and cu2, all
other ~," are related. to these two by lattice symmetries.
On the half-filled square lattice (f,~ = 2) we have ~2i = 0.
On the triangular lattice (b = 6) only uii, uz, and us are
independent, and when f,~ =

z we have ws ———urz.
The linearized Boltzmann equation Eq. (20) represents

a set of spatially coupled linear evolution equations for
f, (r, t). A standard way of treating such equations is by
means of Fourier transformation,

projecting onto the difFusive mode p = D associated with
the locally conserved density.

It can be verified that for all k the left and right eigen-
vectors are given by

and the eigenvalue e ~& ~ by

zD(k) =ln ) e ' '*1 —+) e' '
w,
" . (32)

f, (k, t) = ) e *"'hf;(r, t). (25)

Each Fourier component k evolves independently accord-
For small values of the wave number k = lkl we can
expand
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FIG. 1. Pattern formation for P ) P, on (a) the square
lattice, where there is a clear preference for +45' directions,
and (b) the triangular lattice, where this anisotropy is absent.

z~(k) = Dk +—O(k ), (33)

where the diffusion coeKcient D is given by

b

D = —,
' —

—,
' ) (c;.c„)u,".

i,p=1
(34)

C. Critical temperature and isotropy

The sign of D determines whether the diffusive mode is
stable (D & 0) or unstable (D ( 0). Since the wf are
functions of P, the condition D(P, ) = 0 defines a critical
inverse temperature P, .

The diffusion coefficient is given by D =
4

—4(ui + ~2).
In what follows we specialize to the case of the half-Riled
lattice f = 2, where ~2 vanishes, so that the condition

D(P, ) = 0 is equivalent to wi(P, ) = —.In Appendix 8
it is shown that a "high temperature expansion" yields
~i(P) = 4P + O(P ). Therefore in first approximation
.P, = 4. A more precise (numerical) calculation yields
P, 0.263. In Ref. [17] it was found from computer sim-
ulations that P, =0.30—0.35. The discrepancy between
these simulation values and our theoretical prediction for
P, is due to the complete neglect of correlated fluctua-
tions inherent in the Boltzmann approximation. In the
next section we will present a systematic improvement of
Boltzmann theory which takes some of the correlations
into account.

Figure 1 shows snapshots of the time evolution of a
system that at t = 0 is prepared in a spatially uniform
initial state. The inverse temperature is chosen such that
the model is spatially unstable: P ) P, . On the left hand
side of Fig. 1 particles move on a square lattice; on the
right hand side a triangular lattice is used. In the former
case there clearly exists a strong preference for patterns
in which angles of +45' with the z and y axes dominate.
This anisotropy is absent on the triangular lattice.

Can Boltzmann theory predict such features of the pat-
terns? That this is indeed the case is shown in Fig. 2
where the unstable regions with z~(k) & 0 are indicated
in the k plane. In the case of the triangular lattice z~(k)
hardly depends on the direction of k. On the square
lattice, however, there are four distinguished maxima lo-
cated in the +45' directions. Analytical insight can be
gained by expanding zri(k) in powers of the Cartesian
components k of k, with tensorial coeKcients, as

zD(k) = in[2 (cos k + cos ky)

+4(u)i +(u2)(sin k + sin k„)
—4wz (cos k —cos k„)], (35)

On the square lattice where 6 = 4 we can use the sym-
metries of u," to obtain

zD (k) = Dpk kp +—E„p~gk kpk~kg + . (36)

The second rank tensor D p ——Db p is isotropic on
both the square and the triangular lattices. However,
the fourth rank tensor E p~g is isotropic on the trian-
gular lattice only; on the square lattice it gives rise to
anisotropic quartic terms A: . %Then D ) 0 the macro-

0.6

0.4

0.2

k 0

-0.2.

-0.4.

-0.6-.
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-2 .
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j- si*-;!L%r! !,

k

PIG. 2. DifFusive eigenvalue
zn (k). Regions where
zrj(k) ) 0 are indicated by gray
scales: black denotes the fastest
growing modes. (a) On the
square lattice there exist strong
anisotropies. (b) On the tri-
angular lattice the spectrum is
nearly isotropic.
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scopic behavior of the model is dominated. by the large
wavelength modes around k = 0. But in. the case of spa-
tial instability the fastest initial growth occurs at finite
wave numbers, and therefore the higher order terms in
Eq. (36) becoine important as well. Consequently the
isotropic symmetry is absent in Fig. 2(a).

IV. DRIVEN DIFFUSION

plotted against ~E~, for two directions E (1,0) and E
(1,1), respectively. There is good agreement between
theory and simulations. Up to ~E~ 0.5 the response
is linear and isotropic, Jo ——yE with y = g(P, f,~) the
susceptibility. In Appendix C it is derived that in the
mean-field approximation y is given by a linear response
relation in terms of the variance of the postcollision Aux

J(o) in equilibrium,

The dynamics of the model can be modiGed by intro-
ducing an external driving Beld E, extending the defini-
tion of the collision rules in Eq. (6) as follows:

1 J2 ~ J
MF, eq

(39)

A, (C, E) = e(~ + ) ( ) b(p(or), p(s)),
1

2()

with

J(o.) —= ) J(o.)A. (C), J'(~) —= ).P(~)j'A-(C)

with a normalization constant

&(s) = ) ' + ""~(~(~) ~(s)).

The driving Geld breaks the symmetry of the stationary
solution to the nonlinear Boltzmann equation given by
Eq. (18). It now has the form f,'q(r) = f;, with f; de-
pending on the direction c, . Numerically, the stationary
solution is obtained within a few iteration steps, by iter-
ating f; -+ f; + Bio(f,), starting from f; = p/b

The driving Geld E induces a stationary average par-
ticle ffux Jo throughout the lattice. In Fig. 3(a) ~Jo~ is

1.0

(4o)

In the special case P = 0 the susceptibility is given by
y =

2 bg, ~, on both the square and the triangular lattices.
The spatial stability of the system in the presence of a

driving Geld E can be determined by linearizing around
the appropriate stationary state f;(r) = f;(p, P, E). The
symmetries of 0 '" for E = 0 that enabled us to calcu-
late the eigenvalue spectrum (z„(k)) analytically are all
lost due to the symmetry breaking driving Beld E.

By observing the diffusion coefficient D(k)
—limI, to z~(k)/k as a function of the direction k = k/k
we can monitor how the system becomes unstable as P
increases from P = 0. In the preceding section we found
that when E = 0 all k directions become unstable simul-
taneously at P 0.263. Prom Fig. 4 it can be seen that
the external Geld suppresses the unstable Quctuations so
that the critical value of P is increased to P, i(E) ) P, .
The suppression is most efFective for excitations with k
parallel to E so that those with k J E are the Grst to
become unstable for P ) P, ,i(E), which results in the
emergence of a striped phase. When the temperature
is further decreased, the range of unstable k directions

1.0 2.0 3.0 4.0

0.30,——

0.29 .

t c 028

E=O
E=0.5, ps=0
E=0.5, (I) =45

,

''

X 0.2 0.27 .

0.0
0

0.26 ——

0 90 180 270

0, («g)
360

FIG. 3. Square lattice model at f,~ = —. (a) Average in-
duced particle Qux Jo versus driving field E, with E ~ x. The
solid lines represent mean-6eld theory; simulation results are
shown as symbols. (b) Susceptibility y versus P.

FIG. 4. Critical temperature T, (k, E) versus Pi„the angle
of k with the positive x axis, for the negative difFusion model .
on the half-filled square lattice (f,~ = —), in the presence of an
external driving field E, with strength ~E~ = — and direction
E (1,0) or E (1,1).
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spreads out until at P = P, 2(E) the spectrum zD(k) has
become unstable in all k directions. For still larger values
of P the inBuence of E becomes negligible because PG
dominates the terin (PG + E) in Eq. (37), so that the
patterns occurring are similar to those in Fig. 1 again.

A remark should be made about the kinetic eigenval-
ues z„(k)with p g D In. the previous section when
discussing the case E = 0 we argued that apart Rom the
difFusive mode zLi(k) there are three kinetic modes which
decay to zero in a single evolution step. In the presence
of a driving field E g 0 these modes have a finite life-
time, i.e. , e'& g 0. As long as the kinetic modes decay
rapidly with respect to the (slow) diffusive mode, i.e. ,
z„(k)/zD(k) )) 1, at least for small k, the macroscopic
evolution of the density field p(r) is well described by the
information contained in zD(k) only. This is the case
for driving fields up to ~E~ 1. For still larger values
of ~E~ the value of the kinetic eigenvalues becomes com-
parable to zD(k) even near k = 0, and they may even
become positive. Clearly then our analysis in terms of
the dift'usive mode only is no longer adequate.

Keeping the above proviso in mind we can explain
soine observations made by Alexander et al. [17]. These
authors report on the occurrence of a striped phase as
the temperature is decreased below a critical value, with
structure perpendicular to a driving field E. Further-
more, they mention that there also appears to be a second
transition at a lower temperature to a phase with struc-
tures resembling those found for E = O. Unfortunately
the authors used E = (4, 0) and as was argued above our
theory breaks down at such a large value of ~E~. How-
ever, qualitatively at least, the observations of Alexander
et al. are consistent with our findings for E = (2, 0).

V. ENSKOG THEORY

G;~ (r, r', t) = g,, (r —r', t). (43)

It is convenient to introduce the excess correlation func
tion C;i(r, t), defined as

C, (r, t) = g,, (r, t) —b (r)b;,g, . (44)

B;~ (r —r') = (ho; (r) b 0i (r') —b s; (r) b si (r') )MF,~
= [1 —bVh(r r')](b~'(r)h~i(r'))MF, .q (45)

The second equality follows from ([ho;(r)] )
(b(s'(r))') = g..

It follows from the definition of the collision rules that
B;~(r —r') can only be nonvanishing if r and r' have at
least one nearest neighbor in cominon. Splitting B;~(r)
into contributions of four difI'erent types we have

In this section we will formulate a kinetic theory beyond
the Boltzmann approximation that makes use of a re-
ined description of the phase space distribution func-
tion by taking into account both f, (r, t) and Q;i(r, t).
Three-point and higher order correlation functions are
still neglected. In the next section we will explain how
this extension gives rise to corrections to the Boltzmann
theory for the diffusion coefficient D(P) and the critical
inverse temperature P, . But first we will describe how
the pair correlation function in equilibrium Q,

'. . (r) can
be calculated, at least approximately.

The reason for the existence of static (equal time) cor-
relations between fluctuations h's, (r, t) is that the colli-
sion rules violate detailed balance: there does not exist
a completely factorized equilibrium distribution that is
invariant under the combined action of the collision and
the propagation step. To see this explicitly we consider
the source term B;~(r—r'), representing the postcollision
pair correlations that are created when the collision rules
are applied to a completely factorized precollision state,

A. Equilibrium correlations

In this section we extend the theory of Ref. [10] to the
model considered in this article. Here we will follow a
more intuitive line of argument which, however, leads to
the same results. For a more systematic derivation of the
results of this section we refer to Ref. [10].

The leading term describing the deviation &om the
completely factorized distribution —which is character-
ized by the single particle distribution function f;(r, t)—
is the pair correlation function G;~ (r, r', t) defined by

G,, (r, r', t) = (bs;(r, t)bs, (r', t))

= (s;(r, t) s~ (r', t)) —f,.(r, t) fz (r', t). (41)

b

B;~(r) = h(r)O, , (0) + ) [b(r, c„)O,(c„)
p=l

+b(r, 2c„)A,, (2c„)
+b(r, cp + c„+i)Q;,o(c„+c„+,)].

The matrices 02O(r) are defined by

0, (r) = (bo.;(r)her (0))
= ) ) 80.;(r)bcr, (0)

s(r) cr(r)

&.( ). ( ) (G(r))+(s(r))

(46)

(47)

Note that the diagonal elements are not independent
since

with 02O(O) = 0 by definition. Introducing the Fourier
transforms of C;~ (r) and B;~(r),

G;;(r, r, t) = f;(r, t)[1 —f;(r, t)]. (42) C;~ (q) = ) e '~'C, i (r), B;,(q) = ) e ''i'B, , (r),

In what follows we assume that the system is spatially
homogeneous in a statistical sense, so that f, (r) = f =
p/6 and we write Eq. (46) as

(48)
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(49)

Within the approximation that is used here we may
consider the correlations that result from sources at dif-
ferent times to evolve independently (this is the "sim-
ple ring approximation" of Ref. [10], in which repeated
rings and higher order correlated collisions have been ne-
glected). Let us first turn to the question how the cor-
relations that are generated by the source term at time
tp evolve in time. We start by observing that the propa-
gation step transforms the postcollision correlations cre-
ated by B;~ at time tp into precollision correlations at
time tp+ 1, according to

Cv(q t. +1ltp) = S'(q)S'( —q)Bv(qltp)

with the streaming operator in Fourier representation
given by

b

B;,(q) = 0,, (0)+ ) [e *~'pA,, (c„)+e ' 'pA, , (2c„)
m=1

tg {op+op+ y ) Q2p ( + ) ]

C (q) =
t —1

) C;, (q, tltp).
to ———OO

(55)

Inserting Eq. (54) into Eq. (55) we arrive at the follow-
ing expression for the pair correlations in equilibrium,
calculated in the simple ring approximation:

for a self-consistent theory it is required that we take
I',g(q) = I'~~(q) in Eq. (53).

Combining Eqs. (50), (52), and (53) we obtain
b

C(q tlt. ) = ) I'&" '(q)1'&" '(-q)C«(q t. +1lt.)
k,8=1

b

) P&—to —1( )I t —to —1(
k,8=1

x Sg, (q) Sg( —q)BAg(qltp).

In equilibrium the correlations C;. (q) at time t are given.
by a superposition of contributions &om sources at all
previous times tp ( t that all evolve independently,

S;(q)—:e '~ '. (51) C;~(q) = ) . . . , Sg(q)Sg( —q)B«(q).
In Eq. (50) we have used tp as a label, indicating that
C

& (q tltp) contains the contribution to C;~ (q, t) of cor
relations that are created by the source term B,~(q) at
time tp only. In the simple ring approximation the fluc-
tuations hs;(q, tltp) in

(56)

Finally we calculate C,'. . (r) using the inverse Fourier
transformation,

Cv(q tltp) = (hs'(q tltp)bs2(-q tltp))

which are initially correlated at tp, evolve independently
according to

C,'.,~(r) = —) e'~'C,',~(q),

where q runs over the first Brillouin zone.

(57)

b

ba;(q, t + lltp) = ) I',p(q)hsg(q, tltp). (53)

B. The Enskog equation

The q-dependent b x b matrix I';A,. (q) is the single par-
ticle one-step propagator. In Sec. V C we will derive an
extension of the linearized Boltzmann equation —the
linear Enskog equation —which takes the static equilib-
rium correlations C,'~(r) into account. The correspond-
ing Enakog propagator I'+&(q) describes the time evolu-
tion of a single Quctuation in the correlated background
of all other particles. In Sec. VD we will argue that

In Sec. III we have derived the linearized Boltzmann
equation Eq. (20) by assuming a completely factorized
distribution over phase space according to Eq. (13). We
will now extend the Boltzmann equation by taking into
account the effect of the static pair correlations g,.~(r-
r') calculated in the previous section. In the spirit of
the Enskog theory for hard spheres [18] we modify the
Stosszahlansatz by taking pair correlations into account
in the collision term Eq. (12). We start from the following
identity, valid for Boolean variables:

h(s;(r, t), n;(r, t)) = n, (r, t)"{'l[1 —n;(r, t)]

= [f,~ + bn;(r, t)]"{'l[1 —f,~
—hn; (r, t)]'

( ba;(r)bn, (r, t) )
) (58)
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Here bs;(r, t) = s, (r, t) —f,~ and hn; (r, t) = n,.(r, t) —f,q
are fluctuations with respect to equilibrium. From Eqs.
(9) and (58) we obtain

have

(bn;(r, t)) = f;(r, t) —f,q
= bf;(r, t). (6O)

(( ())t)= +"(s(r))
We assume that close to equilibrium we may approximate
the pair correlation function by its equilibrium value, i.e. ,

( bs;(r)bn;(r, t) )
x 1+

)
(59)

(8n; (r, t) hn~ (r', t)) = (bn; (r, t)6n, (r', t) )

(61)

where the angular brackets still represent an average over
a nonequilibrium initial state. Now consider a nonequi-
librium ensemble describing a small deviation &om the
equilibrium state. For the single particle fluctuation we

with Q,'"(r —r') given by the theory of Sec. IIIA. To
obtain a closed time evolution equation for bf, (r, t). we
systematically expand the average in Eq. (59) up to third
order in the fluctuations,

h a;(r)8n;(r, t) )1+
geq I'

= 1+) * (bn;(r t)) +bs; r
geq (r, A:) &(ri,e)

) II( ) e( ) rn( ) p ( )g (
I

)g (
II

( ~) ( ~) ( )
geq Qeq geq

(62)

where the sums run over all pairs and triplets of channels.
The three-point function occurring in Eq. (62) can be expanded in cluster functions as

(Snab(r, t)c%nt(r')bn (r")) = Sf'(r, t)Sf'(r', t)8f (r", t) + (Ifg(r, t)Gt (r', r", t)
+b' fg(r', t) G~ (r, r", t) + 8f (r", t) G~g(r, r', t) + G&t (r, r', r", ). (63)

We proceed by neglecting the three-particle cluster func-
tion G( ) and approximating the two-particle cluster
function or pair correlation function GA,.t (r, r ) by its equi-
librium value Q&&q(r —r'). By neglecting the term O(bf s)
we arrive at the following expression:

bf, (r + c;, t + 1) —bf, (r, t)

) 0,", (r, r') bf, (r', t)

(8n), (r, t)Snab(r', t)hn (r", t))
(66)

=»~(r t)g~" (r' —r")+»~(r' t)&" (r —r")

(64)

The linear Boltzmann collision operator 0,. (r, r') is
given by

Putting Eqs. (59)—(64) together, we can evaluate the col-
lision term in

I

A,", (r, r') = ([tr;(r) —s;(r)]
MF, eq

(67)

hf; (r + c;, t + 1) —»; (r, t) = (o;(r, t) —s;(r, t)), (65)

and. obtain the linear Enskog equation,

The Enskog operator 0,- &t (r, r', r", r"') vanishes by def-
inition if two or more channels out of (r', cy), (r", cg), and
(r'", c ) are equal and is otherwise given by
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C. The Enskog propagator

bs, (r') bshe(r") bshe(r"')~

~

eq ~eq ~ q Mp, eq

(68)

In this section we work out the linear Enskog equation
Eq. (66) for the model of Sec. II. Identification of Eqs.
(21) and (67) allows us to write

) 0; (r, r') bf~ (r', t) = ) ) 0, '"bf~ (r + c„,t), (69)
p=o

Note that the fn'st and third terms on the right hand
side in Eq. (62) do not contribute to Eq. (66). This is a
consequence of the conservation of particle number Eq.
(3) together with rotational symmetry in the stationary
state.

with 0, '" defined in Eq. (21). Next we note that Eq.
(68) can only be nonvanishing if all three nodes r', r',
and r'" are either equal to r or a nearest neighbor of
r. Distinguishing diferent possibilities for the pair of
channels ((r",ck), (r'", cr)) in the second term on the
right hand side of Eq. (66) we obtain

). ):
&',j (r», k)((~l i,e)

b 5 6 6).).~ ).).~,",'k~"&~r(o)+).).~,",'k~"&kt(ce)+) ). ).~,",'kl"&k~(ce — -)»f2( r+ pCt)
p=o j q=o k(l q=o k, l q=o r=q+1 k, l

6

) ) 0, '
hf~(r+ c„,t),

p=o
(70)

with I'*, (k) = ) .I@~(k))' e'"'"' (@p(k) lg (74)

[~'(r) —s'(r)1

hs~(r + c~) hsk(r + c~) hst(r + c„)
X

Qeq 9eq geq MF,eq

(71)
In a manner completely analogous to Sec. IIIB we then
obtain the time evolution equation for the Fourier com-
ponent f;(k, t) defined in Eq. (25),

f;(k, t / 1) = ) I', (k)hf (k, t).
j=1

The E7iskog propagator I';.(k) is given by

an--important difference &om the Boltzrnann case being
that now the (b —1) kinetic modes p gD have a finite
relaxation time, i.e., e'&&kl P 0. The value of the Enskog
diffusion coefficient D~(P) again follows &om the small
k behavior of the diffusive eigenvalue zL7(k), as

D~ ———lim )
zD(k)

kmo

and can be evaluated either numerically or analytically
by means of perturbation theory.

D. Self-consistent numerical evaluation

I E(k) ik c, —s +)-."" (n". . '+n". . ')
p=O

(73)

where 0, is the linearized Boltzmann operator and 0, .11 ~ o 137p

defined in Eq. (70) contains all terms depending on the
equilibrium correlations Q,'~(r).

Again we can write I'+ (k) as a spectral decomposition,

In the preceding sections we have explained (i) how
the equilibrium correlations Q,'~(r —r') can be calculated
once the Enskog propagator I'P&(q) is known, and (ii)
how the Enskog propagator I'P& (q) can be calculated once
the equilibrium correlations g,'~(r —r') are known. For
given density f,~ = p/b and inverse temperature P a self-
consistent solution to Eq. (73) combined with Eqs. (56)
and (57) can be obtained by iterating according to the
following scheme.
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(1) Calculate the source term H;z(q) in Eq. (49) for
given density f,q; this step needs to be perforxned only
once since B,~(q) is independent of g,'~(r —r').

(2) Assume that all pair correlations vanish, g,'~(r-
r') = 0, so that the Enskog propagator I',&(q) in Eq.
(73) reduces to the Boltzxnann propagator I',.&(q) given
by Eq. (27).

(3) Calculate the pair correlations g,'~(r —r') using
Eqs. (56) and (57) with the Enskog propagator I',&(q)
obtained in the previous step.

(4) Calculate the Enskog propagator I'PA, (q) using Eqs.
(70) and (73) with the pair correlations g,'~(r —r') ob-
tained in the previous step.

(5) Repeat steps 3 and 4 until the scheme has con-
verged; subsequently calculate the diffusion coeKcient
Da(P, f,~) using Eq. (75).
This procedure works well for sxnall values of P where
the Boltzmann diffusion coeKcient D~ ) 0, so that
II'+(q) I

= /e' ('x&/ ( 1. However, for P )
P, (Boltzmann) 0.263 we have DIx & 0. Consequently,
II' (q) N

) 1 for certain values of ~q~, and the infinite sum
in Eq. (55) no longer converges. Thus step 3 cannot be
performed after step 2 for P ) P, (Boltzmann).

There is a way out of this difFiculty, since the static
correlations that occur for P g 0 have the effect of
stabilizing the system with respect to the Boltzmann
case, i.e. , D~(P) ) DB(P). This enables us to ex-
tend the theory to values of P beyond P, (Boltzmann)
by a slight modification of the iterative scheme discussed
above. We start IIrom the self-consistent solution for some
P & P, (Boltzmann). Next we increase P by a small
amount AP (typically 0.01). After calculating the new
source term according to step 1, we skip step 2. Instead
the converged result for g,'q(r —r') corresponding to the
old P value is used as the initial guess. Subsequent iter-
ation of steps 3 and 4 then yields the new value of the
difFusion coefficient at P+AP. The procedure is extended
by repeatedly increasing P by EP so that we can "adia-
batically" follow D@(P) beyond P = P, (Boltzmann).

Figure 5(a) shows the Boltzmann and Enskog diffusion
coefIxcients DJ3 and D~ at density f,~ = z, and as a
function of P. These theoretical values are compared with
simulation results D„- . The value of D„. was measured
by preparing a sinusoidal density perturbation at t = 0,
given by

0.2 eory

0.1

0.0
0.0 0.1 0.2 0.3

0.402 p-

0.401

showing p(k, t) for P = 0.30 just above P, (Boltzmann)
where Dxx(P) & 0 so that the density perturbation be-
comes unstable: it grows in time. As t increases the
correlations lead to an increase of D and since P is not
too far beyond P, (Boltzmann) they change the sign of
D &om negative to positive, thus making the perturba-
tion stable again. The values of D;, shown in Fig. 5(a)
were obtained &om exponential fits to the time interval
100 & t & 200. For much larger times the system reaches
the correlated equilibrium state described by f;(r) = f,q
and G;~(r, r') = g,'~(r —r').

As P increases further beyond P, (Boltzmann) the devi-
ations of the simulation data from D~(P) become larger
and larger. The reason for this is that, as the value
of D~(P) gets closer to zero, the influence of third
and higher order correlations (which are completely ne-
glected in this article) becomes more and more impor-
tant. A qualitative explanation is the following. At
each time step all pair correlations are damped by a fac-

—2Dtor II'(q) I~ e ~, while the triplet correlations are
damped by a factor II'(q) I e ~ . As D + 0 "crit-
ical slowing down" occurs due to the divergence of the

f;(r, t = 0) = f,q + Af sin(k r),

at a wave vector k = (27r/L, O) along the z axis, and
by subsequently identifying the diffusive decay of the
Fourier component p(k, t) = P, f;(k, t) according to
p(k, t) exp( —Dk t) with D the diffusion coefficient.
During the first time step the decay is correctly described
by the Boltzmann equation, since the initial state does
not contain any correlations between Buctuations with
respect to Eq. (76). But very soon correlations build up
in the system, until at t 50 they have reached their
stationary value Q", ~(r —r'). The decay of the density
perturbation in this correlated background is slower than
the initial decay. This is nicely illustrated by Fig. 5(b)

0.400
CL

0.399

0.398
12 16 20

FIG. 5. (a) Comparison between the predictions for the
diffusion coefIxcient D(P) obtained from Boltzmann theory
and self-consistent Enskog theory, and simulation results, for
f,~ = —.(b) Time evolution of Fourier component p(k, t) for

P = 0.3 satisfying P, (Boltzmann) & P & P .
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time scale of relaxation, w = 1/(Dq ) ~ oo. As a con-
sequence, pair and triple correlations become of equal
importance. Numerically, this phenomenon manifests it-
self through the fact that the iterative scheme becomes
unstable for p ) 0.28. This makes it very difficult to
extract a critical value P, (Enskog).

ScH(q, t) = ) I (q)& (—q)
;&,I e

x (bshe(q, O)use( —q, O))

= bg«) @ei(q) e ' (80)

VI. TIME EVOLUTION OF THE STRUCTURE
FACTOR

When p ) p the spatially homogeneous state is not
the equilibrium state. Instead, the system tries to reach
a completely phase separated state where a high density
phase is in coexistence with a low density phase. The
system reaches this state through a process of coarsening,
where it reaches local equilibrium on larger and larger
length scales.

The static structure factor S(q, t), defined as the
Fourier transform of the density-density correlation func-
tion Q~~(q, t) = P, Q;~ (q, t), is a convenient quantity for
characterizing the morphology of the density pattern in
a statistical sense. It is given by

Here we have used (bshe(q, O)bse( —q, O)) = bg«bje to-
gether with Eq. (30).

In Fig. 6 the Enskog theory is compared with sim-
ulations for an I = 512 system with f« =

2 and

p = — ) p, . We have plotted the circular average
S(q, t) of the structure factor S(q, t). This is useful
even though S(q, t) is strongly anisotropic, as was ex-
plained in Sec. IIIC. At t = 1 the Enskog prediction
S@(q,1) = g,-. S;(q)S~(—q)B;~(q, O) is exact because
the initial state is completely factorized. As can be seen
&om Fig. 6, Enskog theory gives an excellent prediction
of S(q, t) up to t 15. For larger times the theory breaks
down.

From Fig. 7 it is clear that Cahn-Hilliard theory is
incapable of predicting the dynamics of S(q, t) even for
small times. At t = 5 the predicted value SCH(q, 5) is

S(q ') = (Ib&(q t)I') = ) &v(q t). (77)

By a slight modification of the theory in Sec. V A we can
calculate the time evolution of g;~(q, t) In Sec.. VA the
equilibrium value of the excess pair correlation function
C,'q(q) in the stable regime p ( p, was obtained as a su-

perposition of contributions &om sources B(q, to) at all
previous times to, as expressed by Eq. (55). An alterna-
tive way of stating the theory of Sec. V A is to say that
the excess correlation function C;~(q, t) evolves according
to

6.0

'- t=o

5

C;, (q, t+1) = ) I I, (q)I e( q)C~e(q t)
ae

+S'(q)S. (—q)B'. (q t) (78)

0.0
0.0 1.0 2.0 3.0

Q 3

where the Enskog propagator I'P& (q) depends on t
through C;~ (r, t), the inverse Fourier transform of
C;~(q, t).

Let us assume that at t = 0 the system is prepared in a
completely random initial state so that C;~(q, 0) = 0. We
can then obtain S(q, t) for all t ) 0 by iterating Eq. (78)
while evaluating C;~(r, t) at each time step to calculate
I'PI, (q, t). This defines an Enskog-type prediction S@(q, t)
for the evolution of S(q, t).

An alternative and much simpler approach is the so-
called Cahn-Hilliard theory [19]which states that all fiuc-
tuations bs;(q, t) evolve according to Boltzmann theory
as

20.0 (—

15.0 .
—

0.0
0.0 1.0 2.0

t=10

3.0

bs, (q, t + 1) = ) I'P„(q)bshe (q, t),

so that the structure factor is given by

(79)
FIG. 6. Enskog theory for S(q, t) (solid lines) compared

with simulation results (symbols). The theory gives a good
prediction of the time evolution up to t 15.
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15.0

100—

5.0—

0.0-
0.0 1.0 2.0 3.0

FIG. 7. Cahn-Hilliard theory for S(q, t) (solid lines) com-
pared with simulation results (symbols). The agreement at
t = 10 is accidental.

16

14

too small by a factor of 2. However, ScH(q, t) grows
exponentially according to Eq. (80). At t = 10 there is a
coincidental agreement but at t = 15 the Cahn-Hilliard
prediction is already too large by a factor of 10.

A surprising feature of the Enskog theory is that it pre-
dicts some of the coarsening at short times, i.e., the shift-

~(q t) = IL(t)l"+(qL(t)) (81)

with d = 2 the dimensionality, I" (x) a scaling function,
and L(t) a typical length scale that is conveniently de-
fined as the first zero of the circularly averaged density-
density correlation function Q'~~(r, t). Dynamical scaling
is expected to hold when the pattern morphology is deter-
mined by a single length scale L(t). This means that the
typical width of the interfaces connecting regions of high
and low density must be small compared to L(t). In the
scaling regime, power law growth is observed consistent
with the Lifshitz-Slyosov-Wagner prediction L(t) ti~s
[19]. This behavior is typical for the late stages of phase
separation in diffusive models with a scalar order param-
eter.

In Fig. 8(a) we have plotted I (t) on a log-log scale. A
power law Gt to the time interval 2 x 10 & t & 10 yields
I (t) t', with z = 0.33 + 0.03. In Fig. 8(b) the scaling
form Eq. (81) is tested by collapsing data for times from
t = 500 up to t = 10 . As a simple consequence [20]
of the sharpness of the interfaces between domains on
the scale of L(t), the scaling function I" (z) should obey
Porod's lan for large x,

ing of the maximum of S(q, t) to smaller q values as tiine
increases. This is essentially a nonlinear efFect. The rea-
son for it to occur is that the Enskog propagator I'P& (q, t)
in Eq. (78) itself contains terms linear in C;~ (q, t). Conse-
quently Eq. (78) contains quadratic and cubic terms that
lead to a coupling between different Fourier components
q.

For large times the model exhibits dynamical scaling,

s (*)- *-("+') (82)
10

4
1 t

6 8 10

10

10

10

m 10
II

10

10'
10

f

10 10
x = L(t)

10

FIG. 8. (a) Power law growth of the characteristic length
scale L(t) t ~ . (b) Scaling function E(x) obtained as a col-
lapse plot of scaled structure function S(k, t) for times t from
t = 500 up to t = 10 . For large x Porod's law, P(x) x
is satis6ed.

A fit to the interval 7 ( x ( 17 yields E(2:) x
with o. = 2.9 + 0.2. Similar measurements were already
performed in Ref. [17], where the first moxnent of the
structure factor was used to define a characteristic length
scale. However, due to the more convincing collapse of
data in Fig. 8(b), especially for large x, we have been able
to verify Porod's law. The crossover &om Porod's law to
more complicated behavior occurs at a value of 2; that
is approximately equal to three times the location of the
maximum of I'"(x). This is consistent with independent
experimental results [21].

VII. DISCUSSION

In this article we have formulated a theory for spa-
tial correlations in lattice-gas automata lacking detailed
balance. We have successfully applied the theory to
calculate corrections to mean-Geld theory for a pattern-
forming diffusive model, in both the spatially stable and
unstable parameter regimes.

We started by formulating a mean-Geld theory in
Sec. III for the model with nearest neighbor interaction
defined in Sec. II. The theory was applied to obtain an
expression for the difFusion coefBcient D(P) in terms of a
few matrix elements depending on the inverse tempera-
ture parameter P. An approximate analytical expression
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for these matrix elements was obtained by performing a
"high temperature expansion" around P = 0. The pre-
diction for the critical inverse temperature P, 0.263,
defined by D(P ) = 0, that we obtained from mean-field
theory for the half-filled lattice does not agree with the
value P, = 0.30—0.35 obtained from a block spin analysis
by Alexander et al. [17], and in this article by observing
the decay of a sinusoidal density perturbation.

The macroscopic behavior of the model can be under-
stood in terms of a single difFusive mode, with an eigen-
value zD(k), which becomes unstable for P ) P, . By
studying the decay rate zD(k) of the difFusive mode as
a function of the wave vector k for both the square and
the triangular lattices we could give a clear explanation
of the observed anisotropy on the square lattice, and the
near isotropy on the triangular lattice.

By considering the eÃect of an external driving field in
the mean-Geld approximation we were able to explain the
observation in Ref. [17] of a striped phase with structure
perpendicular to the direction of the driving field, and
the reported suppression of the critical temperature. A
study of the diffusive eigenvalue zD(k) in the k plane
provides a detailed scenario for the changing behavior
of the model for difFerent temperatures at fixed driving
Geld. In addition we derived a linear response relation
between the strength of the driving field and the induced
particle flux, with a susceptibility that is proportional
to the variance of the particle Aux in the absence of the
driving field, in good agreement with simulation results.

To explain the discrepancy between the mean-Beld pre-
diction for P, and the simulation value, we developed in
Sec. V a theory for the static pair correlation function
in equilibrium and its eKect on the value of the diffusion
coefficient. We found that for P ( P, not too close to the
critical point our theory explains an important part of the
deviation &om mean-field theory. Near the critical point
P = P„however, our calculation of the pair correlation
function breaks down. The typical relaxation time in the
system, which is inversely proportional to the difFusion
coefBcient D, diverges at the critical point since D —+ 0
for P ~ P, . As a consequence of this critical slowing
down higher order correlations become dominant. Still,
the theory provides a qualitative explanation of the de-
viation from the mean-field value of P, .

The method discussed in Sec. V for calculating equi-
librium pair correlations in the stable parameter range
P ( P was adapted in Sec. VI for the case P ) P„to
predict for short times the time evolution of the static
structure factor S(q, t), starting &om a completely ran-
dom initial state. It was found that the Enskog theory
can successfully predict S(q, t) for times up to t 15.
Even for this short time regime there is a dramatic im-
provement with respect to a Cahn-Hilliard-type theory
which assumes that all modes evolve independently. Sur-
prisingly, the Enskog theory accounts for some of the non-
linearity that leads to coarsening. This feature is com-
pletely absent in Cahn-Hilliard theory, where the fastest
growth of S(q, t) occurs at the same wave number q for
all times.

Finally, we performed simulations on an L = 256
lattice to test the predictions of dynamical scaling and

power law growth of the characteristic length scale I (t)
for large times. Such measurements were already per-
formed in Ref. [17],but we have found a more coxivincing
indication of scaling, over a much longer time range. In
addition, we were able to verify Porod's law for the large
wave number behavior of the scaling function, which is
an important indication of the separation of length scales
between the typical domain size and the average width of
the interface between domains. It may well be possible
that this improvement is due to the fact that we have
used the first zero of the pair correlation function as a
characteristic length scale, rather than the first moment
of the structure function S(q, t), as was done in Ref. [17].

Although all calculations in this article were special-
ized to the particular model we have chosen to analyze
here, the method is quite general and can be applied to
a large class of lattice-gas automata with short range in-
teractions between nodes, including models with strictly
local collision rules. In particular, we expect that the
theory can be successfully applied to reaction-diffusion
models to explain deviations from the (mean-field) rate
equations in the diffusion-limited regime, where corre-
lated fluctuations play an important role. Another pos-
sible application is to models for traf6c jams where in
some cases mean-field theory fails to predict the param-
eter dependence observed in simulations [5,6].
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In this Appendix we discuss the structure of the colli-
sion matrices given by [see Eq. (21)],

0,.&'p —— cr; r — 8; r
MF, eq

= ) ) [bo;(r) —bs;(r)]
a(r) (s(r+c„}}

x A, &,~ ~,l(C(r)) I"(s(r + c„)),
p=0

(A1)

that occur in the linearized Boltzxnann equation Eq. (20).
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11,00.k' ————b,g.
Z (A2)

We start by summarizing the results. For p = 0 we find
that Oii 0 is independent of both P and f'q, 011,1 r

A
—B A —B A —B A —B~B B B B

—A —B —A —B —A —B —A —B
B B B B)

For 1 & p & b it is suKcient to give the structure of
0 only since all other matrices 0 '" are related to
the first by rotational symmetry. On the square lattice
the general structure of 0 ' is given by

with B = 0 on the half-filled lattice (f = 2). On the
triangular lattice the general structure of 0 ' is given
by

011,1

( A —2C
B+C

—B+C
—A —2C
—B+C
B+C

A —2C
B+C

—B+C
—A —2C
-B+C
B+C

A —2C
B+C

—B+C
—A —2C
-B+C
B+C

A —2C
B+C

—B+C
—A —2C
—B+C
B+C

A —2C
B+C

—B+C
—A —2C
—B+C
B+C

A —2C )B+C
—B+C

—A —2C
—B+C
B+C)

{[ho., (r) —b s, (r) ]

bshe,

(r) )

= (ho., (r)bshe, (r)) —(hs;(r)hsi, (r)). (A5)

For the second term we have (bs;(r)hsg(r)) = g,qh;i, .
To evaluate the first term we note that the outcome of
a collision only depends on s(r) through p(r), so that
(bo;(r)bs~(r)) does not depend on i or k and

1 2 1
(ho'(r)h»(r)) = y{[hp(r))') = ~~" (A6)

where we have used p(s) = p(cr). Combining these results
we obtain Eq. (A2).

Next we turn to the symmetry properties of 0 ' in
Eqs. (A3) and (A4). Again these matrices do not depend
on the second index j because the outcome of a collision
only depends on the states s(r + c„)of the neighboring
nodes through the density p(r + c„).The inatrices Oii"
have all symmetries of the underlying lattice. Let m de-
note a permutation of the set (c,) of nearest neighbor
vectors, correspond. ing to a particular rotation or reQec-
tion symmetry of the lattice. We then have

0m(m, )
m(i) ~(j) = ij

with C = 0 on the half-filled lattice. Of course all matrix
elements in Eqs. (A3) and (A4) vanish when P = 0.

In the remainder of this Appendix we prove these re-
sults. To prove Eq. (A2) we split

lattice we have 02 &
——04 & yielding Eq. (A3). On the

triangular lattice both 0 ' = 0 ' and. 0 ' = 0
hold, which leads to Eq. (A4).

In the special case of the half-filled lattice, the distri-
bution function P(s) reduces to a trivial factor 2 . As
a consequence the matrices 0,.&'" will possess an addi-
tional symmetry, 0-+'&"&2 - ———0,. ' . The proof of this

goes as follows. First we note that 0.+b&2
. ——0

i2
We proceed by making the substitutions s, (r) ~ I—s; (r),
o;(r) ~ I —cr;(r), and s~(r+ c ) ~ s~(r —c ), so that
J(cr) ~ —J(o) and G(r) ~ —G(r), and observe that
A, (G(r)) is invariant under these substitutions. We
can then derive

11,p+b(2 bshe r —cp

Qeq

o-. r —bs, r bsI, (r + c„)
9eq

0 iP
ik (A9)

APPENDIX B:HICH TEMPERATURE
EXPANSION

It follows that on the half-filled square (b = 4) lattice
02i' = 0, so that B = 0 in Eq. (A3). On the half-filled
triangular (6 = 6) lattice we have A&i' + 05i' ——0, so
that C = 0 in Eq. (A4).

In particular we have the rotational symmetries

11,p+1 11,p (As)

1elate 0 ' to the other 0 'J' with 2 & p
To obtain the internal symmetries of 0 ' we consider
reHection in the x axis where ~(ci) = ci. On the square

In this Appendix we show how to expand Oii' (P) up
to linear order in P. This approximation gives quite rea-
sonable results, as is shown in the body of this article.
We only perform the expansion for the special case of the
half-filled square lattice where f =

z and 6 = 4. The re-
sult of our calculation will be that Oii' (P) = 4P+O(P ).
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In lowest order we may approximate e~ ~ ~' 1+
»(o) . G, so that expression Eq. (6) for the transition
matrix A, (G) takes the form

[1+»(~) G]~(p(~) p(s))
E.~(p(~) p(s))

4

)~
I

II 24

4

p=O

Note that the normalization factor occurring in this ex-
pression can be written as

/4 ) 4() (p( ) p( )) =
I

( ) I

=
( )t [4

'

( )](' ( 2)

For later reference we recall that

Let 8 and 0 denote the pre- and postcollision states at
node r, and let s" and pP denote the precollision state and
density at the nearest neighbors r + c„.For f =

2 the
factorized node distribution function I" (s) reduces to a
factor 2 4 independent of 8. Starting from the de6nition
of Aii' in Eq. (21) we use the fact that 0,.&'" does not
depend on its second index k to obtain

11,1 P
1

011' —— ~1 —81
4 MF,eq

= ) ) ((Ti —si)(p' —2)A3~(G)F(s)F(s') . I" (s )
st s&, ...,s4

f 4l '
1 (4) (4l=). ). (~i —»)(p' —2)[1+PJ(~).G]l I

~(p(&) p(s))
„

I «r (84)

Using J(cr) G = (cri —(Ts)(p —p ) + (02 —cr4)(p —p ) and leaving out terms that vanish due to symmetries we
obtain

n,",' 1 . /4) )'4l): I i I I ~
I

p'(p' —p')
p1p3

) (+i si)(~i —~s)
I I

~(p(~) p(s))«(s)y

/4() (~, —si)(~i —~s)l I b(p(~), p(s))24 «(s)&
(85)

For the last equality we have made use of Eq. (83).
Working out in detail the remaining expression between
parentheses we obtain the final result Oii' ——4P.

APPENDIX C: LINEAR RESPONSE THEOREM

giving rise to an average Aux

(J( )) = ).c'4'(E).
i=1

For small E we expand Eqs. (37) and (38) as

(C3)

In this Appendix we derive an expression for the sus-
ceptibility y describing the linear response (J(cT))E of the
system to a small external driving 6eld E. The general
linear response relation reads

(J-(~))E = &-~&~ = &E- (C1)

where the second rank tensor y p
——yb p is isotropic,

both on the square and on the triangular lattice. The cal-
culation in this appendix is performed within the mean-
6eld approximation; no static correlations are taken into
account.

The 6eld E induces a spatially homogeneous deviation
from the field-free equilibrium state f;(rlE = 0) = f,~ of
the form

A. (4', K) A. (G)(1+(J(rr) —J(o)].E), (C4)

where we have defined the expectation value of J(o') av-
eraged over all possible outcomes 0 of a collision taking
place at given fixed s and G as

J(c7) = ) J(cr)A, (G).

In the mean-field approximation the deviations bf, (E)
are implicitly defined as the stationary solution to the
nonlinear Boltzmann equation for given E, i.e.,

0,' [f,~ + hf (E)] =—O.

f, ( IE) = f. +~f'(E) (C2) Using Eqs. (12), (17), and (C4) we expand Eq. (C6)



HARMEN J. BUSSEMAKER 53

around K = 0 obtaining

.80,1. 0): ' ~»(E)+ ((~* —'*)(J(~)—~(~)l)0 MF, eq

Now observe that

(C7)

) .c- ((~' —s')&P(~))MF.,

) .c 'cP~ ((h(r' hs')h(r, )MF

) c~~cPj (b 0'~ h (T~ )MF

o)A (90 (r)
~fi () ~fi(r+ca)

b

F11,0 + ~ ~ gllip F11,0
u ij ij

p=1
—,'b p J' a-

MF, eq

(C8) On the other hand,

so that we arrive at the following linear equation &om
which bf;(E) must be solved for given E:

):~-* ((~* —~')6 (~))MF, eq

)."., ' ~»(E) + ((~' —~*)(~(~) —~(~)l)

(c9)

Solving this equation involves inversion of the symmetric
matrix 0, ' = 1/b —h;i (see Appendix A). This matrix
has null space spanned by the vector (1,1, . . . , 1) which
corresponds to the required conservation of particle num-
ber during collision expressed by

) bf;(E) =o. (c1o)

1
@11)0

2 - U
&aj = Ccxi ~ (C11)

We must solve Eq. (C9) while satisfying the constraint
Eq. (C10), which enables us to invert Aii'e within the
orthogonal complement of the null space. In particular,
it can be verified that since c i with o. = x, y is an eigen-
vector of 0 1' with eigenvalue —1 we have

26 P ) ) c~; ({~;—s;)J~(~))
MF, eq

—:~-.((~(-) -~( )l'(-))
MF,eq

b-p J-'
MF, eq

(c15)

X=21 J2~ J
MF, eq

= -', ) ) (J~(~) —J(a) ) P(s)P(G), (c16)

with

In deriving Eqs. (C14) and (C15) we have used the fact
that, if the collision rules of a LGA satisfy all symme-
tries of the square or the triangular lattice in d = 2
dimensions, tensors of rank 2, T p, are isotropic, i.e. ,
T p = Tb p with T = ~Tr(T p) =

~ Q T~~.
Identification of Eq. (C12) with Eq. (Cl) yields the

following expression for the susceptibility:

Combining Eqs. (C3) and (C9) we obtain

b

(J-(~))E = —):c-* Z„.
i,j=l

b

E(G) = ) h G, —) cp(r+ cp)
8(r+c„)) p=1

b

E(s)(r + ci,).
4

p=1
(c17)

x 0& —s& Jp 0 —Jp ~ Ep
MF, eq

=) c.;((~, —H, )(~~(~) —h(~))), @o
MF, eqi=1

(C12)

where Eq. (Cll) has been used once more. We consider
two parts of this expression separately. On the one hand,
introducing

Equation (C16) can be interpreted as a linear response
theorem relating the susceptibility y to the variance of
the postcollision 8ux J(o) for E = 0. In the special case
P = 0 the collision matrix A, (G) is independent of G
so that

X = Xo = —,
' ) J'(~)+(s)

~'(~) =—).[~(~)1'&-(G) (C13)
=

2 ) c, . c~ ) b(T;6'a~A, (0)E(s)
~

(C18)
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