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Probability density functions, skewness, and flatness in large Reynolds number turbulence
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Probability density functions (PDF) of longitudinal velocity increments are measured in an experiment
using low temperature helium gas, in which a large domain of microscale Reynolds numbers Rz (from
150 to 5040) is explored. The technique of measurement, which is essentially hot wire anemometry, but
operating in nonstandard conditions, is described. In the inertial range of scales, and for a given scale of
separation, the PDF are found to be independent of the Reynolds number at large Rz. Measurements of
the skewness and the Aatness of the velocity derivatives are performed in a range of Rz lying between
150 and 3200. The surprising result that we find is that these quantities first increase with the Reynolds
number up to Rz =700 and then cease to increase further, indicating a transitional behavior.

PACS number(s): 47.27.—i, 47.55.Bx, 47.80.+v

I. INTRODUCTION

In the field of turbulence, an important part of the
research effort is devoted to small scale intermittency [1].
These last years, several numerical and experimental
studies have brought about interesting information, and
indeed one may hope that this will generate significant
progress in the understanding of this striking
phenomenon. On the experimental side, effort has been
made to characterize the probability density functions of
the longitudinal velocity increments (which are a rich di-
agnostics of intermittency) [2]. It is generally observed
that, deep in the inertial domain, the tails of such distri-
butions have the form of stretched exponentials [2].
More specifically, their form and their dependence with
the scale have been recently discussed [3]. Concerning
the skewness and flatness of the velocity derivatives, the
results are more scarce. Most of our knowledge on these
quantities relies on a compilation of laboratory and at-
mospheric data prepared, 15 years ago, by Van Atta and
Antonia [4]. This compilation shows, as a clear trend,
that the flatness of the velocity derivative increases with
the Reynolds number at large Reynolds numbers. This
trend also exists for the skewness, but is less pronounced.
These results are often considered as forming a sort of
cornerstone for the phenomenology of small scale inter-
mittency. The compilation of Ref. [4] has been widely
used to inspire and constrain models [5]. Concerning the
spatial aspects associated with small scale intermittency,
they have been illuminated by recent numerical [6] and
physical [7] experiments: vortex filaments have been
identified as forming an important part of the structures
associated with intermittency, at least for moderate Rey-
nolds numbers [6]. One can probably distinguish (but
this is under discussion) two generations of filaments, the
primary one, whose scale belongs to the inertial domain,
and the works, which may result from the instability of
the previous ones, and whose diameter is a few Kolmo-
gorov scales [8]. The link between these objects and the
statistical properties of the flow is currently under debate,

and is an important issue in this domain of turbulence.
In the experiment we describe herein, it is possible, by

working with low temperature helium, to investigate a
range of microscale Reynolds numbers lying between 150
and 5040 (but restricted to 150—3200 for dissipative
range quantities), with the same fiow configuration. The
objective of the present paper is to report the results ob-
tained, in this setup, about the evolution of some diagnos-
tics of small scale intermittency, such as the probability
density functions (PDF s) of the longitudinal velocity in-
crements, and the skewness and flatness of the velocity
derivatives, with the Reynolds number.

II. EXPERIMENTAL SETUP

Since the two setups have been described elsewhere
[9,10], here we give a brief presentation of them. The
flow is schematically represented on Fig. 1: it is confined
in a cylinder, which is limited axially by disks equipped
with blades. The disks are driven by independent dc mo-
tors, and turbulence is produced by rotating the two disks
in opposite directions. We shall name the smaller cell
"cell 1" and the larger one "cell 2." In the smaller one,
the working volume (where turbulence is prepared) is 6.6
cm in diameter and 5.5 cm in height, and in the larger
one it is 20 cm in diameter and 13.1 cm high. The two
cells thus have slightly different aspect ratio height over
radius —0.76 and 0.60, respectively, for cells 1 and 2.
There exist other differences between the two cells, such
as the number of blades (eight for cell 1 and six for cell 2)
and the presence or the absence of rims fixed to the rotat-
ing disks. Each cell is enclosed in a cylindrical vessel, in
thermal contact with a liquid helium bath. The tempera-
ture of the experiment is regulated at a constant value,
comprised between 4.2 and 8 K. The vessel is filled with
helium gas, at a controlled pressure, ranging from 0 up to
6 atm. It is remarkable to mention that, in the present
system, within the cells, the standard deviation of the
temperature fluctuations is lower than 1 mK.

The measurements are performed by using hot wire
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He gas

'F

FIG. 1. Sketch of the experiment. (1) dc motors. (2) Blades
fixed on the rotating disks. (3) Working Quid. (4) Thermal link.
(5) Copper plate. (6) Vacuum.

probe name l„(pm) I /R

1

2

B

50
7

27
7

15
7

0.72
0.72
0.65
0.65
0.5
0.66

0

0

0
0

—0.3
0.3
0.34
0.34
0.18
0.34

anemometry (see below for a discussion of the technique).
The velocity is measured at several points, in the two set-
ups: the table below shows the probes we use, together
with their position in the cell, in cylindrical coordinates
(here R and H, respectively, are the radius and height,
and z =0 is the symmetry plane). We also give the wire
length for each probe.

There are thus several sensors but the most important
part of the measurements reported herein are performed
by probes 8 and 2'. In the series of experiments per-
formed with sensor A', we have introduced a small mean
rotation so as to displace the mixing layer respectively to
the probe, thus offering the possibility to work with lower
fluctuation rates. For this series, the corresponding tur-
bulence level is typically 20%.

We have some strong indications on the large scale
structure of the flow, although one cannot say, at the
present time, that it is documented at a level comparable
to more traditional configurations, such as jets or grid
turbulence. Close to the disks, the flow is essentially a
solid rotation and, in the central part, a mixing layer
takes place. The large scale structure of the flow can be
viewed as a confined circular mixing layer [10];one actu-
ally must consider that this is a simplification of the flow
structure, which is presumably acceptable only at a
reasonable distance from the blades and from the walls.
The integral scale (defined —somewhat arbitrarily —as
the ratio between the limiting value of the velocity spec-
trum at small wave number and the square of the rms of
the velocity fiuctuation) is found to be independent of the
Reynolds number: it is 4.5 cm in the large system and 1.5
cm in the smaller one. The fluctuation rate depends on
the position, and varies from one experiment to the other,
but we have not observed any systematic dependence
with the Reynolds number. One finds, in the average,
35% for probe B [10] in the large cell, 20% for probe A',
and 23% for sensors 1 and 2. The microscale Reynolds
number R+ and the Kolmogorov scale g are estimated lo-
cally by using the structure function of order 3 [10]. The
following table gives values of some physical parameters
of interest: for the large experiment (cell 2), we indicate
the minimum and maximum values of R & and two typical
values, and for the smaller one (cell 1), we report two typ-
ical values. In this table, v is the kinematic viscosity, U is
the mean velocity, u the fluctuation, Re is calculated by
using the rotation rate and the radius as characteristic
quantities, and k is tbe Taylor microscale.

Cell probe v (cm /s) U (cm/s) u (cm/s) u/U A, (pm) g (pm)

2
2
2
2
2
2
1

1

B
B
B
B

A'
2
2

0.105
2.1 X 10
6.1x10 "
3.3x10 4

5.5 X 10
1.1 X 10
2.7x10 '
2.6x10 4

84
284
102
136
116
64

118
27.4

22
94
34
52
20
13
29
6.1

13 700
2.3 x10'
2.9 X 10
7x10'
6x 10
2x10'
16 700
4.3 x10'

174
674

2200
5040
1382
822
188
879

0.26
0.33
0.33
0.38
0.17
0.21
0.25
0.22

8300
1520
400
320
360
680

1740
187

312
26
4.1

2
4.9

12
64

5

Since we work, in several cases, with unusually large
fiuctuation rates (particularly with probe B), it proved in-
teresting to examine the velocity distributions in order to
check whether the negative velocity fluctuations are
correctly measured. Such histograms also are useful to

detect the presence of large scale intermittency. Figure 2
shows one histogram, obtained for R& =992 using probe

One can see that the distribution is nearly gaussian,
and that the negative branch seems to be correctly
resolved; this inspection allowed us to reject several
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FIG. 2. A typical velocity distribution; here we use probe 3;
R z =992, and the Auctuation rate is 22%.

FIG. 3. Sketch of the active part of the sensor.

files —those for which the negative branch is partially ab-
sent, or the asymmetry is strong, or bumps exist on the
tails.

III. "HOT" WIRE ANEMOMETER

Measuring local velocity in our system is delicate be-
cause we work at low temperature; the scales which
would be desirable to resolve are of the order of several
microns, and the frequencies of interest are quite high
(several kHz). The technique which we use is essentially
hot wire anemometry, operating in nonstandard condi-
tions; here we discuss the differences between the stan-
dard situation and our case. To characterize the sensor,
we also calculated the thermal field around the probe and
the heat transfer, for stationary and nonstationary Rows
(this was done by using a commercial computer code
FLUENT); we shall not report the detail of this study, just
refer to it when necessary.

The anemometers are made from a carbon fiber, 7 pm
in diameter, stretched across a rigid frame, of dimensions
5X5 mm. A double layer chromium-gold or silver-gold,
evaporation, of typical thickness 1000 A, covers the fiber
everywhere except on a spot at the center, which thus
defines the active length of the probes (see Fig. 3). Such
lengths vary from 7 to 50 pm, from one sensor to the oth-
er. To check whether the geometrical length (which is
imposed by the mask used during the evaporation process
and checked with a microscope) is the effective length of
the probe, we measure the resistance of the probe at vari-
ous temperatures, as well its derivative with respect to
temperature, at low temperatures. An acceptable probe
is the one which shows consistency between these mea-
surements. We further take the geometrical length to
characterize the spatial resolution of the probe (denoted
by l ), but one must consider that this is only an
approximation —probably accurate within 30~o for the
shortest probe —which does not incorporate end effects.

The electronics is home made, and is essentially a
constant-temperature circuit; one must mention the pres-
ence of a capacitance, placed in parallel with a resistance
of the bridge, which allows us to reduce the time response
of the system. For the few files that have been obtained

without capacitance, we introduce a correction on the
data themselves when necessary. As for standard
anemometers, . we can impose the overheating. We have
compared various overheatings, ranging from 3 to 15 K,
and found it preferable to use rather large overheatings
(lying between 5 and 15 K) for reasons which will be
justified below. The overheating coefficient which we use
is thus unusually large, since it ranges between 1 and 3
(while this parameter does not exceed 1 for standard
anemometers). The signal is digitized on a 16 bit convert-
er, controlled by a Digital Signal Processing card. The
slope of the transfer function of the antialiasing filter,
placed before the converter, is —125 dB/decade. The
records are of various sizes, from a few ten millions to
10' points.

The calibration of the probes are performed by driving
the two disks in the corotating mode, at the same rota-
tion rate, and assuming rigid rotation. We typically ob-
tain calibration curves which can be very well fitted by
using King's law formula (an example is given in [9]).
One important difference with ordinary hot wire
anemometry is that we operate at larger wire Reynolds
numbers R, defined by

Ud

V

in which v is the kinematic viscosity of the fIuid, evalu-
ated at the Quid temperature, far from the probe. Figure
4 shows the evolution of this parameter as a function of
the microscale Reynolds number R& for cells 1 and 2.
The typical values are much larger than for ordinary hot
wires; vortex shedding presumably occurs at R& =800 for
the small setup and R&=1500 for the large one. The
inAuence of such a high Reynolds number on the mea-
surement is not well documented even for standard
anemometry. We have assumed that the conditions of
measurement are acceptable since in our case, the
Strouhal frequency does not interfere with the turbulent
spectrum. We have found further support for this as-
sumption by checking that the two cells give the same re-
sults despite the fact that the probes operate at different
R

The response time of the probe is a crucial issue; in or-
dinary hot wire anemometry, one defines the following
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FIG. 4. Evolution of R with Rz for the two cells: o, cell 2;
, cell 1; the dashed line represents the presumed onset of vor-
tex shedding behind the probe.

w4 12 ps, w 12 ps

Here ~3 is estimated from a full three dimensional nu-
merical simulation, and ~4 is determined experimentally
(by heating internally the probe). There is some evidence
that ~3 increases as the overheating decreases, because
the heat diffusivity of helium gas in the thermal boundary
layer increases with the temperature. This reason, to-
gether with the optimization of the signal over noise ra-
tio, led us to use overheat ratios ranging between 1 and 3.
From the above estimates, one can see that the limiting
factor is ~4. The reason is that carbon, at low tempera-
ture is a poor heat conductor; therefore, unlike the stan-
dard wires, the internal heat diffusion time, within the
fiber, cannot be neglected. Another consequence, which
is more favorable, is that we can work with short probes
since the conduction along the fiber is much smaller than
for ordinary wires. To stress this point, we introduce the
characteristic length l, for heat diffusion along the wire,
defined by

k' '
k.N-

1/2

where k and kf, respectively, are the wire and fluid
thermal conductivities, and Nu is the Nusselt number
characterizing the heat transfer between the probe and
the Quid (see Hinze [11] for a more sophisticated
definition of such a length). As a rough statement, one
can say that end effects can be neglected if the wire length

time constants [11]: v, (the time for the Aow to pass the
wire), ~2 (the time for a velocity Auctuation to diffuse
through the viscous boundary layer around the wire), ~&

(the time for the thermal boundary layer around the wire
to reach a new state after a velocity change), r~ (the time
for heat to diffuse within the wire), and ~ (the Kolmo-
gorov time scale, defined by i)/U). To fix the ideas, here
we give estimates for such quantities, for a flow at 1 m/s,
in the large cell, under 1 bar, at 5 K using a probe
overheated at 20 K (the corresponding value of R i is
roughly 1000):

d
T~ T2 7 ps & V3 1 ps

0 I I I I
[

I I I I1

I I I I I I I I I ) I0
0 5 10 15 20 25 30 35 40

dR (Q)

FIG. 5. Evolution of the time constant obtained by using the
square wave test for probe 2', for dift'erent Aow conditions and
overheatings. The resistance at 4.2 K is 320 Q in this case. This
test is performed with local velocity varying from 0 to 5 m/s, in
the corotating mode, at 1 bar.

is much longer than I, . In such problems, it is usual to
estimate the fluid properties at the mean temperature be-
tween the wire and the fluid, far from the wire. In our
case, for a fiber working at 20 K, at R& =1000, we have
k =10 W/cmK, kf =10 W/cmK, and Nu=10, so
that: I, is found typically to be of the order of the fiber di-
ameter. The same calculation done for ordinary wires
would give l, one hundred times the wire diameter. This
shows that, in our situation, it is possible to use small as-
pect ratios sensors (which allows to improve their spatial
resolution) while respecting the constraints usually ac-
cepted in hot wire anemometry.

Figure 5 shows measurements of the response time
constant ~* of probe A' using the so-called square wave
test (see, for instance, Lomas [11]). The evolution of this
time constant is represented as a function of the
difference between the probe resistance at 4.2 K and the
operating value, under conditions covering (quite com-
fortably) the range of velocities we explore. The
correspondence between the probe resistance and the
fiber temperature can be roughly figured out by consider-
ing that the latter vary between 8 and 20 K in this series
of experiments. The interesting result is the low values of
~*, and its independence from the flow conditions. For
the operating conditions we consider, the range of acces-
sible frequencies lies between 20 and 65 kHz. In practice,
we select the overheating so as to obtain an appreciable
ratio signal over noise together with an acceptable time
constant ~* (i.e., smaller than or equal to the Kolmo-
gorov time ~).

Since our sensors differ in many aspects from standard
probes, and it will take time to settle (at a level compara-
ble to standard hot wire anemometry) many aspects of
the technique we use, we have defined several procedures
to detect possible errors. There are essentially two: the
first one is to check that the results are independent of
the overheating; the second one, which is possible with
low temperature helium, is to check that the energy spec-
tra, obtained in the same cell for the same Reynolds num-
ber and the same fluctuation rate, but with different fluid
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viscosities, collapse in the wave-number space. This al-
lows us to detect whether there is a fixed time constant
which affects the measurement. Figure 6 illustrates the
second procedure: here we have two velocity spectra,
plotted in the frequency domain, obtained for R& =530
and a fluctuation rate of 20%%uo. The frequency ranges
which are covered are considerably different in the two
cases. According to the overheating which we use, one
can estimate that the frequency ranges which is accessible
to the sensors is limited to 25 kHz. Plotting now in
wave-number units (by using Taylor hypothesis), one can
check that the two spectra collapse pretty well, up to a
wave number corresponding to the maximum accessible
frequency. The independency of the overheating, togeth-
er with the satisfactory collapse of the spectra, make us
confident about our measurements of dissipative range
quantities in a domain of Reynolds number ranging be-
tween 150 and 1500. Beyond this range and up to 3200,
we have not performed the second test, but the conditions
of measurements are acceptable for dissipative range
quantities. For inertial range quantities, since the work-
ing frequencies are lower, we shall present our results up
to the largest value which we have achieved, i.e., 5040.

IV. PROBABILITY DISTRIBUTION FUNCTIONS
OF THE VELOCITY INCREMENTS

Figure 7 represents the probability density function
(PDF) of the longitudinal velocity increments
b, V„=V(x+r) V(x—) (where Vis the local velocity) ob-
tained for R& =3000, for several separation lengths r, us-
ing sensor B. Here, we use the Taylor hypothesis to con-
vert separation time r into distances r (the precise form is
r= —Ur, where U is the mean local velocity). On such
plots, we have

hV„

( gV2) 1/2

the brackets representing time averaging. s is thus a re-
scaled variable which ensures that the standard deviation
of each PDF is equal to 1. As already noted in previous
studies, the distributions evolve from a Gaussian shape to
stretched exponentials as r decreases, evidencing the
departure toward more intermittent profiles at smaller
scales in the inertial range. The evolution of such a PDF
with the Reynolds number is not straightforward to de-
scribe. The general form of the PDF reads

1000 I I I I IIII I I I I I IIII I I I I IIII I I I I I I Ill I I I I I I III I I I I I IIE

I"
p=p s, —,R&

10

0.1

10

10
0.1

10' .

0.001

10 100
f (Hz)

1000 104 10'

where R is the cylinder radius. Distribution p fully de-
pends on rlR, and Rz in the general case. However, it
appears that, for sufficiently large values of R& (i.e. , for
R& ) 1200), the PDF seem to reach an asymptotic shape,
independent of this parameter. This is shown in Fig. 8,
which represents four PDF's, calculated for r =490 pm,
for four values of R&, comprised between 1200 and 4700;
one obtains a collapse of the four curves on a single one.
Although we have not performed a detailed study, one
can fairly say that Fig. 8 is representative of the evolution
of the PDF for r ranging between 30 times the Kolmo-
gorov scale and 10 cm, which covers, in most cases, a
domain extending from the lower edge (in terms of scale)
of the inertial range to the integral scale. In the inter-
mediate dissipative range, we observe a spread between

1000

10
I I I I

I

I1

0.1 10

0.001 10-4

10'
0.01

I I I I I I III I I I I I

0.1 1 10
k (cm'

100 1000
10

10 I I I I I I I I I

FIG. 6. Collapse of the spectra corresponding to the same
Reynolds number R z =530, but to two different viscosities (and
thus to different mean velocities U ). (a) (a) U =39 cm/s; (P)
U =383 cm/s. (b) Collapse of the spectra plotted in the wave-
number space (we have used an adjustment factor for the ampli-
tudes}.

-20 -10 0 10 20

FIG. 7. Log linear plot of the PDF of the longitudinal incre-
ments of velocity, calculated on different scales (a) r = 10 pm. (b)
r=100 pm. (c) r=1 mm. (d) r=1 cm. The How parameters are
g=2. 5 pm and R& =3000.
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FIG. 8. Log linear plot of the PDF of the longitudinal incre-
ments of velocity, calculated for the same scales r =490 pm, and
four values of Rq. R z

= 1260, 2300, 2700, and 3700.

the PDF at difFerent R&, which presumably reAects that
the above property ceases to hold in this domain.

To describe the asymptotic shapes, we divide, some-
what arbitrarily, the PDF into two parts: one corre-
sponding to the tails ( ~s~ )2), and the other to the low in-
crement region ( s~ (2). The tip appears as parabolic,
with a radius of curvature decreasing as the scale is de-
creased. Concerning the Ranks, we find —in agreement
with a previous study [3]—that they can be very well
fitted by stretched exponentials of the form

p=d exp( —Ps ), (2)

in which A, a, and P are parameters, which depend on r

only. The quality of the fit is excellent for any value of r.
The corresponding evolutions of a and P, for different
values of R&, ranging from 1200 to 5000, is shown in Fig.
9, for the positive tail. There is some scatter in the data,
but one can fairly say that, in the inertial range, the two
parameters follow a single line, independent of R &.
Much larger scatter is obtained when we use r/g instead
of r as the variable. We thus may infer, on dimensional
grounds, that the pertinent length is the integral scale in
this range. Figure 9 shows that the exponent a increases
with r/A, up to a limiting value of 2 (see Fig. 9); this
value, which corresponds to the Gaussian limit, expresses
the fact that as r increases, the two measurements of the
velocity involved in the increment are statistically in-
dependent. The form of the curve of Fig. 9 as well as the
limiting values, are in agreement with a recent analysis of
atmospheric boundary layer data, carried out for a par-
ticular value of Ri [3]. What we show here is that the
corresponding curve is independent of the Reynolds num-
ber at large R &.

V. SKEWNESS AND FLATNESS
OF THE VELOCITY DERIVATIVES

As previously mentioned, here we report only measure-
ments performed in the range 150—3200, where the con-
ditions of measurements of dissipative range quantities
can be considered as acceptable.

The first method used to determine the skewness and
fatness factors S and F of the velocity derivatives consist
of calculating the following quantities:

(3)

2 — (a)

0.7
0.6
0.5
0.4

j j j jjjjjI03~ aJ

0 0

i j j jjjjjl j j i j~

defining S and I' as the limiting values of such functions
when r become small (in units of the Kolmogoroff scale).
This defines a first method, which we call direct. F(r) is
also defined by

f b, V„p'(b, V„,r )d b, V„
F(r)= s p(s, r)ds=

I b. V„p'( b, V„,r )d 5 V„
0

r (p,m)
104 10

0 i i i j jjjiI1

0oo
+ Xg 0 0

j j j j j j IjI j j j j j j jjI j j j j j jjjI j j j j j jjjI j j j j j j jjI j j j j j j jj0 1
10

r (p.m)
10'

FICr. 9. Evolution of the parameters u [Fig. 3(a)] and P [Fig.
3(b)] with the scale r, for diff'erent values of Rq. , 1960; X,
4700; 0, 1260; +, 3700; diamonds, 2100.

where p is the PDF of the normalized velocity increments
introduced above, and p' the PDF of the (nonrenormal-
ized) velocity increments. The above formula is interest-
ing to quote because it allows us to check the statistical
convergence of the results. This can be done by plotting
the integrand b, V„p'(b, V„,r), and examining whether the
tails are well converged. Figures 10(a) and 10(b) show the
evolution of such an inte grand, for two values of
R& —R&=550 and R&=2850—and for two values of r
lying in the dissipative range. In both cases, one may
consider that convergence is achieved. This statement
holds for all the other cases which we present here; one
may say that, owing to the excellent stability of the ex-
perimental conditions, and the rapid time scales of the
phenomenon we study, there is not much difficulty, in our
case, in recording large files so as to achieve convergence
of the moments.
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FIG. 11. Evolution of the skewness —S(r) and fatness F(r)
of the velocity increments, with the reduced scale r/g, for
R&=1548; in this case, g=8.4 pm and I /g=1. The broken
lines correspond to the values of —S and F which we have used
in Fig. 13.
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FIG. 10. Evolution of the integrand AV„p'(b, V„,r) with hV„
for (a) R&=550, r/g=1. 7 and (b) R&=2850, r/g=3. 8.

Figure 11 represents the evolutions of —S(r) and F(r)
for R&=1548. We find that S(r) and F(r) d—ecrease
with r as r/g increase; in both cases, the limiting values
for large rlri is 3 for F(r): this corresponds to the
Gaussian limit which we expect for large separations. As
rlrj decreases toward 1, the functions S(r) and F(—r)
tend to saturate; as previously mentioned, the corre-
sponding limiting values define the skewness and flatness
factors of the velocity derivatives.

It is interesting to consider another method of deter-
mination of S, which assumes that the Kolmogorov rela-
tion holds [12]; the corresponding expression for S reads
[13]

integrand of (4) is isotropic. Figure 12 represents the nor-
malized spectrum function for R&=1500, together with
the wave numbers representing the frequency of the an-
tialiasing filter, the probe size, and the time response of
the probe. It appears that, in this case, the low level of
noise, the filtering, the spatial resolution, and the time
response of the probe allow us to determine integral (4)
reasonably well. For some other files —typically at large
Reynolds numbers or low pressures —the presence of
noise at large frequencies makes it difficult to use the
spectral method; in such cases, we discard the measure-
ment of the skewness made by any of the two methods
(spectral and direct).

We now are in a position to investigate the evolution of
the skewness and flatness of the velocity derivatives with
respect to the microscale Reynolds number. The corre-
sponding values, obtained by direct or spectral methods
(both give same results, within 20%), are displayed in
Fig. 13 for cells 1 and 2, using sensors 1, 2, A, B, F, and

Interesting information can be extracted from the
curve of Fig. 13, which is the main issue of the paper.

0.012

0.01

116vf k E(k)dk

15f k E(k)dk
0

= —116f (gk) 4(gk)d(gk),
0

(4)

0.008

0.006

0.004

where k is the wave number, E (k) is the power density
spectrum per unit of wave number, and N is the normal-
ized spectrum function. According to relation (4), one
must have

0.002

0
0.0 0.20 0.40 0.60 0.80 1.0

—,', = f (gk) N(gk)d(gk) .

This defines a second method which we call spectral.
Both methods (direct and spectral) are expected to give
the same result when the range of scale involved in the

FIG. 12. Plot of the integrand of expression (3), for
R&=1340. In this case, the Kolmogoro6' scale is 5.6 pm, the
mean velocity is 75 cm/s, the sampling frequency is 31 kHz, and
the low pass 61ter frequency is 12 kHz. The dashed line is the
expression 1.13 (kg) 'exp[ —7.6(kg)].
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FIG. 13. Evolution of the skewness and Aatness factors, S
and F, with Rq. The various symbols are 0, cell 1, probe 1;
cell 2, probe 8; ~, cell 2, probe A '; +, numerical results [6]; ~,
cell 1, probe 2; X, cell 2, probe F; A, cell 2, probe A.

The few measurements performed with sensor 1 and
probes A and F indicate that the skewness and fIlatness
factors are independent of the length and location of the
probe. Also, there is no visible difference between the
large and small cells, and different fluctuation rates.
Moreover, it is interesting to see that, for the lower range
of values of the Reynolds number (up to R& =700), there
is reasonable agreement between our values and the nu-
merical study of Ref. [6], and more generally with the
current experimental findings, as collected in Ref. [4].
We thus find that —S and F increase with the Reynolds
number in this range, up to R&=700. But the striking
observation which we make, both on —S and F, is that,
beyond this range, these two quantities cease to increase.
They even show a tendency to decrease with R&, al-
though owing to the scatter, it is dificult to conclude.
The curve of Fig. 13 suggests two regimes, separated by a
transition located around R& =700 (which is a crude esti-
mate). We therefore obtain the somewhat surprising re-
sult that, above the transition, the system becomes less
and less intermittent in the dissipative range as the Rey-
nolds number increases. This is not contradictory with
the statement that the PDF of the velocity increments are
independent of R& in the inertial range. Both statements
simply imply that the size of the domain lying between
the inertial and dissipative ranges —measured in units of
the Kolmogorov scale —increases (which we do observe).

the ratio I /rI is smaller than 3 for all the values of Rz
which we have investigated. It would be indeed desirable
to achieve better resolution, but, according to previous
work [14], it seems that the ratio of 3 is low enough to
determine S within 10%. The corresponding uncertainty
of F has been examined recently, in a numerical study
[15],and it is found to be equal to 2% for the same condi-
tions. Note that the last estimate must be taken with
care because it has been estimated at small R&,' it turns
out that, by comparing sensors of different lengths, we
find values consistent with [14] and [15], even at large
R&. We therefore may consider that the limited probe
resolution only introduces a small error into the deter-
mination of S and F.

Uncertainties generated by the levels of the fluctuation
rates is also an important issue. Previous investigations
have led to somewhat different conclusions: according to
Ref. [16], we expect, with a fiuctuation level of 35%, to
overestimate the skewness of the velocity derivatives by
40%, while Ref. [17] gives 4% for the same quantity (the
calculation is carried out by assuming that our Bow has
the structure of a mixing layer [10]). We have compared,
for the same R &, records with different fluctuation rates;
the variations of S which we observe, when the fIuctua-
tion rate is varied from 14% to 40%, are hardly distin-
guishable from the noise. The same result holds for the
fatness. We therefore tend to conclude that, in con-
sistency with Heskestad's calculation [17], the error gen-
erated by the application of the Taylor hypothesis is
small compared to other sources. We have not intro-
duced any correction scheme for the values of S and F,
due to the application of the Taylor hypothesis.

The uncertainty related to the fact that the Reynolds
number, calculated on the probe diameter, is somewhat
large at the extreme values of R&, is more difticult to esti-
mate (as mentioned in Sec. III, this number varies from
0.4 to 300 as R& is varied from 150 to 2700). However, it
is possible to have a rough estimate of the effect of such a
large Reynolds number by comparing cells 1 and 2; it
turns out that there is no appreciable difference, at least
up to R &

= 1200. Moreover, one must note that the onset
of vortex shedding seems well beyond the transition Rey-
nolds number. Therefore, for this particular source of er-
ror, one may also consider that the probe is operated in
an acceptable condition.

VII. DISCUSSION AND CONCI. USIQN

VI. FURTHER COMMENTS ON THE MEASUREMENTS

The determination of the skewness and Aatness of the
velocity derivatives is a delicate measurement, since the
fluctuations which contribute most to these quantities are
rare and belong the high frequency range. It is thus
worth discussing, before commenting on the significance
of results, some possible sources of error. There are
many; we have selected here three of them, which, at the
present time, may require some discussion.

Concerning the delicate point of the spatial resolution,

The striking observation which we make is the ex-
istence of a transition behavior in the dissipative range.
Transitions in high Reynolds number Rows have been ob-
served in Rayleigh-Bernard experiments [18], but never
in ordinary turbulence [19].

Beyond the problem of the physical significance of our
results, an intriguing fact which must be outlined is that
they are in confIict with the compilation of Ref. 4, for
R& & 700. All that we can say at the present stage is that
we do not understand the origin of such a discrepancy.
Does this imply that the skewness and fatness are not
universal quantities? In particular, is it possible that the
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threshold value of R & which we find for the transition de-
pends on the How configuration? Must we have strong
doubt about the skewness and fatness measurements at
large Ri (including ours)'? All these are indeed accept-
able questions. On our side, we shall try to develop addi-
tional checks, and to investigate other How
configurations. Concerning the experiments performed
in air, we may hope that additional high quality data will
become available soon, coming from large wind tunnel
experiments and recent studies on atmospheric tur-
bulence; then we might be in better position to resolve
some of these issues.

If we accept the existence of a transitional behavior
(which is one possible interpretation of Fig. 13—but not
the only one [20]), many questions arise. It seems that
this transitional behavior is global, since it is observed in
several places in the system. It is not related to the tur-
bulence around the blades; otherwise, it would not be ob-
served on probe F. It is not associated with a change in
the large scale Bow, since nothing is observed on large
scale quantities, such as the fluctuation rate and the in-
tegral scale; also, its signature on the inertial quantities is
not easy to detect. Thus this transitional behavior seems
to take place primarily in the dissipative range. We have
no element which allows us to propose an origin for such
a transitional behavior, but it is tempting to speculate on
the following dynamical scenario, which somehow fol-
lows a numerical study by Jimenez et al. [6]. One may

consider that, particularly at large Reynolds numbers,
the Aatness of the velocity derivatives is controlled by in-
tense vortex filaments, denamed as "worms. " Since their
characteristic velocity (i.e., the velocity increment across
them) is the standard deviation of the large scale velocity,
and their diameter is a few Kolmogorov scales, it follows
that their Reynolds number increase with R &, as already
quoted in Ref. [6], this raises the issue of their stability at
large Reynolds numbers. We speculate that the transi-
tion which we observe corresponds to the instability of
such worms [21]. Becoming unstable, they tend to fill
more space, and then the flatness (and, to a lesser extent,
the skewness) of the velocity derivatives cease to increase
with the Reynolds number.

ACKNQ%"LED GMENTS

The authors acknowledge A. Arneodo, M. E. Brachet,
O. Cadot, B. Castaing, Y. Couder, S. Douady, U. Frisch,
Y. Gagne, J. Jimenez, L. Kadano6; A. Libchaber, D.
Lohse, V. L'vov, I. Procaccia, and J. Wang for interesting
discussions related to this experiment. They are indebted
to K. R. Sreenivasan for crucial remarks on the probe
response. They also acknowledge V. Emsellem for com-
puting the thermal field around the probe. This work has
been supported by CNRS, Universities Paris VI and Paris
VII, Ecole Normale Superieure, and a grant from DRET
No. 92/114.

[1] See A. S. Monin and A. M. Yaglom, Stotistica/ Fluid
Mechanics (MIT Press, Boston, 1975), Vol. 2, and refer-
ences therein; also see a recent review by M. Nelkin, Adv.
Phys. 43, 143 (1994).

[2] Note that early measurements of the skewness have been
performed by R. W. Stewart, Proc. Cambridge Philos.
Soc. 47, 146 (1951). Concerning the PDF, a recent refer-
ence is B. Castaing, Y. Gagne, and E. Hopfinger, Physica
D 46, 177 (1990).

[3] P. Kalilasnath, K. R. Sreenivasan, and G. Stolovitzky,
Phys. Rev. Lett. 68, 18, 2766 (1992).

[4] C. W. Van Atta and R. A. Antonia, Phys. Fluids 23, 2
(1980). Note that this compilation did not include the air-
craft experiments performed by C. M. Sheih, H. Tennekes,
and J. L. Lurnley, Phys. Fluids 14, 201 (1971),which gives,
at large Reynolds numbers, substantially lower values for
the flatness and skewness factors.

[5] Several modes of intermittency, and their relation to
numerics and experiment, have been discussed recently in
L. Biferale, Phys. Fluids A 5, 2 (1993).

[6] J. Jimenez, A. A. Wray, P. G. Saffman, and R. S. Rogallo,
J. Fluid Mech. 255, 65 (1993).

[7] S. Douady, Y. Couder, and M. E. Brachet, Phys. Rev.
Lett. 67, 983 (1991).

[8] O. Cadot, S. Douady, and Y. Couder, Phys. Fluids 7, 2
(1995).

[9]J. Maurer, P. Tabeling, and G. Zocchi, Europhys. Lett. 26,
31 (1994).

[10] G. Zocchi, J. Maurer, P. Tabeling, and H. Willaime, Phys.
Rev. E 50, 5 (1994); 50, 3693 (1994).

[11]We take the same notations as in G. Comte Bellot, Ann.
Rev. Fluid Mech. 8, 209 (1976). Also see J. Hinze, Tur-
bulence (McGraw Hill, New York, 1987), Chap. 2; C. Lo-

mas, Fundamentals of Hot Wire Anemometry (Cambridge
University Press, Cambridge, 1986).

[12]T. von Karman and L. Howarth, Proc. R. Soc. London
Ser. A 164, 192 (1938); A. N. Kolmogorov, C. R. Acad.
Sci. USSR 30, 301 (1941).

[13]This expression can be found in F. H. Champagne, J.
Fluid Mech. 86, 67 (1978).

[14]J. C. Wyngaard, J. Sci. Instrum. I, 1105 (1968); 2, 983
(1969).

[15]J. Jimenez (private communication).
[16]J. L. Lumley, Phys. Fluids 8, 1056 (1965).
[17]G. Heskestad, J. Appl. Mech. 87, 735 (1965).
[18]X. Z. Wu, L. Kadanoff, A. Libchaber, and M. Sano, Phys.

Rev. Lett. 64, 18 (1990); 64, 2140 (1990). See also S.
Grossman and D. Lohse, Phys. Lett. A 173, 58 (1993),
who point out that temperature measurements may be
affected by probe size effects at such large Rayleigh num-
bers.

[19]A transition has been recently observed by B. Chabaud, A.
Naert, J. Peinke, F. Chilla, B. Castaing, and B. Hebral,
Phys. Rev. Lett. 73, 3227 (1994). The corresponding tran-
sition value of Rz is much lower than ours (it is 180 in
their case). It would be interesting to compare the two
transitions.

[20] Since the transition is not sharp, it is not so clear that it
exists. One could say that the essential information which
can be extracted from Fig. 13 is that the flatness factor
ceases to increase in some range of Reynolds numbers.

[21] Bursting of vortex filaments has been observed in this sys-
tem [7]. Actually, as already mentioned in Sec. I, such
filaments presumably do not correspond to the worms of
Ref. [6] but to objects of larger size.


