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Multiple transitions to chaos in a damped parametrically forced pendulum
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We study bifurcations associated with stability of the lowest stationary point of a damped para-
metrically forced pendulum by varying uo (the natural frequency of the pendulum) and A (the
amplitude of the external driving force). As A is increased, the stationary point will restabilize after
its instability, destabilize again, and so ad infinitum for any given uo. Its destabilizations (restabi-
lizatious) occur via alternating supercritical (subcritical) period-doubling bifurcations (PDB s) and
pitchfork bifurcations, except for the first destabilization, at which a supercritical or subcritical
bifurcation takes place depending on the value of uo. For each case of the supercritical destabi-
lizations, an infinite sequence of PDB s follows and leads to chaos. Consequently, an infinite series
of period-doubling transitions to chaos appears with increasing A. The critical behaviors at the
transition points are also discussed.

PACS number(s): 05.45.+b, 03.20.+i, 05.70.Jk

I. INTRODUCTION

A damped parametrically forced pendulum with a ver-
tically oscillating support is investigated. It can be de-
scribed by a second-order nonautonomous ordinary dif-
ferential equation [1—3],

x + 2mpx + 2m(wo —A cos 2vrt) sin 27rx = 0,

x + 2vrpx + 4vr (ufo —A cos 2vrt) x = 0, (2)

'Electronic address: sykimcc. kangwon. ac.kr

where x is the angular position, p the damping coeK-
cient, uo the undamped natural frequency of the unforced
pendulum, and A the amplitude of the external driving
force of period one. The overdot denotes the diEerentia-
tion with respect to time, and all variables and parame-
ters are expressed in dimensionless forms.

The damped parametrically forced pendulum, albeit
simple looking, shows a richness in its dynamical behav-
ior. As the amplitude A is increased to moderate values,
transitions from periodic attractors to chaotic attractors
and vice versa, coexistence of di6'erent attractors, tran-
sient chaos, and so on have been found numerically [4—6]
and analytically 7]. They have also been observed in real
experiments [8,9]. However, as A increases further, the
damped parametrically forced pendulum exhibits inter-
esting dynamical behaviors not found in previous works,
as will be seen below.

Here we are interested in bifurcations associated with
stability of the lowest stationary point with x = 0 and
x = 0 of the damped parametrically forced pendulum.
The linear stability of the stationary point is determined
by the linearized equation

which is a damped Mathieu equation. For the undamped
case with p = 0, stability properties of the Mathieu equa-
tion are given in [10,11]. There exist an infinite num-
ber of disconnected instability regions of the stationary
point in the ~o-A plane. These instability regions may
be called "tongues, " because their lower parts are tongue
shaped (see Fig. 7-5 in Ref. [11]). They can be also la-
beled by an integer n, since parametric resonances oc-
cur for (wo, A) = (2, 0). However, even a small amount
of damping leads to the presence of a nonzero threshold
value At (n) of the amplitude necessary for the occurrence
of the nth-order parametric resonance [1—3]. Moreover,
At(n) grows rapidly with increasing n (see Fig. 100 in
Ref. [2]).

We erst introduce the Poincare map for the damped
parametrically forced pendulum in Sec. II and then dis-
cuss various bifurcations associated with stability of pe-
riodic orbits. With increasing A up to sufficiently large
values, the bifurcation behaviors associated with stabil-
ity of the stationary point are investigated in Sec. III for
a moderately damped case with p = O. l. The damped
Mathieu equation (2) has an infinity of alternating sta-
ble and unstable A ranges for any given wo. Hence, as
A is increased, the stationary point undergoes a cascade
of "resurrections" for any given coo, i.e. , it will restabilize
after it loses its stability, destabilizes again, and so forth
ad infinitum. Its restabilizations occur through alter-
nationg subcritical period-doubling bifurcations (PDB s)
and pitchfork bifurcations (PFB's). On the other hand,
the destabilizations occur through alternating supercriti-
cal PDB's and PFB's, except for the first destabilization,
at which a supercritical or subcritical bifurcation takes
place, depending on the value of uo. For each case of
the supercritical destabilizations, an infinite sequence of
PDB's leading to chaos follows. Consequently, an in-
finite series of period-doubling transitions to chaos ap-
pears with increasing A, which was not found in previ-
ous works. This is in contrast to the cases of the one-
dimensional (1D) maps and some other damped forced
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oscillators [12], in which only single period-doubling tran-
sition to chaos occurs. In Sec. IV, we study the critical
scaling behaviors at the transition points. It is found that
they are the same as those for the 1D maps. Finally, a
summary is given in Sec. V.

II. STABILITY' OF PERIODIC ORBITS,
BIFURCATIONS) AND LYAPUNOV

EXPONENTS IN THE POINCARE MAP

W(0) = I. Here rU (t) and iri2(t) are two independent
solutions expressed in column vector forms and I is the
2 x 2 unit matrix. Then a general solution of the q-
periodic system has the following form:

bx(~)), ( bx(O) 6

by(t) ) ( by(0) )
'

Substitution of Eq. (7) into Eq. (5) leads to an initial-
value problem in determining W(t):

In this section, we first discuss stability of period or-
bits in the Poincare map of the damped parametrically
forced pendulum, using the Floquet theory. Bifurcations
associated with the stability and Lyapunov exponents are
then discussed.

The second-order ordinary differential equation (1)
is reduced to two first-order ordinary difFerential equa-
tions:

y = —2vrpy —2vr(~o —A cos 2vrt) sin 2irx.
(3a)
(3b)

The Poincare maps of an initial point zo[= (x(0), y(0))]
can be computed by sampling the points z at the dis-
crete time t = m, where m = 1, 2, 3, . . . . We call the
transformation z ~ z +i the Poincare (time-1) map,
and write z +i ——P(z ).

The Poincare map I has an inversion symmetry such
that

W(t) = J(t)W(t), W(0) = I.

—trMA+ detM = 0,

where trM and detM denote the trace and determinant
of M, respectively. The eigenvalues, A~ and A2, of M are
called the Floquet stability multipliers. As shown in [14],
detM is calculated from a formula

detM = efo" (10)

Substituting the trace of M (i.e. , tr J = —27rp) into
Eq. (10), we obtain

It is clear from Eq. (7) that W(q) is just the linearized-
map matrix DP (zo). Hence the matrix DP'i is calcu-
lated through integration of Eq. (8) over the period q.

The characteristic equation of the linearized-map ma-
trix M (precisely equal to DP~) is

S PS (z) = P (z) for all z,

where z = (x, y), S is the inversion of z, i.e. , S(z) = —z.
If an orbit (z j of P is invariant under S, then it is called
a symmetric orbit. Otherwise, it is called an asymmetric
orbit and has its "conjugate" orbit S(z

We now study the stability of a periodic orbit with
period q such that P~(zp) = zp but P~(zp) g zp fol'

1 & j & q —1. Here P means the k-times iterated map.
The linear stability of the q-periodic orbit is determined
from the linearized-map matrix DP~ (zo) of P~ at an orbit
point zo. Using the Floquet theory [13], the matrix DPr
can be obtained by integrating the linearized difFerential
equations for small perturbations as follows.

Let z*(t) = z*(t + q) be a solution lying on the closed
orbit corresponding to the q-periodic orbit. In order to
determine the stability of the closed orbit, we consider
an infinitesimal perturbation [bx(t), by(t)] to the closed
orbit. Linearizing Eq. (3) about the closed orbit, we ob-
tain

where

0 1
J(~) =

I

g
—47r (wo —A cos 2irt) cos 27rx*(t) 27rp ) '—

(6)

Note that J is a 2 x 2 q-periodic matrix. Let W(t) =
[rv (t), rii (t)] be a fundamental solution matrix with

detM = e

Hence, the Poincare map P is a two-dirnensiorial (2D)
dissipative map with a constant Jacobian determinant
(less than unity), like the Henon map [15].

The pair of stability multipliers of a periodic orbit lies
either on the circle of radius e ~~ or on the real axis in
the complex plane. The periodic orbit is stable only when
both multipliers lie inside the unit circle. We first note
that they never cross the unit circle and hence Hopf bifur-
cations do not occur. Consequently, it can lose its stabil-
ity only when a multiplier decreases (increases) through
—1 (1) on the real axis.

A more convenient real quantity R, called the residue
and defined by

1+detM —trM
2(1 + detM) (12)

was introduced in [16] to characterize stability of periodic
orbits in 2D dissipative maps with constant 3acobian de-
terminants. A periodic orbit is stable when 0 ( A ( 1;
at both ends of B = 0 and 1, the stability multipliers A

are 1 and —1, respectively. When B decreases through 0
(i.e. , A increases through 1), the periodic orbit loses its
stability via saddle-node or pitchfork or transcritical bi-
furcation. On the other hand, when R increases through
1 (i.e. , A decreases through —1), it becomes unstable via
PDB, also referred to as a flip or subharrnonic bifurca-
tion. For each case of the PFB's and PDB's, two types
of supercritical and subcritical bifurcations occur. For
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more details on bifurcations, refer to Ref. [17].
I,yapunov exponents of an orbit (z j in the Poincare

map P characterize the mean exponential rate of diver-
gence of nearby orbits [18]. There exist two I yapunov
exponents oi and o2 (o'i & 02) such that ai+cr2 ———2vrp,
because the linearized Poincare map DP has a constant
Jacobian determinant, detDP = e &. We choose an
initial perturbation bzp to the initial orbit point zp and
iterate the linearized map DP for bz along the orbit to
obtain the magnitute d (= ~bz ~) of bz . Then, for
almost all infinitesimally small initial perturbations, we
have the largest I yapunov exponent O.i given by

de0 i —— lim —ln
fAwoo m dp

(13)

If o ~ is positive, then the orbit is called a chaotic orbit;
otherwise, it is a regular orbit.

III. MULTIPLE PERIOD-DOUBLING
TRANSITIONS TO CHAOS

In this section, by varying two parameters up and A,
we study bifurcations associated with stability of the sta-
tionary point of the damped parametrically forced pen-
dulum for a moderately damped case with p = 0.1. It
is found that with increasing A, the stationary point un-
dergoes an infinite series of period-doubling transitions
to chaos for any given up. This is in contrast to the 1D
maps and some other damped forced oscillators [12] with
only single period-doubling transition to chaos.

The stability diagram of the stationary point is given
in Fig. 1. There exist an infinity of disconnected instabil-
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FIt . 1. Stability diagram of the stationary point of the
damped parametrically forced pendulum. There exist an in-
finity of tongues T of instability regions. For each tongue, a
supercritical bifurcation occurs on the solid boundary curve,
whereas a subcritical bifurcation takes place on the remaining
dashed or short-dotted boundary curve. There are also sad-
dle-node-bifurcation curves touching the tongue boundaries,
vrhich are denoted by the dash-dotted curves. The accumula-
tion points of PDB's, denoted by solid and open circles, form
critical lines. For other details, see the text.

ity regions in the ~p-A plane, which are separated by one
connected stability region. The instability regions may
be called tongues, because their lower parts are tongue
shaped. They can be also labeled by an integer n since,
for the undamped case of p = 0, parametric resonances
occur at (wp, A) = (—,0) [1—3,10,11]. However, even a
small amount of damping results in a nonzero minimal
value Aq(n) of the amplitude necessary for the occurrence
of the nth-order parametric resonance [1—3]. Further-
more, Aq(n) grows rapidly with increasing n (see Fig. 1).
Hereafter, each tongue of order n is denoted by T .

With increasing A, each tongue T is twisted to the
left, and lies above the tongue T i. In this way, tongues
pile up successively, as shown in Fig. 1. Consequently,
there exist an in'. nity of alternating stable and unstable
A ranges for any given up. Hence, as A is increased,
the stationary point will restabilize after it loses its in-
stability, destabilize again, and so forth ad infinitum for
any given up. Such "resurrection" mechanisms are given
below.

Bifurcation behaviors at the tongue boundaries are in-
vestigated in detail. They depend on whether the tongue
order n is odd or even. At the tongue boundaries of odd
(even) order n, the residue of the stationary point is 1
(0). Consequently, PDB's and PFB's occur when tongue
boundaries of odd and even order n are crossed, respec-
tively. For example, the boundaries of Tz and T3 in Fig. 1
are PDB curves, while the boundary of T2 is a PFB curve.
For the cases of PDB's and PFB's, there are two types
of supercritical and subcritical bifurcations, which occur
depending on where tongue boundaries are crossed. A
saddle-node bifurcation curve, at which a pair of stable
and unstable orbits with period 2 (1) is born, touches
each tongue boundary of odd (even) order n at a bound-
ary point [~g(n), Ab(n)], and decomposes it into the su-
percritical and subcritical parts. As an example, see the
three saddle-node-bifurcation curves, denoted by dash-
dotted curves, touching the boundaries of Ti, T~, and T~
in Fig. 1. On the lower left-hand part of each tongue
boundary, denoted by a solid curve, a supercritical bifur-
cation occurs. The remaining subcritical boundary curve
starting from [urs(n), Ab(n)] first goes to the right, but
then turns left at a point [wq (n), Aq (n)]. It consists of two
types of subparts, denoted by short-dotted and dashed
curves, on which a subcritical bifurcation takes place.
On the subcritical segment with ws(n) ( cdp ( (d|, (n),
the stationary point absorbs an unstable orbit born at
a dash-dotted saddle-node-bifurcation curve and loses its
stability. On the other hand, the stable orbit born by the
same saddle-node bifurcation undergoes an infinite series
of PDB's leading to chaos. The accumulation points of
such PDB's are denoted by open circles in Fig. 1.

When the stationary point loses its stability via su-
percritical PDB's and PFB's, the system is asymptot-
ically attracted to periodic attractors (born by the su-
percritical bifurcations) with the doubled period and the
same period, respectively. However, for the subcritical
bifurcation cases, the asymptotic states just after the
instability of the stationary point may be periodic or
chaotic, depending on which subparts of the subcritical
boundaries are crossed. In Fig. 2, we fix diferent up
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and increase A to cross di8'erent subparts of a subcritical
boundary of Ti. When a short-dotted boundary curve
is crossed, the asymptotic state becomes periodic [see
Fig. 2(a)], because the stationary point jumps to a peri-
odic attractor born by a saddle-node bifurcation after its
instability. For this periodic case, with increasing A an
infinite sequence of supercritical PDB s leading to small-
scale chaos follows. However, when a dashed boundary is
crossed, large-scale full chaos appears via intermittency
[19],and hence the asymptotic state becomes chaotic [see
Fig. 2(b)].

With increasing A, up to sufBciently large values, the
bifurcation behaviors associated with stability of the sta-
tionary point are investigated in detail for many values of
4)p. For a given up, the restabilizations of the stationary
point occur via alternating subcritical PDB's and PFB's
with increasing A, as shown in Fig. 1. On the other hand,
the destabilizations take place via alternating supercriti-
cal PDB's and PFB's, except for the first destabilization,

at which a supercritical or subcritical bifurcation occurs
depending on the value of wo [e.g. , for wo ——0.5 (0.65),
the first destabilization occurs via supercritical (subcrit-
ical) PDB]. For each case of the supercritical destabiliza-
tions, an infinite sequence of supercritical PDB s leading
to a pair of chaotic attractors follows and ends at a finite
accumulation point. In each tongue, such accumulation
points of PDB s, denoted by solid circles in Fig.1, seem to
form a smooth critical line. Consequently, an infinite se-
ries of period-doubling transitions to chaos appears with
increasing A. This is in contrast to the cases of the 1D
maps and some other damped forced oscillators [12], in
which only single period-doubling transition to chaos oc-
curs.

As an example of the multiple period-doubling tran-
sitions to chaos, consider the case up ——0.5. A bifurca-
tion diagram along the vertical line wp ——0.5 is shown
in Fig. 3. Through a supercritical PDB, the station-
ary point loses its stability at its first destabilization
point Ag(1) = 0.100218.. ., and a symmetric orbit of
period 2 is born. Unlike the case of the stationary point,
the symmetric 2-periodic orbit becomes unstable by a
symmetry-breaking supercritical PFB, which leads to the
birth of a conjugate pair of asymmetric orbits with period
2. (For the sake of conveiuence, only one asymmetrical
orbit of period 2 is shown in Fig. 3 [20].) However, as
A is further increased, an infinite sequence of supercriti-
cal PDB's follows and ends at its accumulation point Ai
(0.35770984 . . .). The critical scaling behaviors of pe-
riod doublings near the critical point Ai are the same as
those for the 1D maps, as will be seen in Sec. IV.

After the period-doubling transition to chaos, a conju-
gate pair of small chaotic atttractors with positive largest
Lyapunov exponent o i appear. As A is increased, the
di8'erent parts of a chaotic attractor coalesce and form
larger pieces. For example, the chaotic attractor with
crt 0.091 shown in Fig. 4(a) seems to be composed

0 0~ ~

0.10—

0.05—

-0.5
0.15 0.30

A
0.45 0.00—

SP2 ' ASP2: P4: P8: P1 6-

FIG. 2. Asymptotic states after the instability of the sta-
tionary point via subcritical bifurcations. A pair of symmet-
ric stable and unstable orbits of period 2 is born via sad-
dle-node bifurcation. The x-positions of the stable and un-
stable orbits are denoted by the solid and dashed curves, re-
spectively. At a subcritical PDB point, the stationary point,
whose x-position is denoted by the dotted line, loses its stabil-
ity by absorbing the unstable 2-periodic orbit. After its insta-
bility, (a) the stationary point jumps to the stable 2-perodic
orbit for ws = 0.55, whereas (b) large-scale full chaos ap-
pears for ~0 = 0.6832. Note also that for each case, the sta-
ble 2-periodic orbit undergoes an infinite sequence of PDB's
leading to small-scale chaos.

-0.05—

2 4 6

-In(Ai -A)

10

FIG. 3. First bifurcation diagram for coo ——0.5. SP2 and
ASP2 denote the stable A ranges of the symmetric and asym-
metric orbits of period 2, respectively. PN also designates the
stable A range of the asymmetric periodic orbit with period
N (N = 4, 8, 16).
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of four distinct pieces for A = 0.3579. As shown in
Fig. 4(b), these pieces coalesce to form two large pieces
with o.

q
——0.158 for A = 0.3582. However, beyond

some critical point A, (1) ( 0.3586), the chaotic attrac-
tor becomes unstable, and the system is asymptotically
attracted to a rotational orbit of period 1 born by a
saddle-node bifurcation. For A ) A, (l), the damped
parametrically forced pendulum continues to exhibit rich
dynamical behaviors. With increasing A, the birth of new
periodic attractors via saddle-node bifurcations, transi-
tions from periodic attractors to chaotic attractors and
vice versa, coexistence of different attractors, and so on
are found until the stationary point restabilizes. (For
more details on such dynamical behaviors, refer to pre-
vious works [4—9].) However, with further increasing A,
the damped parametrically forced pendulum exhibits in-
teresting dynamical behaviors not previously found.

When the dashed subcritical boundary of T~ is crossed
at the first restabilization point A„(1) (3.150 509. . .), the
stationary point restabilizes via subcritical PDB. An "in-
verse" process of the case of Fig. 2(b) occurs. There ex-
ists large-scale full chaos below A, (l). When A increases
through A, (l), the large chaotic attractor disappears and
the restabilization of the stationary point occurs with
birth of a new unstable 2-periodic orbit. The residue

(a)

-0.8—

B of the stationary point decreases monotonically from
one and becomes zero at the second destabilization point
Ag(2) (3.224230 . . .) on the supercritical PFB curve of
T2.

A second bifurcation diagram for ~p = 0.5 is shown
in Fig. 5. The stationary point becomes unstable
via symmetry-breaking supercritical PFB at its second
destabilization point Ag(2), which results in the birth
of a conjugate pair of asymmetric orbits with period 1.
With further increase of A, a second infinite sequence of
supercritical PDB's follows and ends at its accumulation
point A2 (3.263 703 15 . . .). The critical scaling behaviors
of period doublings near A = A2 are the same as those
near the first accumulation point A&. After the second
period-doubling transition to chaos, a conjugate pair of
small chaotic attractors also appears. They persist un-
til some critical point A, (2) ( 3.263862) beyond which
the system is asymptotically attracted to an oscillating
2-periodic orbit born via saddle-node bifurcation. As in
the tongue of order 1, the damped parametrically forced
pendulum exhibits diverse dynamical behaviors such as
transitions between the periodic and chaotic attractors
and the coexistence of different attractors in the region
between A, (2) and the second restabilization point A„(2)
(10.093985. . .).

When the dashed subcritical boundary of T2 is crossed
at A„(2), a subcritical PFB occurs. Consequently, the
stationary point restabilizes with the birth of a pair of
new unstable orbits of period 1. As A is further in-
creased, the residue B of the stationary point monoton-
ically increases and becomes one at the third destabi-
lization point Ag(3) (10.097583 . . .) on the supercritical
PDB curve of T3. Since the order of T3 is odd, the subse-
quent bifurcation behaviors in Tq are the same as those
for the case of Tz. That is, a third infinite sequence of
supercritical PDB's, leading to a pair of small chaotic at-
tractors, follows and ends at its accumulation point A3
(10.09966093 . . .). This third bifurcation diagram for

0.00 0.05
X

0. IO

0.0020—

0.0015—

0.O0io — ~ Asp~
X

0.0005—

0.0000 ==

0.00 0.05
X

0.10

FIG. 4. Chaotic attractors after the first period-doubling
transition to chaos. (a) For A = 0.3579, the chaotic attractor
with the largest Lyapunov exponent crz 0.091 is composed
of four pieces. (b) These pieces merge to form two large pieces
with oi 0.158 for A = 0.3582.

-In(A2-A)

FIG. 5. Second bifurcation diagram for ceo = 0.5. ASP1
and PN denote the stable A ranges of the asymmetric orbit
of period 1 and N (N = 2, 4, 8, 16), respectively.
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0.00002- TABLE I. Asymptotically geometric convergence of the
parameter values for successive supercritical PDB's from an
asymmetric 2-periodic orbit.

0.00000

-0.00002—

-0.00004—

~P16

AI,
0.354 163288 011
0.357 022 317 174
0.357 563 141 135
0.357 678 400 212
0.357 703 107 281
0.357 708 401 983
0.357 709 536 272
0.357 709 779 136

5.286
4.692
4.665
4.666
4.668
4.670

10

-In(As-A)

13

I IG. 6. Third bifurcation diagram for wo ——0.5. SP2 and
ASP2 denote the stable A ranges of the symmetric and asym-
metric orbits of period 2, respectively. The PN also designates
the stable A range of the asymmetric periodic orbit with pe-
riod N(N = 4, 8, 16).

IV. CRITICAL BEHAVIORS OF
PERIOD-DOUBLINC BIFURCATIONS

up ——0.5 is given in Fig. 6. The critical scaling behaviors
of period doublings near A3 are also the same as those
near Az, as will be seen in the next section.

We have also studied many other cases with difer-
ent ~p, and found multiple period-doubling transitions
to chaos with increasing A. Such accumulation points
are denoted by solid circles in Fig. 1. In each tongue of
order n, they form a smooth critical line A*(wp). Since
the range of ~p is 0 ( ~p ( (dg(n), each critical line of
order n ends inside the tongue with order n. As men-
tioned above, a stable periodic orbit, born at a dash-
dotted saddle-node-bifurcation curve, also undergoes an
infinite sequence of supercritical PDB's. The accumu-
lation points of such PDB's, denoted by open circles in
Fig. 1, form another critical line. The two di8'erent crit-
ical lines join at a point with ~p ——~b(n). Consequently,
each critical line of order n extends to the outside of the
tongue of order n.

Aa —Ak-i
Ax+i —Aa

(14)

The sequence of bk is also listed in Table I. Note
that its limit value b ( 4.67) agrees well with that
(4.669. . .) for a 1D map x +q

——f(m ) with a single
quadratic maximum z* [21]. We also obtain the value of
Az (0.3577098453) by superconverging the sequence of
(Agj [22].

For the 1D map f, consider a 2"-periodic orbit point
x~"~ nearest to the maximum point x* when the orbit
becomes unstable. Then, the sequence of x~"~ also con-
verges geometrically to the maximum point x' with an
asymptotic ratio n = —2.502. . . [21]. Note that the re-
gion near the maximum point x* is the most rarified re-
gion, because the distance between x~"~ and its nearest

2k —1
orbit point f (xI"I) is maximum. Hence, for the case
of the Poincare map P, we first locate the most rari-

the stationary point becomes unstable via supercritical
PDB and a new symmetric 2-periodic orbit appears (see
Fig. 3). However, the symmetric orbit of period 2 loses
its stability by a symmetry-breaking supercritical PFB
at A = 0.335257. . . . As a result, a conjugate pair of
asymmetric 2-periodic orbits appears. As A is further
increased, each asymmetrical orbit with period 2 under-
goes an infinite sequence of supercritical PDB's, ending
at its accumulation point A~. Table I gives the A values
at which the supercritical PDB's take place; at AI„ the
residue Bp of an asymmetric orbit of period 2" is one.
The sequence of Ay converges geometrically to its limit
value Az with an asymptotic ratio b:

In this section, we study the critical behaviors of PDB's
for many values of cup. The orbital scaling behavior and
the power spectra of the periodic orbits born via PDB's
as well as the parameter scaling behavior are particularly
investigated. The critical behaviors for all cases studied
are found to be the same as those for the 1D maps.

As an example, we consider the case ~p = 0.5. The
first three period-doubling transition points A,*'s (i
1,2, 3) are shown in Fig. l. Only the critical behav-
iors near Ai are given below, because the critical be-
haviors at the three transition points are the same. For
this case, we follow the periodic orbits of period 2" up
to level k = 8. As explained above, for A = Ag(1),

~(&}

0.094 410 516
0.088 901 931
0.091 750 680
0.090 827 396
0.091 235 660
0.091 080?05
0.091 144 315
0.091 119256

-1.933
-3.085
-2.261
-2.635
-2.436
-2.538

{Ie}

0.719956 679
0.738 357 722
0.733 681 177
0.735 850 056
0.735 051 829
0.735 384 746
0.735 254 611
0.735 307 206

-3.935
-2.156
-2.717
-2.398
-2.558
-2.474

TABLE II. Asymptotically geometric convergence of the
orbital sequences (2: " ) and (y ).
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0 TABLE III. Sequence 2P " (l) [= P
" (I)/P "l(l + 1)] of the

ratios of the successive average heights.

cj

CD
O

-5—
3

19.8
19.8
19.8

4
22.5
22.1
22.0

l
5

21.1
21.2
20.7

21.5
21.6 21.4

-10—

-15

JQ 2(1 ') —1

P(") = Ppph((u) + ) ) P~~ )b(~. —(ui, ),
l=l j=O

(18)

FIG. 7. Plot of logip P vs (u) for A = As
(0.357 709 779 136).

where P&. is the height of the jth peak of the lth genera-
tion appearing at tu = uiz [2m (2j+1)/2 ]. As an example,
see the power spectrum P(s) (u) of level 8 shown in Fig. 7.
The average height of the peaks of the 1th generation is
given by

fied region by choosing an orbit point zlk~ [= (x("),y("))]
that has the largest distance from its nearest orbit point
P (z(")) for A = Ak. The two sequences (x(")) and
(y(k)) are listed in Table II. Note that they converge
geometrically to their limit values x* and y* with the 1D
asymptotic ratio o., respectively,

ylkl (I)

2/ —1

p(&)
2(i —i}

Whether or not the sequence of the ratios of the succes-
sive average heights

2&'"'(I) = &'"'(I)/&'"'(I + 1) (20)

(A:) (A:—i) (k) (A:—1)

~(A+i) ~(A) ' ~ ~ ~(I +~) (I )

(15)

converges is of interest. The ratios are listed in Table III.
They seem to approach a limit value 2P 21 that agrees
well with that (20.96. . .) for the 1D map [23].

g —1
(k)

( ) ) (k) i~~rn— (16)

where ~~ = 27rj/q, and j = 0, 1, . . . , q —1. The power
spectrum P(k)(u~) of level k defined by

P'"'(~.) = lz'"'(~') I' (17)

The values of z* (0.091 126) and y* (0.735292) are also
obtained by superconverging the sequences of x(") and
y("), respectively.

We also study the power spectra of the 2"-periodic
orbits (k = 1, . . . , 8) at the PDB points Ak. Consider
the orbit of level k whose period is q = 2", [z

(x, y ), m = 0, 1, . . . , q —1]. Then, the jth Fourier
component of this 2"-periodic orbit is given by

V. SUMMARY

Bifurcations associated with stability of the stationary
point of the damped parametrically forced pendulum are
investigated by varying two parameters ~0 and A. As A
is increased, the stationary point undergoes an infinite
sequence of alternating restabilizations and destabiliza-
tions for any given uo. The restabilization and desta-
bilization mechanisms are also given in detail. We find
that an infinite series of period-doubling transitions to
chaos appears with increasing A. To our knowledge, this
was not found in previous works. This is in contrast to
the cases of the 1D maps and some other damped forced
oscillators [12] with only single period-doubling transi-
tion. The critical scalings at the transition points are
also found to be the same as those of the 1D maps.

has discrete peaks at ~ = w~. In the power spectrum
of the next (k + 1) level, new peaks of the (k + 1)th
generation appear at odd harmonics of the fundamental
frequency, urz ——2m(2j + I)/2(k+i) (j = 0, . . . , 2" —1).
To classify the contributions of successive PDB's in the
power spectrum of level A;, we write
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