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Dissipative particle dynamics for a harmonic chain: A first-principles derivation
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The equations of dissipative particle dynamics for a linear harmonic chain are deduced from first
principles. Prom the original chain, a coarse-grained chain is constructed by grouping the particles
in clusters; the equations of motion for the position and momenta of these clusters are derived.
The clusters interact with their neighbors with elastic springs and Brownian dashpots. We provide
explicit expressions for the renormalized elastic constant, the friction coeKcient, and the amplitude
of the random forces.

PACS number(s): 05.40.+j, 05.60.+w, 02.70.—c

I. INTRODUCTION

The technique of dissipative particle dynamics (DPD)
has been introduced by Hoogerbrugge and Koelman in
order to simulate hydrodynamic behavior in complex sys-
terns such as, e.g. , colloidal suspensions [1,2]. The aim
of the technique is to reduce the computational efFort
required by molecular dynamics (MD) simulations [3—6]
by coarse graining the description of the fluid. From a
numerical point of view, DPD might represent an alter-
native to other techniques such as, for example, lattice
gas cellular automata [7], lattice Boltzmann automata
[8], or the direct simulation Monte Carlo method for di-
lute gases [9]. All these techniques try successfully to
reduce the computational burden of MD when address-
ing hydrodynamic problems.

In DPD the fluid is modeled with point particles that
interact through conservative, dissipative, and random
forces. These point particles are not regarded as the
molecules of the fluid but rather as droplets or clusters of
molecules. During the interaction of these clusters, en-
ergy is not conserved and this is taken into account by the
dissipative and random forces. Nevertheless, these forces
are required to satisfy Newton's third law and therefore
they conserve the momentum of the interacting clusters.
This crucial point makes the technique suitable for sim-
ulating hydrodynamic processes because it implies that
there exists a transport equation for the hydrodynamic
momentum density field [1]. This clever insight has been
put in a firm theoretical basis recently [10,11].

The success of DPD in fluid systems with complex
boundary conditions encourages us to apply it also to
solid systems. The computational requirements in the
solution of elasticity problems with boundary conditions
as complex as those arising in, for example, fracture dy-
namics are formidable. Molecular dynamics simulations
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of crack dynamics are currently performed with a num-
ber of particles of the order of 10 [12]. The general idea
of DPD, that of using coarse-grained particles in order to
reduce the computational burden, can also be applied to
the simulation of solids. In an analogous way as in fluid
systems, now a point particle is regarded as representing
a portion of a solid made of many atoms. These coarse-
grained particles interact through conservative, dissipa-
tive, and random forces with their neighboring particles.
The main question that arises is what sort of dissipa-
tive and random forces should we introduce in a solid
systems In a fluid system, the structure of the equa-
tions of motion for the dissipative particles was dictated
from symmetry considerations (rotational, translational,
and Gahlean invariance) and simplicity (linear forces).
In this way, it was proposed that the dissipative forces
are like those produced by a dashpot between a given
pair of particles. This means that the dissipative force
on a given particle due to another particle is proportional
to the relative approaching velocity. Note that this type
of force is completely difFerent from a viscous frictional
force applied to each particle (which depends on its abso-
lute velocity). This last type of dissipative force does not
conserve momentum and the resulting macroscopic de-
scription is not hydrodynamic but difFusive, i.e. , we have
a Brownian dynamics simulation [13].

In a solid elastic system dissipation can also be intro-
duced according to symmetry requirements [14]. For ex-
ample, I anger has considered dissipation in a continuous
medium by using a term proportional to 02u/Ox2, where
u is the displacement field [15]. This is in agreement with
Landau and Lifschitz [14]. Note that the finite difFerence
discrete version of such a term correspond. s to a dissipa-
tion proportional to relative velocities of the nodes (or
particles). Another form of dissipation has been intro-
duced in lattice models where a viscous friction propor-
tional to the absolute velocity of the particles has been
considered [16]. This simpler form was adopted for math-
ematical convenience but it turned out to have a physical
effect on. the morphology of the cracks.

The aim of this paper is to derive the algorithm of
DPD for the simplest model of an elastic solid, the 1D
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harmonic chain. The simplicity of the model allows for an
explicit analysis and furnishes valuable insight into the
general problem of relating the model parameters of DPD
and the microscopic dynamics of the underlying system
that is being modeled. In this respect, we expect to gain
some insight in the structure of DPD that can be useful to
other nontrivial systems such as Huids, multidimensional
lattices, and polymers.

The essential idea consists on coarse graining the orig-
inal model and deducing the equations of motion for the
coarse-grained variables. In this spirit, the particles of
the chain are grouped in bunches of a given size (see
Fig. 1) in a way reminiscent of the renormalization group
procedure as applied in polymer physics [17]. The "meso-
scopic" state of the system is now described by the po-
sition of the center of mass and the momentum of these
clusters of particles. These mesoscopic variables instead
of the conventional "macroscopic" field variables (densi-
ties of particle number, momentum, energy, and displace-
ment) were selected due to our intention of developing
molecular-dynamics-like simulation (i.e. , oÃ-lattice sirn-
ulations) instead of finite-difference methods where the
eKect of complex moving boundary conditions are more
dificult to treat. By using a standard technique of pro-
jection operators we deduce the equations of motion for
the mesoscopic variables [18—20].

The paper is organized as follows. In Sec. II we present
the model and its coarse graining. In Sec. III we recall
the standard technique of projection operators and we
particularize it to the model presented in Sec. IV. Finally,
some conclusions are presented.

II. THE HARMONIC CHAIN AND THE
COARSE-GRAINED CHAIN

momentum, K is the elastic constant, and m the mass of
the particles. We assume fixed ends, i.e. ,

pi ——~(x2 —2xi),
PN = &(xN i 2—xN) i

Note that these linear microscopic dynamic equations can
be written as

where A,~. is the Rouse matrix [21]

'2 if i=j,
A,~= & ?. if i=j+?.,

0 otherwise.

The Hamiltonian of the system is given by H = T + U,
where the kinetic and potential contributions are, respec-
tively,

N

) Pi
2mI

U= —x A~,
2

and x = (x„.. . , x~).
Now we define a set of mesoscopic variables by group-

ing the particles in bunches of size n. The position of the
center of mass of the bunch and its momentum are taken
as the set of mesoscopic variables that describe the chain
in a coarse-grained way. The mesoscopic variables are

I et us consider a set of N particles moving in one di-
mension and connected through Hookean springs. The
equations of motion are

+p, ) p Ep'i' (6)

= p'
X$

m
p, = K(x;+i —2x, + x, i),

where x,. is the deviation from the equilibrium position
x; = ia of particle i (a is the lattice spacing), p, is its

where 'R~ is the list of indices of particles that constitute
the pth group. Note that the equilibrium average of the
microscopic and mesoscopic variables vanishes.

III. MORI THEORY

"i'i'Npv'q J l'NiA ~~y'I'Ji'fi'iI ~p'iw Q Kvi'i'i!ig & Ny'w'~( /grv i ( i'tr'Ni! L,"1I'I'Ni'~( jul' s

FIG. 1. The original 1D harmonic chain is coarse-grained
by grouping several particles into clusters. In the
coarse-grained level the chain is described by the position and
momenta of the center of mass of the clusters. The resulting
1D coarse-grained chain consists of "particles" that interact
with their neighbors through elastic springs and Brownian
dashpots.

Our aim is to deduce theoretically the equations of
motion for the set of mesoscopic variables (6), given the
microscopic dynamics (2). The technique of projection
operators is very useful in this respect. For completeness
and in order to fix the notation, we recall in this section
the technique.

Following Ref. [22], we first introduce a scalar product
defined by

(7)

where the equilibrium ensemble is p''i(z)

& exp( —PH(z)), Z is the partition function, and
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P = 1/k~T T. he Liouville operator is self-adjoint with
respect to this scalar product. Next, we introduce a rel-
evant ensemble by

1
p, (z):——exp ( PH—(z) + PA; (t)A; (z) },

The random forces satisfy the following properties:

A'(t)) = 0,

(E&(0)E,(t)) = K,, (t)(A, , A„),
(A„P;(t)) = o.

(A;), = tr[p, A;] = tr[p, A, ]. (9)

We will assume in the following that the system is in
a state near equilibrium. Near equilibrium the relevant
ensemble must be similar to the canonical ensemble and
therefore the parameters A, (t) are small, allowing for an
expansion of the form

~ ( ) = ~"(.)[1+PA*(t)A'( )]

We further define the deviations from equilibrium:

(io)

where summation over repeated indices is understood, A;
denotes the set of relevant mesoscopic variables, and A;(t)
are a set of thermodynamic parameters that depend on
time. The relevant variables are selected in such a way
that their equilibrium average vanishes. The average of
A, performed with the relevant ensemble coincides with
the actual average performed with the solution of the
Liouville equation, that is,

~V. MORI THEORY APPLIED TO THE
HARMONIC CHAIN

We now particularize the formalism of the preceding
section to the case that the relevant variables A; are
X~, P„. The relevant ensemble (10) now takes the form

s ( ) = ~"( )[1+PA (t)X ( )+PA, (t)P ( )] (»)

The physical meaning of the I agrange multipliers
Ax(t), A„(t) is obtained from (13), which can be writ-
ten in the form

s ~ = c"[1+@~],

sg = c"[1+@~],

(X„),= (X„X )PA„(t) + (X„P )PA (t),
(P ) = (P X )PA (t) + (P P )PA (t). (2o)

in such a way that @z ——PA;(t)A;. In terms of the devi-
ations from equilibrium Eq. (9) becomes

(A, ), = (A, , e, ) =(A;, e, )

which implies

PA;(t) = (A;, A, ) '(A, , 0,),

We have then to compute the equilibrium second mo-
ments. We will need first to compute the equilibrium
second moments of the microscopic variables. For exam-
ple,

T 1 K(xxx) = xxx —exp —p —x*AxId x.
Z 2

and therefore

e, =A, (A, , A, )-'(A, , e, )
—= V e„ (14)

By introducing w = Ay, where A is an orthonormal ma-
trix that diagonalizes the Rouse matrix A, i.e. , A AA =
D, D a diagonal matrix and A A = 1, we have

where 7 is a projection operator that extracts the rele-
vant part of the actual ensemble.

By applying the following mathematical identity,
(xx )=A Tl Kpp' r

—0 p'Dp jId"p +*-—
8 2

exp(iLt) = exp(iLt)P kggT
AD AT kIBT ~ (22)

+ exp(iLu) PiLQ exp(iLQ(t —u) }
+Q exp(iLQt),

to A, (t) = exp(iLt)iLA, and using the form (14) of the
projector, an exact equation of motion for A, (t) is ob-
tained,

where we have used

I x2 exp( ax2)dx-
j exp(-axz)dx 2a

The inverse of the Rouse matrix is given by [21]

(23)

A, (t) = A,,A, (t)— K;, (t —u)A, (u)du+ E;(t), (16) i[(2V+1) —j /(%+1) if i & j,
j[(K+ 1) —i /(N+ 1) if i & j, (24)

where the drift term 0, the dissipative kernel K, and the
random force E, are given, respectively, by

0,, = (A~, Ag) '(Ag, iLA, ),
K'. (t) = (A A~) '(+k(0) +'(t))

P, (t) = QexpfiLQt)iLA, .

and therefore if i~ & i

k~T i„(
yr+1) E (~+1))

For p & v let us compute



53 DISSIPATIVE PARTICLE DYNAMICS FOR A HARMONIC. . . 1575

kgyT 1 . i„
n2 ~, (N+1)

2v

(N+1))

kgb T p
N'

(
(N+1) n . ( (N+1))

n —1 p n —1

2(N + 1) N' 2(N + 1)
(26)

where N' = N/n is the number of groups of size n in the
chain. The inverse of this matrix is difBcult to obtain,
but we note that in the limit of very large chains N, N' +

oo and (n —1)/2(N + 1) + 0. The resulting matrix is
proportional to the inverse 6f the Rouse matrix (24), that
1s~

(P„P„)= nmk~Tb„„.

Substitution of these results into (20) leads finally to the
desired physical meaning for the Lagrange multipliers,
1.e.)

A„(t) = r.A„~(X„), (30)

where A„„ is an N' x N' Rouse matrix. Therefore,

(X„X„) = A„.
QTn

(27) which is the negative of the average elastic force on group
p. Also,

(31)

Next, because of the statistical independence of position
and momentum for the microscopic variables it follows
that the mesoscopic position and momentum are also sta-
tistically independent, that is, (X„P ) = (P„X„)= 0.
Finally, the second moments of the mesoscopic momen-
tum are

which is the average velocity of group p.
We consider now the equation of motion (16) for the

position X„.One can compute the drift and irreversible
terms, but it is simpler to just take the derivative and,
obviously, one obtains X„=~. On the other hand, the
equation for the momentum is nontrivial. The reversible
part is given by

0;~A, (t) w X„(t) ) (X„X ) (X iLP„) + ) (X P ) '(P iLP„)

+P„(t) ) (P„X ) (X 1'LP„) + ) (P„P ) (P iLP„)

K——A„„X,n
(32)

where we have used that (X iIP„) = (iLX P„)—
—(P P~)/nm and (P iLP~) = 0. We note that the re-
versible term gives rise to an elastic contribution to the
force. For the irreversible part, we first note that be-
cause iLX„= P„/m, proportional to a relevant vari-
able, the corresponding random force (17) will be zero.
On the other hand, the nonzero random force corre-
sponding to the momentum variable will be F„(t)
Qexp(iLQt)iLP&. The irreversible term will become
simply

t

K;, (t —u)A, (u)du
0

t
-+ K„„(t—u) P„(u)du

0
t
duP„(u) ) (P P ) (F F~(t —u))

0 a
t

duP„(u) (F„F„(t—u) ) .
nYQ QT 0

(33)
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Our aim is to study in more detail the correlation matrix
(F F (t)) of the projected force. We first note that the
total force acting on the group p is due only to the springs
that connect this group to its nearest neighbors, that is,

1

nmk~T duP„(u)(F„F„(t—u)) = A„P (t),

(41)

F„=i LP„= —(z; —x,„,) + (x;, —x~ ), (34)
where the friction coefIicient p is defined in terms of a
Green-Kubo formula, i.e. ,

where i~, i„+i represent the leftmost particle of the
groups p, p+ 1 and j„,j„+i represent the rightmost par-
ticle of the groups p —1, p. For compactness, we will
denote the length of the left spring of group p, (which
connects the group p with the group p, —1) by /„and
the length of the right spring of group p (which connects
the group p, with the group p + 1) by r„. Obviously,
pp —lp+] ) lp —pp ] and

1

kgT

OO 1
dug(u) =

kgT du(b"b" (u)) (42)

K„(t—u) = A„b(t —u)
nm

The Markovian approximation is equivalent to assuming
the following form for the kernel:

(35) or equivalently [see Eq. (41)] the following correlation for
the random forces:

We next introduce the projected spring lengths
(F~(t)F~(t')) = k&TqA„„h(t —t') (44)

bl„= Qt„= l„—(l„,X )A X
8r„= Qr„= r„—(r„,X )A „X . (36) The final equations of motion for the mesoscopic variables

are then
In this way, the projected force can be written as

F~(t) = -bl„(t) + br„(t), (37)

where bt„(t) = Q exp(iLQujbt„. Therefore, the correla-
tion of projected forces will become

~ P„X„=
m

KP„=——A„X
n

or, more explicitly,

A„P + F„(t),nm (45)

(F. F. (t)) = (bt-bl. (t)) —(bt-b"(t)) —(br-bt. (t))
+(b" b" (t)) (38)

Now, when the size n of the groups is large enough, the
difFerent springs will be far apart and their length will
become uncorrelated. This means that the correlation
matrix will have the form

(F~F~(t)) = (hl„bl„(t)) + (br„br„(t))
= (br„ iver„ i(t)) + (br„br„(t)):& —i(t) + & (t)

(F.F. (t)) = —(b .bl.+ (t)) = -~.(t)
(F.F. (t)) = -(bl. b .— (t)) = -~.— (t), (39)

and zero if
~

p, —v~ ) 1. We expect that the autocorrela-
tion of the spring length will be the same for all groups
so that p„(t) = p(t). Actually, it is possible to compute
p„(0) explicitly and it is seen that p„(0) = p(0). There-
fore, we arrive at the following expression:

(F„F„(t))= (t)A„. (40)

Now, let us note that the typical time scale of p(t) will be
of the order of the period (m/K) ~ of a connecting spring.
On the other hand, the typical time scale of variation of
the momentum of each group will be much larger if the
groups are large enough. This allows for a Markovian
approximation of the form

P„X„=
P„= —(X„+i—2X„+X„ i),n

[P (t) —P — (t)]+ [P + (t) —P (t)1

+F~(t). (4

dX„(t) =
m

dP„(t) = — A„X„(t)+ —A„P (t) dt
n nm

+ (k~»)"' [dW~+i~(t) —dW~~-i(t)] (47)

where dR'~ = de „are independent increments of the
Wiener process which satisfy

dW„(t)dW„„(t) = (b„„b „+b„„b„„)dt, (48)

i.e., dW~ (t) is an infinitesimal of order 1/2 [23]. The
heuristic connection between the Langevin equations (46)
and the SDE's (47) is through the nonrigorous equation

These are Langevin equations for the motion of the meso-
scopic variables. From a mathematical point of view,
these equations are iH-defined and the rigorous expres-
sion for these kind of equations is in the form of stochas-
tic difFerential equations (SDE) [23]. We will formulate
below the SDE corresponding to the Langevin equations
(46). This is not only a matter of taste but also a re-
quirement in order to formulate well-defined numerical
algorithms. The SDE's corresponding to (46) are
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(49)

which is not correct from a mathematical point of view as
it suggests the existence of the derivative of the Wienner
process [23]. Nevertheless, using the rule (48) one arrives
at the correct expression for the correlation of the random
force, i e , .(P. (t)E (t')) k~TpA„„1/dt if t = t' and
zero otherwise. The term 1/dt (which is infinity in the
continuum limit) can be assimilated to h(t —t) = 8(0).

A final word on the explicit calculation of the fric-
tion coefficient p in (42) is in order. This calculation is
very difBcult in view of the presence of the projected dy-
namics represented by the operator exp(iLQ). It should
be noted though that p ) 0 because otherwise the sys-
tem would have the unphysical property of being "self-
accelerated. " On the other hand, the dependence of the
friction coefBcient on the microscopic parameters of the
original harmonic chain can be obtained by dimensional
analysis,

p=(mK) ~ (50)

where the dimensionless friction coefFicient p* is obtained.
from an expression like (42) but using dimensionless mi-
croscopic variables to begin with. It should be empha-
sized that p* is a number intrinsic for the 1D chain and
cannot be given an arbitrary value for modeling purposes.

V. SUMMARY AND CONCLUSION

Starting from a microscopic description of a harmonic
chain in terms of the positions and momenta of the atoms
of the chain we have deduced the equations of motion for
a coarse-grained chain constructed from the original one
by grouping the atoms in clusters of definite size n. The
chain is assumed to be in a statistical state near equi-
librium. In the limit of very long chains and for large
groupings of particles, the clusters interact elastically and
dissipatively, with a friction force that depends on the
relative velocity of neighboring particles. Moreover, the
clusters are subject to thermal random b-correlated forces
that take into account the eliminated degrees of freedom
and which depend on the temperature of the equilibrium
state. The structure of the equations of the renormal-
ized chain is thus identical to that of dissipative particle
dynamics as applied to Huid systems. More precisely,
the particularization of the equations of DPD as given
in Ref. [10] to the harmonic chain produces exactly the
Eqs. (47). Therefore, we have derived for this particular
system the equations of DPD from first principles.

The elastic constant and the friction coefFicient of the
coarse-grained chain are defined in terms of microscopic
variables. Worth noting is the fact that they are inversely
proportional to the size of the clusters. This corresponds
to the intuitive idea that the time scales of the coarse-
grained variables grow as the size of the cluster and. it
is consistent with the Markovian approximation taken in
the deduction of the equations.

The appearance of noise and dissipation in the renor-
malized chain is simply a matter of describing the system

at a coarse-grained level. For if we imagine a microscopic
motion of a pulse in the atomic chain, due to the intrinsic
dispersion of the discrete chain (i.e. , each normal mode of
the chain has a difFerent frequency) this pulse will spread
out. Therefore, the motion of the microscopic pulse will
affect as time proceeds more and more clusters which will
move more and more slowly. However, there is no dissi-
pation in the original atomic chain and there will always
be a remanent motion of the atoms. This incoherent mo-
tion is captured by the random noise in the renormahzed
chain.

The extension of the formalism to not only linear
chains but also multidimensional lattices is cumbersome
but we expect that the general features of the equations
are retained, that is, the coarse-grained portions inter-
act elastically, dissipatively, and with a random force.
The potential use of DPD for solids as a way of solving
complex elasticity problems where the complexity may
appear as in the case of Quid systems as a consequence of
boundary conditions remains to be explored. Our partic-
ular interest in DPD for solids arose from our attempt to
simulate crack dynamics in brittle materials. It has been
found that a phenomenological Stokes dissipation (pro-
portional to the absolute velocity of the particles) has an
effect in the morphology of cracks propagating in lattices
[16]. The results of this paper suggest that dissipation is
proportional to the relative velocities between particles.
In the continuum limit, the dissipative term in the equa-
tions of motion for the displacement becomes oj u/Bz
as proposed by Langer [15] and in agreement with Lan-
dau and Lifschitz [14]. It would be very interesting to
explore the consequences of this form of dissipation in
the formalism developed by Marder et al. in order to
consider instabilities in the steady state velocity of prop-
agating cracks in lattice models [16].

The fact that the friction coefFicient is defined in terms
of microscopic dynamics shows that in order to model a
lattice crystal in a coarse-grained level not any value of
p is allowed but only a precise value, characteristic of
the geometry and dynamics of the lattice, will represent
faithfully the crystal. This also has relevance in DPD
for fluids, where a general connection of the dissipative
friction coefFicient with the microscopic dynamics is still
lacking. Work is in progress in that direction.

Finally, the results presented in this paper are relevant
in polymer dynamics also. Usually, a polymer molecule is
modeled as a linear chain of particles interacting through
elastic springs. It is apparent from the results of this pa-
per that in order to be consistent with the coarse-graining
procedure implicit in this modeling, the dissipation due
to the inner motion of the monomers within the chain
has to be taken into account. Such models with "inter-
nal viscosity" have been considered and analyzed in the
past [24].
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