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An efFective stress tensor and energy density for the quantum hydrodynamic (QHD) equations are de-

rived in the Born approximation to the Bloch equation. The quantum potential appearing in the stress

tensor and energy density is valid to all orders of R~ and to first order in P V, and involves both a smooth-

ing integration of the classical potential over space and an averaging integration over temperature. In
the presence of discontinuities in the classical potential (which occur, for example, at potential barriers
in semiconductors), the effective stress tensor and energy density are more tractable analytically and nu-

merically than in the original O(fiz) QHD theory. By cancelling the leading singularity in the classical

potential at a barrier and leaving a residual smooth effective potential (with a lower potential height) in

the barrier region, the effective stress tensor makes the barrier partially transparent to the particle How

and provides the mechanism for particle tunneling in the QHD model.

PACS number(s): 05.30.—d, 03.65.Sq, 67.55.Fa

I. INTRODUCTION

Quantum systems can be described under certain cir-
cumstances by classical equations in which the classical
potential energy is replaced by an efFective potential in-
corporating quantum effects. The quantum potential of
Madelung and Bohm for the hydrodynamic formulation
of (pure state) quantum mechanics [1,2], the 0 (fi )

Wigner distribution function [3], and the efFective classi-
cal partition function of Feynman and Kleinert [4] are
famous examples of this strategy, which play a role in
formulating quantum hydrodynamics.

Important quantum effects in compressible fluids —for
example, electrons tunneling through a potential barrier
in a semiconductor —can be described near thermal equi-
librium and in the high-temperature limit by quantum
hydrodynamic (QHD) equations (see [5] and references
therein), which have the same form as the classical hy-
drodynamic equations (the Euler equations of gas dynam-
ics}. Quantum terms appear in the equations of gas dy-
namics in the expression for the stress tensor and in the
energy density derived from the stress tensor, rather than
in the potential energy terms.

Originally the quantum correction to the stress tensor
in the QHD equations was given to 0 (R ) [the actual ex-
pansion parameter is A' /8mT/, where / is a characteris-
tic length scale in the problem; we will use the shorthand
0(A' }],and involved second derivatives of the classical
potential (which is discontinuous at a potential barrier).
The derivation of the QHD equations assumed that the
classical potential has a Taylor series expansion. In the
spirit of Feynman and Kleinert, Ferry and Zhou derived
a "form" for a smooth quantum potential [6] for the
QHD equations by linearizing an equation for the equilib-
rium density matrix. The Feynman-Kleinert effective
partition function (see Appendix A for details) involves a
smoothed potential of the form

V,(x)= I y exp — V(y},dy (x —y)
&2~a' 2a'

X exp — (x—y) —P V(P, x, y)
2 A'2

(2)

where V is given by Eq. (25). The density matrix is the
Fourier transform of the Wigner distribution function
&w:

/(x y} Jd pfw
I+y ip (x—y)/A,p e 7 (3)

where V is the classical potential energy, a ~pA /m,
p=l/T is the inverse temperature (we set Boltzmann's
constant k~ =1), and m is the particle mass. The Ferry-
Zhou effective stress tensor involves the difference be-

tween the smoothed and the local quantum potential
—A'zV' n/gmn + V, where n is the particle density. Their
smoothing function is of the form

exp[ —(x—y) /2a j/~x —y~. Note that the ofF-diagonal

entries in the stress tensor are neglected in [6].
This investigation extends the analysis of the quantum

potential by first deriving an expression for the effective
equilibrium density matrix from the Bloch equation in
the Born approximation. Then the QHD equations in-

cluding the efFective stress tensor and the effective energy
density are calculated using the density matrix in a mo-
ment expansion of the quantum Liouville equation. As
fi +0, the extend—ed QHD equations reproduce the origi-
nal 0 (A ) equations, yet their derivation does not require
the classical potential to have a Taylor series expansion.

The effective density matrix has the form
' 3/2

p(P, x,y) =
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pc(P, x, y) =
2m A

3/2

Xexp. — (x—y) —PV
m 2 x+y

2''
(4)

where p is the momentum. Iff~ is set equal to the clas-
sical iaaf axwell-Boltzmann distribution function
e ~ /(2M) where E=p /2m+ V, we obtain the "clas-
sical" density matrix

the Bloch equation (8).] The effective density matrix (2) is
obtained from pc by replacing V[(x+y)/2] with
V(P, x, y).

The quantum correction to the classical stress tensor is
valid to all orders of irt and to first order in p5V, where
5 V =max [ VI —min [ V] over a characteristic length
scale, and involves both a smoothing integration of the
classical potential over space and an averaging integra-
tion over temperature. The effective stress tensor is given
in the Born approximation by

An BV
4mT Bx,.Bx,

[The classical density matrix satisfies the fi +0 lim—it of where the "quantum potential" is

V(P, x)=—I dP' Jd X'
P

3/2
2mP

m(P —P')(P+P')fi
exp — (X' —x) .V(X') .2mp, 2

(P P')(p+—13')&'
(6)

Note that changing the classical potential V by an
effective constant does not change the effective stress ten-
sor. Thus in constructing the effective stress tensor in the
Born approximation, it is the change P5V over a charac-
teristic length scale that is assumed small rather than P V.

The change P5 V over a characteristic length scale may
not be small at a potential step. In fact, for a 0.2-eV bar-
rier, P5V=8 at 300 K and =32 at 77 K. However, for
applications like the resonant tunneling diode, P5V «1
except at the potential jumps. In addition, numerical
comparisons [7] demonstrate excellent agreement be-
tween the first three moments (the second moment van-
ishes) of the equilibrium, full density matrix and the
effective ~~.jsity matrix for the Bloch equation with a
double barrier potential for P5 V & 1, and good qualitative
agreement for P5 V& 20. The moments of the 0(A'2) den-

sity matrix are in severe quantitative and qualitative
disagreement with the moments of the full density ma-
trix. For classical potentials with discontinuities, the ex-
tended QHD solution will always be more accurate than
the 0(A' ) QHD solution, since the 0(iri ) QHD equa-
tions involve third derivatives of the potential discon-
tinuities.

The stress tensor and energy density display the nonlo-
cal character of quantum mechanics since I';. depends
through the derivatives 8 /Bx;c}x on the quantum poten-
tial not only at x but in a neighborhood of x. In addition,
the quantum potential (6) involves a nonlocal Gaussian-
weighted smoothing of the classical potential. Through
the second derivatives of the quantum potential, particles
experience a force" due to the classical potential averaged
over a ball of radius equal to a few times +Pfi /4m . For
electron propagation in GaAs, this radius is approximate-
ly 70 A at 77 K (liquid-nitrogen temperature) and 3S A at
300 K. Classical mechanics is recovered as T—+ ~, since
V~V j3 and I'; ~—nT5;. .

The thermal averaging j~zdP'P' gives rise to a statisti-

cal factor of —,
' when the quantum potential is expanded

to leading order in A': V(P, x) = V(x)/3+0 (R ). Using
this approximation in Eq. (S) reproduces the 0 (R ) stress
tensor

Art B V
12mT Bx;Bx

The expression (7) for P; introduces third derivatives of
the classical potential into the hydrodynamic equations.
In general V may have discontinuities, and the third
derivatives of V present both analytical and computation-
al problems. Our goal here is to rigorously justify the
smooth efFective stress tensor (5), which has the same
smoothness properties as the classical potential.

The effective stress tensor actually cancels the leading
singularity in the classical potential at a barrier (see Figs.
1 and 2 and Sec. IV) and leaves a residual smooth
effective potential (with a lower potential height) in the
barrier region. This cancellation and smoothing makes
the barrier partially transparent to the particle flow and
provides the mechanism for particle tunneling in the
QHD model. Note that the effective potential in Fig. 1

produces a repulsive force near the barrier edges that is

stronger as T~ 00 and extends for roughly [75
(A)]X&[300 (K)]/T. The barrier height in Fig. 2 ap-
proaches zero as T—+0. These effects provide a fluid

dynamical explanation of why particle tunneling is
enhanced at low temperatures. As T~ao, the effective
potential approaches the classical barrier potential and
quantum efFects in the QHD model are suppressed.

In our derivation of the extended QHD equations, we
follow the basic approach of Ferry and Zhou. Our ap-
proach differs from theirs in that we (1) explicitly calcu-
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FIG. 1. Smooth eiTective potential for electrons in GaAs for
a 50-A-wide unit potentia1 barrier as a function of x in A and

log&0[ T/[300 {K)]]for 3 ~ T~ 30000 K.
FIG. 2. Maximum barrier height (at x=0) of the smooth

efFective potential in Fig. 1.

late the effective density matrix, (2) evaluate the full
effective stress tensor including the off-diagonal elements,
and (3) use a Green's function method and the Born ap-
proximation for solving the Bloch equation. Our new
efFective stress tensor for the QHD equations involves a
quantum potential that is given explicitly in terms of the
classical potential and introduces an averaging over tern-
perature in addition to the smoothing integration over
space.

The effective density matrix valid to all orders of A

and to first order in P5V is calculated in Sec. II. Section
III gives the derivation of the QHD equations (including
the efFective stress tensor and energy density) from the
effective density matrix. In Sec. IV we discuss the
smoothness and cancellation properties of the effective
stress tensor and energy density, and give the jump rela-
tions for the extended QHD equations at a potential
discontinuity. Finally Appendix A presents the relation-
ship between the Feynman-Kleinert partition function
and the 0 (A' ) Wigner distribution function, and Appen-
dix B shows that the effective density matrix when ex-
panded to O(A' ) agrees with Wigner's O(A' ) density ma-
tl ix.

II. THE EFFECTIVE DENSITY MATRIX

In thermal equilibrium, the density matrix satisfies the
Bloch equation

ap (H +Hy )p= (V—„+P'y)p
r) 2 " 4m

——[V(x)+ V(y)]p,
1

2

where the Hamiltonian H„=—iii V„/2m + V(x) and
where we have assumed Boltzmann statistics. We will
solve the Bloch equation for the effective density matrix

in the Born approximation using a Green's function
method.

The reason we start with the Bloch equation is that
steady-state solutions of the quantum Liouville equation
(26) need not be thermal equilibrium solutions; i.e. , they
may not satisfy the Bloch equation. On the other hand,
solutions p~(p, x, y) of the Bloch equation are solutions of
the time-independent quantum Liou ville equation
without scattering (the Heisenberg equation)

(H, Hy )p=O— (9)

if pii(p=O, x, y) is a solution of Eq. (9}. To see this, define

pL =(H„H)p~. T—hen

1 (H H}(—H—+H )p—ii

1 (H„+H )(H— H)pii—
1= ——(H„+H )pL . (10)

Thus if pl (P=O, x, y) =0, pL (P, x,y) remains zero for all
P and pz is a solution of the Heisenberg equation. The
effective density matrix (2) equals 5' '(x —y) as P~O,
which is a p=O solution of the Heisenberg equation.
Therefore the effective density matrix, which is an
O(p5V) solution of the Bloch equation, is guaranteed to
be an 0 (p5 V) solution of the Heisenberg equation for all
P. To derive the Quid dynamical equations as moments of
the quantum Liouville equation, we then allow the pa-
rameters in the effective density matrix to vary slowly in
space and time.

The Green's function for the Bloch equation can be
written down from the Green's function for the six-
dimensional (6D) heat equation:

G(p, x, y;p', x', y') =
3

exp ~
—

2 [(x—x') +(y —y') ] .8(p —p'),
n.(p —p')iri (p —p')iri2

where 0 is the unit step function. Then the Green's function solution to the Bloch equation is
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p(p x y)= fd3x d3y G(p, x, y;Q, x', y')p(Q, x', y') —
2 f dP' f d x'd y'G(P, x,y;p', x', y')[V(x')+ V(y')]p(p', x', y'),

(12)

where the initial condition is p(0, x,y) =5' '(x —y). Using this initial condition and the Green s function (11),we obtain

3

p(P, x,y) =po(P, x, y) ——f dP' fd'x' d'y'
rr(p —p')A~

Xexp — [(x—x') +(y —y')'] .[V(x')+ V(y')]p(p „y)
(p —p')i' (13)

where the free-particle ( V=0) density matrix is
3/2

m
po P x y exp — (x—y)

m

2Pfi

p(p, x, y) ~p, (p, x, y)

3/2

=po(P, x, y) ——f dP' fd'x'd'y'
2 o ~(p —p')A 2nPVi~.

(x—y') [ V(x')+ V(y')) .X exp — [(x—x')2+(y —y')2]—
(p —p')A'

(15)

The Gaussian inside the integral is maximum at x =xo, y' =yo where
T

1 P' 1 P'xo= —1+ x+ — 1 ——y,P 2 P (16)

yo= — 1 —— x+ —1+ y .
1 P' 1 P'
2 P 2 P (17)

Expanding the exponent in the Gaussian about x' =xo, y' =yo, we obtain
3/2

m

2m.PA'
exp — (x—y) —PV(P, x,y) . ,2''p(P, x, y) =p&(P, x, y)=po(P, x, y)[1 PV(P, x, y)]=— (18)

where the "6D quantum potential" is

3/23

V(p, x, y)= f dp'f d x'd y'
2P o ~(p —p')iri'

Xexp —,(x' —xo) —2, (x' —x ) (y' —yo)+(y' —yo) .[V(x')+ V(y')] .

(19)
Since the calculation of the stress tensor is most easily accomplished in center-of-mass coordinates, we make the

change of variables:

R= —,'(x+y), s=x —y .

Note that in terms of the new coordinates

xo=R+ s, yo=R s
2 '

2 (21)

Next we solve Eq. (13) iteratively. We set p=po inside the integral to get the first approximation (Born approximation)
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and that these new coordinates diagonalize the exponent of the Gaussian in the 6D quantum potential (19):
' 3 3/2

V(p, R,s)= f dp'f d 8'd s'
2p o ~(p p—')A'

X exp — (R' —R) —, ,
s' ——s

2m, , m P, P'

(P—P')X' 2e' P'(P P')— P

2

V R'+ —+V R' ——s s
2 2

(22)

m p
2A' P'(P —P')

2m

(p —p')irin.(p p')fi—
r

X V R'+ —+R+ s + V R'+ —+R— s
s' p' s' p'
2 2P 2 2P

The expression for the 6D quantum potential can be simplified. First shift R' and s' in Eq. (22):
3 3/2

pl exp

(23)

where in the second potential term we have replaced s' by —s'. Then we can integrate over one set of coordinates by
setting

X'=R'+ —,Y'=R' —,s' .s
2

' 2P'

We obtain

(24)

V(p, R,s)= f dp' f d X'
2P o ~(p p')(p +p—') iii

X exp
I I

X' ~ V X'+R+ s +V X'+R — s
(p p')(p+ p'—)&

(25)

III. THE QHD EQUATIONS AND
THE QUANTUM POTENTIAL

Quantum hydrodynamic equations may be derived as a
moment expansion either of the Wigner-Boltzmann equa-
tion using the Wigner distribution function (see, e.g., [5])
or of the quantum Liouville equation using the density
matrix (see, e.g. , [8] and [6]).

The moment expansion of the Wigner-Boltzmann
equation involves integrating powers of p. (1, p, and

p /2m, respectively) against fii, (x,p) in the Wigner-
Boltzmann equation to obtain conservation laws for par-
ticle number, momentum, and energy.

Here we will derive the QHD equations in the frame-
work of the quantum Liouville equation

E.A p+ V Vp —— VR+ ——VR —— p
Bp fg s s
at m 2 2

mTO
S.Vp s p

Scattering is modeled in Eq. (26) by Fokker-Planck terms
(the last two terms on the right-hand side) in order to
produce relaxation time scattering terms in the QHD
conservation laws (43) and (44) for momentum and ener-

gy [8]. The constants multiplying the Fokker-Planck
terms yield the relaxation times ~z =w and w =~/2 in the
QHD equations. In general, though, r will not have any
simple relationship to ~z.

In the Wigner-Boltzmann framework, the average
value of a function y(p) equals

~= f d py(p)f ( p) (27)

in exact analogy with the average value in classical sta-
tistical mechanics using the classical distribution func-
tion. In the framework of the Liouville equation, the
average value becomes

(y) = limy —V, p(R, s),fi

s~0 l
(2&)

which can be verified using Eq. (3) in center-of-mass coor-
dinates:

p(R, s)= f d p fbi, (R,p)e'i" ". (29)

p(P, R, s) =A(R, t)
2m A

3/2

Xexp — s —PV(P, R, s) . ,
2 A

(30)

with V given by Eq. (25). In the density matrix formalism
the particle density n (x, t) is given as

To derive the hydrodynamic equations we will multiply
the effective density matrix by a slowly varying function
A. ofRandt:
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n(x, t) = (1)= lim p(P, R, s)
s~0

3/2

exp I
—P Vo(P, x) I

V()1Pdrd3g I 2mp
P o fr(P P')(P—+P')fi'

3/2

We now assume that the momentum-shifted effective
density matrix approximates the actual density matrix
well enough for the average values in Eqs. (33)—(35) to
approximate the actual values. We note that the shifted
effective density matrix has five free parameters corre-
sponding to the five unknowns in the hydrodynamic
equations (42) —(44): u, 1/P= T, and A, which is propor-
tional to n.

Using the shifted effective density matrix, we obtain

Xexp
t

(X' —x) V(X') .
(p p')(p—+p')&'

+ n
at ax; m ax

&pj &

The factor A provides the extra parameter needed to set
the total number of particles f d x n(x, t) equal to a
specified integer M.

The moment expansion of the Liouville equation is ob-
tained by multiplying the Liouville equation with powers
of A'V, /i (1, A'V, /i, and —A' V, /2m, respectively) and
taking the limit s~O to obtain conservation laws for par-
ticle number, momentum, and energy:

B(p;)+ =0, (33)at m ax;

&p, &=mnu, , (38)

=mnu;uJ —PJ, PJ =——

p

(39)

(40}

t2

(41)

where 8' is the energy density. We have allowed a heat
Aux term q in the energy conservation equation, even
though it vanishes for our effective density matrix, since
heat conduction plays a quantitative role in electron and
hole propagation in actual semiconductor derives. The
definitions in Eqs. (38)—(41) in terms of average values
have the same form as the classical definitions in terms of
the Boltzmann distribution function.

Substituting the expressions (38)—(41) into the moment
equations (33)—(35), we derive the QHD equations

m ax,.
&p'/2m &

—-', nT,
(35)r/2

an a+ (nu, )=0,
at axi

mnu.a a av
(mnu )+ (mnu;u P, )= n- . —

at ' axi axJ

(42)

, (43)

where repeated indices are summed over. Thus the quan-
turn hydrodynamic conservation laws have exactly the
same form as their classical counterparts. Factors of A

appear explicitly only at the fourth and higher moments.
The standard approach to calculating the average

values in the moment equations is to use the momentum-
shifted version of the effective distribution function or
density matrix. The microscopic molecular momentum p
can be expanded about the macroscopic Quid velocity u
as

8' ——,'nT 0aw a av+ (u; W u P; +q;)=—n.u;—
at axi ax.

(44)

Finally to calculate P," and S", first observe that
(y(p') ) with the shifted density matrix is equal to
(J(p) ) h'fs d with the unshifted density matrix p. Then
(using the unshifted p) we obtain from Eqs. (30) and (25}

p=mu+p' . (36) P, . = lim = —nT5,-. —J 0 ~ ag ag J 4pyz T ax
(45)

e imu s/R
p (37)

The momentum-shifted Wigner distribution function is
then given by replacing fif, (R,p) by fis (R,p'). The
momentum-shifted density matrix is obtained by replac-
ing p(R, s) by e™"8/~p(R, s) since

Jd3 f (R I) ip s/A' —imu s/R Jd3 if (R I) ip' s/R

8'= —mnu —lim V' p
A'

2 s—+0 2'
3 1 2 An2=—nT+ —mnu + V V,
2 2 smT

(46)

where the approximation involved is the Born approxi-
mation and where the "quantum potential" is

V(P, x)=—f dP'1 i3, P'

p o p
2mP

n.(p p')(p+ p')fi—
' 3/2

exp ~
— (X' —x) V(X') .2mP

(P P')(P+P')&'—
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The reader may verify that the moment derivation
yields the classical hydrodynamic equations (classical gas
dynamics) if the classical density matrix pc in Eq. (4) is
substituted for the effective density matrix.

The Gaussian in Eq. (47} is peaked at X'=x with a
maximum width a =CPA /4m . In the high-
temperature limit (P~O), the width of the Gaussian goes
to zero. For numerical implementation, the formula (47)
may be written as

where the quantum potential is defined by

2
V'&n .

2m n

The momentum equation (55} can be rewritten as a
momentum conservation law analogous to the QHD
momentum conservation law (43) with T set equal to zero
for the pure state and with the scattering term omitted:

d X'
V(P, x)= f dP'P' f,i expI —X'2I

' 1/2
P(1—P' )Ai

2m
X'

(mnu )+ (mnu, u P; —)= —n
dt ' Bx, Bxi

where the (exact} stress tensor for the pure state is

An B~

4m Bx;Bxj

(57)

(58)

(48)

To recover the 0(fi ) theory, expand V(X'+x) about
x in the quantum potential (47) and integrate. We obtain

1 A'

V(P, x)=—V(x)+ V V(x)+0(fi ) . (49)
3 30m

From Eq. (45) the stress tensor is (to first order in P5 V)

An BV
P; = —nT5,"—

12mT Bx;Bx.

A4n 4
+0(A ), (50)

120m T Bx;BxJBxk

which reproduces the 0 (A ) expression (7}for P,' '.
Since P . ' contains second derivatives of the classical

potential, the stress tensor was written in the original
0(A' ) QHD theory as

A'n 8
Pi '= nT5;~+ — ln(n)

12m Bx,Bx
using

8 BVln(n)= —P +0(A ) .
Bx Bx;

(51)

(52)

Equation (52) is to leading order in A equivalent to the
classical thermal equilibrium expression n ~exp( —PV),
and should be approximately valid for very slowly vary-
ing n, u, and T. However, note that in the extended
QHD theory, the stress tensor (45) involves the quantum
potential V, while the density (31) involves Vp. Replacing
3 V with Vp in Eq. (45}makes an 0 (A' ) error in P; since

g2A'

15m
(53)

which would reduce the validity of the extended QHD
theory to 0 (A ).

The "hydrodynamic" formulation [1] of pure state
quantum mechanics consists of a current continuity equa-
tion and a momentum equation:

As noted in the Introduction, the smooth quantum po-
tential (6) provides an explanation (through the thermal
averaging f~dP'P' } of the statistical factor —', for mixed

quantum states relative to pure quantum states that ap-
pears in the 0 (A' ) stress tensor (51}.

IV. SMOOTHNESS PROPERTIES
OF THE EFFECTIVE STRESS TENSOR

If the classical potential energy V has a discontinuity,
then a 5 function will appear on the right-hand sides of
the QHD momentum and energy conservation equations
(43) and (44). This 5 function term is exactly canceled in

Eq. (43) by a corresponding discontinuity in P;J and in

Eq. (44) by corresponding discontinuities in P;q, W&, and

q, where the superscript Q denotes the quantum parts

q An BV
4mT Bx,Bx,

An" v'v.
SmT

(59)

(60)

We will first show that the second partial derivatives
8 V/Bx;Bxi of the quantum potential have the same de-

gree of smoothness as the classical potential by showing
that the Fourier transform V(g') of V(x) behaves like

V(g) as i/i ~~, where V(g) is the Fourier transform
of V(x). Then the Fourier transform of 8 V/Bx;Bx will

behave like g;gj V(g)/g and PPz and W~ will have the
same smoothness properties as V. Further, we will show
that the leading singularity in nBV/Bx in Eq. (43) is ex-
actly canceled by the leading singularity in BPg/Bx;. In
the derivation we will treat n and T as constants, since we
are here concerned with the discontinuities in the highest
spatial derivatives of V.

The quantum potential (47) is a convolution with
Fourier transform

f&dI3' 13',„.(P P') P+P' &' ~—
p P P 8mP

an +V (nu)=0
at

all
m +u.Vu = —V( V+Q),at

(54)

(55)

V(g)
1

e

2n'

where i) = ig'~+pA /8m and I(iI)= J Jds e' .

(61)

As
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~g~ ~ oo, exp[ g—]I(ri)~1/2g and

V(g')~, , V(g') . (62)
pg2$2

As ~g~~oo, g, P, . (g. )~ng V(g). Now defin the effective
force F per unit volume in the momentum conservation
equation (43) by moving the derivative of Pq to the
right-hand side:

0.8-

0 ~ 6-

0.4-

300

~Pij BVF.(x)= n-
Bx; Bxj

The Fourier transform of F~.(x) equals

(63)
0.2-

0
—50 50 100

F (g)=ig;P~(g) i g/n V(—g)~—4imnT &JV 0
A'2

as ~g'~~ oo. Thus the effective force FJ (63) is smoother
by two degrees than the classical force —BV/Bx; i.e., if
Vhas a discontinuity, then F is continuous.

Some insight into the smoothing effects of the effective
stress tensor may be gained by looking at a one-
dimensional potential V= V(x) and ignoring the spatial
dependence of the density. We write the x component of
the effective force as

0 ~ 8-
300 K
77

FIG. 3. Smooth efFective potential U/Vo for a potential step
for electrons in GaAs at 300 and 77 K. x is in A.

F(x) dU
(65)

0.6-

where the effective potential is

V+ fl d V
4mT dx2

(66)

0 ~
4-

0.2-

The term we have omitted in the approximation (66) is
less singular than the terms we have kept. In QHD simu-
lations of semiconductor derives [where we can solve for
n(x}], the effective potential curves in Figs. 1 —5 are
modified by the addition of the smooth contribution

0 -150 -100 -50 50 100 150

FIG. 4. Smooth efFective potential U/Vo for a potential bar-
rier for electrons in GaAs at 300 and 77 K. x is in A.

xdxdnd V
4m nT dx dx2

(67)

The effective potential is plotted at T=77 and 300 K
for electrons in GaAs in Figs. 3—5 for a potential step
V = V08(x), a potential barrier

V = Vo[8(x +a)—8(x —a)],

and a do~.~le barrier

V = Vo[8(x +3a}—8(x +a)+8(x —a) —8(x —3a)],
(69)

respectively, with a=25 A. (The dependence of the
effective electron mass m on T has been ignored in the
figures. ) The figures demonstrate that in the extended
QHD model the discontinuous classical potential is re-
placed by a residual smoothed effective potential. For the
single barrier (double barriers), the barrier height is re-

0.8-

0.6-

0.4.

0.2-

—200 -100 100 200

FIG. 5. Smooth effective potential U/Vp for a double barrier
for electrons in GaAs at 300 and 77 K. x is in A.



53 SMOOTH QUANTUM POTENTIAL FOR THE HYDRODYNAMIC MODEL 165

duced by 35% (35%) at 300 K and 60%%uo (50%) at 77 K.
For the potential step, potential barrier, and double bar-
rier, the quantum smoothing produces a repulsive force
near the potential step or outer barrier edges that extends
for roughly 75 A at 300 K and 150 A at 77 K. The re-
duced barrier height of U allows particles that classically
would have been totally rejected at the potential discon-
tinuity to penetrate the potential step or tunnel through
the barriers. For the double barriers, note that the poten-
tial well in U is attractive yet much shallower than in V,
and disappears as T~0.

To analyze what happens at a potential step
V(x,y, z) = V~+5VH(x) when the dependence of the den-
sity on position is not ignored, we examine the jump con-
ditions at x=0 for a stationary wave in which the state
variables n, u, and T are continuous and depend only on
x. Integrating

iim f' dx (70)
E~O

the QHD equations (42)—(44) across the wave, we obtain
the jump relations

d V
4~T dx 2 (71)

nu [V],—T = 1

dx 2

where the normal velocity u =x.u and [y]=y+ —y is
the jump in y across the wave. For concreteness, we
have assumed that the heat Aux q= —&AT. Equation
(71) says that the jump in the classical potential V is can-
celed by the jump in the quantum part of the stress ten-
sor, as shown above, and Eq. (72) says that the jump in
dT/dx is controlled by the jump in V.

We note here that since the leading discontinuity in the
classical potential energy is canceled in the O(PVV) ex-
tended QHD equations, the O((P5V) ) corrections [see
Eq. (86)] to the theory will be smooth, regardless of their
magnitude.

V. CONCLUSION

The QHD equations derived here extend the range of
validity of the original 0 (R ) QHD theory since
P; =P '+O(A ). Further, the O(A' ) QHD equations
were derived assuming that V is sufficiently smooth to
have a Taylor series expansion, and that the expansion
parameter fi /8mTI ((1. The extended QHD theory
only requires that P5V(20, and is specifically designed
to handle discontinuities in the classical potential.
Discontinuities in VV on the right-hand sides of the
QHD equations are exactly canceled by discontinuities in
the first partial derivatives of P;, W, and a5T on the left-
hand sides.

The jump relation (71) provides the mechanism by
which particles can tunnel through a potential barrier in
the QHD model. Classically, particles with energies
below the barrier height are forbidden inside the barrier.
In the QHD equations, the cancellations (71) and (72)
make the barrier partially transparent to the particle
Aow, by eliminating the leading singularity in the classi-
cal potential and leaving a residual smooth effective po-
tential (with a lower potential height) in the barrier re-
gion.

Finally we mention that the effective density matrix p
given in Eq. (18) and its partition function
Z = fd x p(x, x) may prove useful in their own rights
for problems in quantum statistical mechanics.

Future investigations include mathematical results on
the convergence of our iteration method for the solution
to the Bloch equation and numerical simulations compar-
ing solutions of the quantum Liouville equation and the
extended QHD equations.
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Feynman and Kleinert give the partition function Z = fdx p(x, x) as

1/2
sinh(PQ/2)

PQ/2
1

exp —P —lnZ= Jdx
2m.PA'

+ V ~(x)
2@2 0

APPENDIX A: RELATIONSHIP BETWEEN THE FEYNMAN-KLEINERT Z
AND THE 0 (A ) DISTRIBUTION FUNCTION

(A 1)

where the smeared potential is
r

V 2(x)=f exp —
z V(y)dy (x —y)

V 2~a2 2a
(A2)

and Q and a are related through a variational principle by

2A 80 (x)= V 2(x)= V 2(x),
m gx2 ' m ga2

(A3)

a
mPQ

(A4)
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g2p2
exp —PV(x) — V"(x)

24m
Z= fdx

2m' A

In the high-temperature limit (p~0), a =pfi /12m and
1/2

(A5)

where we have used the fact that
oo 2'

V 2(x) = g „V'"'(x) .
o (2n)!!

(A6)

To compare the Feynman-Kleinert Z with the integral of the 0 (iri ) density matrix, we start with the 0 (A'i) thermal
equilibrium solution [3] to the Wigner-Boltzmann equation:

f~'(x, p)= ' I+rP. —P + P + (A7)
(2M} Sm ax,2 24m ax; 24m~ ax;ax~

where the classical energy E =p /2m + V. The integral off~ with respect to p is the particle density

n(x, t)= fd p f~(x, p)= f d p fg'(x, p)=
2m. A

3/2 2 2 3
'2

p av p av
12m axe 24m ax.

J

(AS)

Now we Fourier transform Eq. (A7) to obtain the density matrix:

{2)( y) d3 g(2) x+y P (
—y)/R

2m.peart

3/2
m (x—y)exp — —PV .

2Pfi

x I+~ —p' ' + p'
12m ax,.2 24m ax;

p a v
(x; —y;)(x —y )

2412 ' ' J 1 ax;axj

where V and its derivatives are evaluated at (x+y)/2.
Note that n (x, t) =pg)(x, x) agrees with Eq. (AS) and that

' 3/2

f pv 1
A'p a v
24m ax,~

Z"'= fd'x p'~2'(x, x) =

which agrees with the three-dimensional generalization of the Feynman-Kleinert Z to 0 (irt }as p —+0.

(A10)

APPENDIX B: AGREEMENT BETWEEN THE EFFECTIVE AND 0 (A ) DENSITY MATRICES

The density matrix (1S)

p(P, x, y) =po(P, x, y)[l PV(P, x,y)]— (Bl)

when expanded to 0(irt ) using Eq. (25) reproduces the linear terms in V in the 0(iri ) density matrix ppp in Eq. (A9).
The quadratic terms in V involving (a V/ax, ), V /2, and Va V/aR;aRJ come from the second iteration in the Neu-
mann series solution to Eq. (13). To evaluate the effective density matrix to 0(A' ), expand the potential terms in Eq.
(25) about R to second order as

1 I I

2 2P
V X'+R+ s +V X'+R — s

2P
= V+X +—X~'X'. + s, s'aR, 2 ' ' 4pz 'J aZ, aZ,

(82)

where it will be understood that without explicit arguments V and its derivatives are evaluated at R. Plugging this ex-
pression back into Eq. (25) and integrating gives

pV(p, R, s) =pv +Pi
2 +

2 s;sj (B3)
12m &R,~ 24&2 ' ' c}R,.BR,

In counting powers of A, s/A' is of order 1 in the density matrix, since under the Fourier transform it becomes p in the
Wigner distribution function. Now using this approximation for the 6D quantum potential in Eq. (Bl), we obtain the
linear terms in V in the density matrix p'~'.
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To obtain the quadratic terms in V in p'~', we need to approximate the second iteration in the Neumann series solu-
tion to Eq. (13). The second iteration gives

p(P, R, s) =p2(P, R, s) =po(P, R, s) —PV(P, R, s)po(P, R, s)

+ ' ' ' f'dp'fd'R'd's'po(, R, s) p

2 0 m(p —p')A'

3
' 3/2

Xexp —
2
R'—2Pl

(p —p')A'

SI I

X V R'+ —+R+ s
2

m p
2e2 p'(p —p')

Using Eq. (B3), we approximate p'V as

I I I

+ V R' ——+R— s P'V P', R'+R, s'+ s
2 2P

' '
P

T

l ~i2 t)2 VP'V(P', R'+R, s'+ s)=P'V(R'+R)+tri ~ (R'+R)+ s,'+ s,.p»maR' 24~2 '
p '

pI $2 Vs'. + s (R'+R) .
BR;BRJ

=P'V+P'R + R R'' BR; 2 ' 1 BR;t)R.

We also expand

pt2 $2V pt pl pl $2V

12m BR' 24%2
' p ' ' p '

1
L J

V R'+ —+R+ s + V R' ——+R—1, s' P' 8

2 2 2P 2

(B6)

to second order. Plugging Eqs. (B5) and (B6) into Eq. (B4), we get

p(P, R,s) =p2(P, R, s) =pz(P, R, s)—PV(P, R, s)po(P, R, s)

P P BV P BV
+po(P, R,s) V +A' V + s;s V +

2 12m gR,2 24g2 '' M, R,
p' 'av ''

24m BR;
(B7)

The first three terms in brackets on the right-hand side of Eq. (B7) come from expanding

A2
e ~~=1—PV+" V'

2

in Eq. (A9) for ppp, while the last term is the nonlinear term in V in p'~ /e 1'~ missing in the Born approximation,
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