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Large time nonequilibrium dynamics of a particle in a random potential
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We study the nonequilibrium dynamics of a particle in a general N-dimensional random potential
when N -+ oo. We demonstrate the existence of two asymptotic time regimes: (i) stationary
dynamics and (ii) slow aging dynamics with violation of equilibrium theorems. We derive the
equations obeyed by the slowly varying part of the two-time correlation and response functions and
obtain an analytical solution of these equations. For short-range correlated potentials we find that
(i) the scaling function is nonanalytic at similar times and this behavior crosses over to ultrametricity
when the correlations become long range and (ii) aging dynamics persists in the limit of zero confining
mass with universal features for widely separated times. We compare the numerical solution to the
dynamical equations and generalize the dynamical equations to 6nite N by extending the variational
method to the dynamics.

PACS number(s): 05.70.Ln

I. INTRODUCTION

A major theoretical challenge, as well as an important
issue for numerous experimental systems, is to under-
stand the nonequilibrium dynamics of elastic manifolds,
with or without internal periodic structure, in quenched
random media [1]. The corresponding models, such as
the model of an interface subjected to quenched impuri-
ties or the sine-Gordon model with phase randomness,
have been studied for some time. Some progress has
been made in the description of the statics [2—6], but
little is still known about the dynamics, especially about
the nonequilibrium features of the relaxations. It is by
now well established that these systems exhibit glassy be-
havior that presents similarities to the glassiness of spin
glasses, such as slow relaxations, history dependence, and
strong sensitivity to changes in the external parameters
[7,8].

Recently, progress has been made in solving the
nonequilibrium dynamics of mean-Geld models of spin-
glasses [9—13]. A method to study analytically the
large time nonequilibrium dynamics has been introduced
[10,11]. This purely dynamical method has, on the one
hand, some formal connections with the replica symme-
try breaking schemes introduced to study the static prop-
erties, i.e., the Gibbs measure, of these models. On the
other hand, the method yields interesting additional in-
formation specific to the dynamics. It allows us to find
a solution that exhibits two asymptotic time regimes: a
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stationary dynamics regime for large but similar times
and a slow aging regime for widely separated times.
Most important is that it allows one to establish contact
with the essentially nonequilibrium experimental obser-
vations, namely, the slow relaxations and the aging effects
[7]. It is then natural to extend this method to study the
dynamics of a broader class of systems with slow relax-
ations, including the random manifold problem.

For problems such as the manifold in a random
medium, the mean-field limit corresponds to the dimen-
sion of the embedding space N going to infinity, i.e., it
is represented by a field theory with a large number of
components. In this case one can derive a closed set of
dynamical equations and the above dynamical method
can be applied, yielding exact results. Realistic systems,
however, are embedded in a finite-dimensional space, i.e. ,
% is finite, and one must make some approximation to
obtain closed dynamical equations. A way to obtain these
equations is to extend the Gaussian variational approxi-
mation (GVA) to the dynamics.

The model of a manifold of internal dimension D em-
bedded in a random medium of dimension N is de-
scribed, in terms of an N component displacement field
qb, qb = (Pi, Pz, . . . , $1v), by the Hamiltonian [4,5]

where p is a mass that effectively constraints the manifold
to fluctuate in a restricted volume of the embedding space
and V is a Gaussian random potential with correlations

I 2

V(qb, x)V (qb', x') = —Kb (x —x') P
i

(1.2)
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Our aim is to study the nonequilibrium dynamics of
this model for a general random potential. The dynamics
that we consider is the I angevin dynamics

(1.3)

with (rl (x, t)rip(z', t')) = 2T b p hD(x —~')g(t —t').
To summarize, in this paper we concentrate on the

problem of a particle moving in an %-dimensional ran-
dom potential. It corresponds to the limit of a mani-
fold with zero-internal dimension [14,15] D = 0. The
zero-dimensional case is a necessary step before study-
ing the model in finite D and a good trial ground for
the method. Schematically we do the following. First,
we study analytically the exact dynamical equations in
the mean-field limit N —+ oo. Second, we derive the dy-
namical equations for finite N within the extended GVA
and apply the same dynamical method to the approxi-
mated set of equations. We shall present the analysis of
the finite-dimensional models (D ) 0) with the necessary
extensions of the method in a separate work [16].

The quantities of interest in the long-time nonequilib-
rium dynamics are the two-time correlation and response
functions. In the D = 0 model we define

(static) Gaussian variational method complemented by
the replica analysis proposed by Mezard and Parisi [5] to
the zero-dimensional case. The short-range case is con-
sidered to be solved with a one-step replica symmetric
ansatz while the long-range case needs a full replica sym-
metry breaking scheme.

One can also define spherically constrained models
letting the mass p become a time-dependent function
p(t) related to the I.agrange multiplier enforcing the %-
spherical constraint. Model (1.1) then represents a man-
ifold of internal dimension D embedded on the surface of
an N-dimensional sphere that can be related to spheri-
cally constrained spin-glass models.

In particular, the p-spin spherical spin-glass model de-
fined by the Hamiltonian [20]

with the additional spherical constraint g,
and J,, ; taken from a Gaussian distribution, is con-
tained in this family of models. It is recovered for D = 0
and the correlation of the random potential V given by

where f(t') is a small perturbation applied at time t'
For the models we consider here it is also convenient to
use the mean-squared displacement correlation function

(1.5)

A. Infinite-dimensional models N ~ oo

It is well known that large-N limits lead to simplifi-
cations in field theories and this property has been used
to study problems in very different areas of theoretical
physics [17,18]. Thus it is natural to study this limit for
the present model.

There are several models that can be studied for N ~
oo and D = 0 corresponding to different choices of the
random potential correlation V(z). A common choice is

(0+ z)' —&

2(1 —p)
(1.6)

In what follows we shall refer to this model as the power-
law model. There are two physically distinct cases. If
p ( 1 the correlations grow with the distance z and the
potential is called "long range. " If p ) 1 the correlations
decay with the distance and the potential is called "short
range. " The statics of these models has been studied in
detail by Engel [19] with the replica trick. In this work
the author has applied a general procedure that uses the

The replica analysis yields an exact replica symmetric
solution [21] when p = 2. However, this is a marginal
case and an infinitesimal departure from p = 2 makes
the exact solution be one-step replica symmetry breaking
[20]. The nonequilibrium dynamics has been studied in
Refs. [22,13] for p = 2 and in Ref. [10 when p ) 3.

We study these models as follows [10—13]. The ther-
modynamic limit N —+ oo is taken initially and then the
limit of large times is eventually taken. The dynamics
starts at a finite initial time to ——0. The initial condi-
tion is chosen at random from a Gaussian distribution.
The models we study have many ergodic components and
the system is not able to jump from one component to
another since, by definition, the barriers separating dif-
ferent ergodic components are divergent and hence un-
surmountable. However, almost all the initial conditions
do not lead the system to equilibrium at a large time.
A clear realization of this is observed when studying the
dynamics of the p = 2 spherical spin glass [13] start-
ing &om a generic initial condition for which the system
evolves indefinitely without ever reaching any of the two
equilibrium states.

The two assumptions that describe quantitatively this
scenario are the weak ergocity breaking hypothesis [23,10]
and the weak long-term memory hypothesis [10,11]. The
former states that even in the limit of large time the par-
ticle is always able to escape from its previous positions
and never gets stuck in a local equilibrium. The latter
states that at a suKciently large time t the particle for-
gets any small perturbation applied during any previous
finite time interval. For instance the "remanent rnagneti-
zation" associated with a field applied during a finite time
interval [0, t ] decays to zero for a sufficiently large t. For
mean-Geld spin-glass models the relaxations slow down as
time passes, though the systems do not reach any kind of
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equilibrium. There is no equilibration time t q such that
for all the subsequent times the "equilibrium-dynamics"
theorems, i.e., time-translation invariance for all the cor-
relation functions and the fluctuation-dissipation theo-
rem (FDT), hold. The systems do not visit the equilib-
rium states at any time. Importantly enough, this sce-
nario is what is observed during experimental times in
real spin glasses. Despite being nonequilibrium, mean-
field spin-glass models as well as real spin glasses reach
an asymptotic (large times) regime for which some gen-
eral features can be demonstrated. Generalizations of
the equilibrium theorems to the large time nonequilib-
rium relaxations have been proposed in Refs. [10,11] and
we shall apply them here to study model (1.1) for a gen-
eral V.

It is important to note that this scenario is completely
difFerent from the one proposed by Sompolinsky and Zip-
pelius [24,25] to study the equilibrium properties of mean-
field spin-glass models using a dynamical approach. In
the so-called Sompolinsky dynamics one takes a large but
finite system (finite N). One then chooses the initial
time to be —oo, in such a way that one assumes that at
finite times the system has arrived at a certain equilib-
rium state. One takes the inverse order of limits as above,
namely, lim~~ limq~, to allow for jumping from one
ergodic component to another [25].

The dynamical analysis of Sompolinsky and
Zippelius [24], which had been originally proposed to
study the decay inside an equilibrium state, formally car-
ries through to the nonequilibrium analysis. However,
its interpretation must be changed. In a phase-space
description, in the nonequilibrium approach, instead of
representing the decay inside an equilibrium state it rep-
resents the rapid decay of correlation and response func-
tions inside some trapping region of phase space.

Later, always referring to equilibrium dynamics, Som-
polinsky [25] proposed a formalism to study also the in-
terstate dynamics. In this approach time translational
invariance is assumed to hold for all times and hence
nonequilibrium and aging effects are not captured. More-
over, the method has some problems since when N is fi-
nite and times diverge with respect to N quantities such
as the autocorrelation function become non-self-averging
[26]. The power model (1.1)—(1.6) has been studied pre-
viously using the Sompolinsky dynamics by Kinzelbach
and Horner [27,28].

An analysis of the out of equilibrium relaxation of the
power model (1.1) at D = 0 with long-range correla-
tions given by Eq. (1.6) has been carried out by Franz
and Mezard [12]. The authors have solved numerically
the mean-field dynamical equations and have proposed a
scenario of nonoverlapping time domains to account for
their numerical results.

In this paper we find that, in the low-temperature
phase, for large times t & t' such that (t —t')/t' « 1,
the particle undergoes stationary dynamics B(t, t')
By (t —t'), where B~(t —t') grows from 0 to the limit-
ing value q. For larger time separation there is an aging
regime where B(t, t') further grows slowly from q to bo.
The behavior in the aging regime depends on the range
of the correlations of the potential.

(i) For long-range correlations we find that the one-
time quantities converge to the values predicted by the
statics. This confirms the numerical observations of
Franz and Mezard [12] for model (1.1) with V given by
(1.6) and p & 1. We demonstrate that B(t, t') satisfies
ultrametricity in time and we explicitly compute the rate
of violation of the FDT at large times.

(ii) For short-range correlated potentials we find that
one-time quantities that involve the aging regime, such
as the asymptotic energy density or bo, dier from their
equivalents in the statics. The dynamical phase diagram
is difFerent from the equilibrium one and, in particular,
the transition in the dynamics survives in the limit of
vanishing mass p ~ 0. We find that in the aging regime
B(t, t') = B[h(t')/h(t)], where generically the scaling
function B[A] is nonanalytic when A -+ 1 (t'/t + 1).
This feature is one of the main results of this paper. We
find that B[A] —q oc (1 —A) with a nontrivial exponent
o., which depends continuously on temperature. Further-
more, in the limit of vanishing mass p ~ 0 we show that,
for all short-range models, B[A] q+ln (I/A) for A « 1.
This remarkable form implies that the response function
at large time separation becomes a function of t' only.
This is consistent with some numerical results that we
present.

The parameter p in the definition of V, Eq. (1.6),
tunes from long-range correlated potentials (p & 1) to
short-range correlated potentials (p ) 1). Interestingly
enough, this allows us to explicitly show how the ultra-
metric dynamical solution is approached when p —+ 1
from above.

The limit of zero mass raises some fundamental ques-
tions. For p ) 0, C(t, t) reaches a finite limit when
t -+ oo. By contrast, at strictly p, = 0, C(t, t) grows
unboundedly with time. Although the corresponding un-
bounded difFusion process deserves further study [16],we
show that the method still applies and the limit p ~ 0
can safely be taken for quantities such as B(t, t') and
B(t, t').

B. Finite-dimensional models % ( oo

The model (1.1) with finite N (and D = 1, 2, 3) has
several physically interesting realizations, such as the
problem of a manifold pinned by impurities for which
the correlator is of the form (1.6). It arises in the study
of interfaces in a random field as well as glassy phases
of vortices in high-T superconductors. Similarly, the
sine-Gordon model with random phase disorder (RSGM)
arises in the study of several problems including quenched
disorder. For example, it describes the glass transition
of a surface of a crystal deposited on a disordered two-
dimensional substrate. It is also related to the vortex-free
XY model in a random field. It is defined in terms of a
N = 1 phase field @ by

-&2(*)»n[@(*)]+ —@'
2
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where (,(x)g~(x') = h,~h(x —x'). This model corresponds
to the choice of correlator

V(g, x)V(Q', x') = —b (x —x') cos(g —it') . (1.10)

The statics of the RSGM has been studied using renor-
malization group techniques [2], a Gaussian approxirna-
tion (variational method) complemented by the replica
trick [6], and with extensive numerical simulations [3].

The statics of model (1.1) for general D and % has
been studied using a Hartree, i.e. , a Gaussian varia-
tional, approximation by Mezard and Parisi [5]. The
corresponding mean-field equations are identical to those
for N infinite, apart from a replacement of the random
potential correlator V(x) by V(x) defined as V((P)o)—:
(V($2))o, where ( )o denotes a Gaussian average over

In this paper we extend the GVA to the dynamics
by performing a Gaussian decoupling approximation in
the exact dynamical equations of motion. As detailed
in Appendix A, this shows explicitly that the same re-
placement of V(x) by V(x) holds in the dynamics. For
instance, the RSGM dynamics is described by Eq. (1.6)
with V(x) m V(x) = —A exp( —x/2).

The zero-dimensional version D = 0 has been stud-
ied as a toy model of the above problems [14,15]. Even
if one does not expect, strictly speaking, a glass transi-
tion in D = 0, this model exhibits at low temperatures
several features of a glass that are present in its higher-
dimensional versions. In the statics perturbation theory
breaks down because of the large number of metastable
states and the importance of rare fluctuations. In the
dynamics with p ) 0, there is a Gnite ergodic time t q
beyond which equilibrium dynamics is established for all
subsequent times. This time, however, can be very large
since barriers grow as powers of p and ¹ Therefore
even in this simple case, there could be an aging regime
at intermediate times. If this is the case it is likely that
the methods of the present paper, using the GVA, will
provide a basis for describing this nonequilibrium regime.

The present zero-dimensional model has also been ap-
plied to describe the motion of dislocations or kinks in
presence of disorder [29] and, furthermore, when N = 1
it is similar to a model describing the dynamics of droplet
size in random magnets [30]. In the limit of a zero mass,
this model corresponds to the problem of dift'usion in a
random potential, which has been extensively studied. In
the particular case p = 1/2 N = 1 the model (1.1)—(1.6)
is the celebrated Sinai model [31 . More generally, it is
known [32] that P (t) ln(t)2~ i ~l for any finite 1V.
However, the two-time correlations and thus the aging
properties have not been studied previously analytically
(see also Ref. [34]), except in the case of an applied force
by Feigel'man and Vinokur [33], who showed that broad
distributions of trapping times is a possible mechanism
for' aging.

To summarize, in this paper we study analytically the
long-time behavior of model (1.1) with general V in the
simplest case of zero internal dimensions. We use the
formalism of Refs. [10,11] and we concentrate on the
low-temperature phases. We also reproduce and explain
as explicitly as possible some of the necessary calcula-

tions. The paper is organized as follows. In Sec. II we
present the general mean-Beld dynamical equations for
the zero internal dimension case. In Sec. III we describe
the separation of the asymptotic dynamics in a station-
ary regime for long but similar times and a nonstationary
regime for long and very diff'erent times. We derive the
dynamical equations for both regimes. In Sec. IV we
review the extensions of the equilibrium dynamics the-
orems to the asymptotic nonequilibrium relaxation. In
Sec. V we present the time-reparametrization-invariant
equations for the aging regime. We also discuss the strat-
egy we follow in Secs. VI and VII to find their solutions.
In Sec. VI we use a "one-blob" ansatz to solve the short-
range models and in Sec. VII we use an ultrametric ansatz
to solve the long-range models. Finally, in Sec. VIII we
present our conclusions.

II. MEAN-FIELD EQUATIONS
IN THE LARGE TIME LIMIT

The general dynamical equations for the two-time re-
sponse function R(t, t') and correlation function C(t, t')
for the model defined by Eq. (1.1) in the limit X —+ oo
were derived by Franz and Mezard [12]. They were pre-
sented previously in Ref. [10] for the special case of the p-
spin spherical model. The dynamical equations assuming
time-translation invariance (TTI) at all times for all the
two-time functions were presented in Refs. [27,28,35,36]
for model (1.1) with short and long correlation, the p-
spin spherical spin glass, and the RSGM, respectively.
In these references the equilibrium dynamics has been
studied in the manner of Sompolinsky.

In Appendix A we sketch a derivation of the general dy-
namical equations using the Martin-Siggia-Rose formal-
ism complemented by a Gaussian approximation that be-
comes exact in the % —+ oo limit. The mean-field dynam-
ical equations in terms of C and R defined in Eq. (1.4)
read

ojR(t, t') = —p, R(t, t') + 4
Bt

ds V"(B(t, s)) R(t, s)

x [R(t, t') —R(s, t')], (2.1)

' —= —pC(t, t') + 2
OC(t, t')

t9t
ds V'(B(t, s)) R(t', s)

yC(t, t) + T+—2
1 dC(t, t)
2 dt

ds V'(B(t, s)) R(t, s)

+2 ds V"(B(t, s)) R(t, s)

x [C(t, t) —C(s, s) + B(t, s)] . (2 3)

+4 ds V"(B(t, s)) R(t, s)

x [C(t, t') —C(s, t')] + 2T R(t', t) . (2.2)

We use the Ito convention lim, ~o R(t, t —e) = 1, R(t, t) =
0. Using the fact that the last term in Eq. (2.2) vanishes
for t ) t' one also has
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For these problems it is convenient to use the mean-
squared displacement correlation function B(t, t')
C(t, t) + C(t', t') —2C(t, t') = ([P(t) —P(t')]2) that satls-
Ges, for t ) t',

+2 ds V'(B(t, s)) [R(t, s) —R(t', s)]

+T + 2 ds V"(B(t, s)) R(t, s)
0

x [B(t,s) + B(t, t') —B(s, t')] . (2.4)

Note that one can use B(t, t') (t ) t') rather than
C(t, t') since Eqs. (2.1), (2.3), and (2.4) are a complete
description of the problem together with the identities
B(t, t) = 0 Vt. In these equations there are two external
parameters T and p.

In deriving these equations a mean over the random
initial condition P(t = 0) [with a Gaussian distribution of
variance C(0, 0)] is implicit. One could certainly obtain
the dynamical equations for a particular initial condition
Q(t = 0):Pp OI' a diferent distribution of initial con-
ditions and attempt to study their efFects in detail. We
shall not do so here, but we shall restrict our analysis to
the study of the above dynamical equations.

The time-dependent energy density [12] is

III. STATIONARY AND NONSTATIONARY
DYNAMICS

In the high-temperature phase both TTI and the FDT
hold. Equations (2.1)—(2.4) reduce to a single equation.
In Refs. [27,28] the model (1.1)—(1.6) with short- and
long-range correlations have been studied, respectively.
The detailed analysis of the resulting equation shows that
there is a critical curve T, (p), below which no solution
with these characteristics exists. This marks the end of
the high-temperature phase. Similar situations occur in
the p-spin spherical model [35] and in the random sine-
Gordon model [36].

The analytical study of the mean-Geld dynamical equa-
tions in the low-temperature phase requires the use of
certain hypotheses. For a purely relaxational dynamics
such as a I angevin process that approaches an equilib-
rium situation, one can show that the autocorrelation
function is a monotonic function of the time difFerence
w and that the response function is a positive function
of its argument ~. For a general nonequilibrium process
the properiy of monotonicity is not obvious. However, for
the kind of models we study it is a quite natural start-
ing point to assume that the systems continuously drift
away. As a consequence, though the displacement func-
tion is not an exclusive function of the time difFerence

for all times, it is assumed to increase monotonically
when the separation between the two times increases:

ds V'(B(t, s)) R(t, s) . (2.5) (3.1)

In order to obtain spherically constrained models one has
to, on the one hand, let p be a function of time p(t) and,
on the other hand, determine p(t) by imposing explic-
itly the spherical constraint. If C(t, t) is set to q, then
Eq. (2.3) implies

~(t) q = T + 2 ds [V'(B(t s)) + V"(B(t s)) B(t s)l

lim B(t, t') = lip 0 t' finite,
taboo

lim lim B(t = v. + t', t') = q ,
&—+oo t'moo

(3.2)

The weak ergodicity breaking hypothesis [23,10] includes
the assumption above and, if the particle moves in an
infinite-dimensional space and there is a finite mass,

xR(t, s) . (2.6) and

In particular, if q = 1 and V is given by Eq. (1.8) and
we compare with the equation determining the Lagrange
multiplier z(t) that enforces the spherical constraint in
the p-spin spherical spin glass [10], we obtain

T z(t) = p(t) + ds [C(t, s)]" R(t, s) . (2.7)

The dynamics is described by the set (2.1)—(2.4) of
non-linear coupled integro-difFerential equations that ad-
mit a unique solution for each "initial autocorrelation"
C(0, 0). The dynamical set of equations is causal. One
can then use a numerical algorithm to iterate the equa-
tions and construct the solution step by step in time. A
numerical analysis of this type of the power model (1.1)—
(1.6) with p & 1 (long range) has been carried out in
Ref. [12].

lim C(t, t) = q.
t—+oo

(3.3)

If the mass is zero from the start the particle difFuses and,
in principle, both 60 and q are nontrivial time-dependent
functions of t that tend to infinity when t ~ oo.

Hence, in the large-time limit, one can separate the
relaxation that takes place for large and similar times
such that (t —t')/t' « 1, during which the displacement
grows from 0 to q, from the large and widely separated
times relaxation during which the displacement further
grows from q to 60. The nature of the relaxations in these
regimes is clearly difFerent. The former is given by an
"equilibrium" or stationary dynamics while the latter is
given by a "nonequilibrium" or nonstationary dynamics
with its possibly associated aging eKects [10—12]. This
hypothesis has been verified for difFerent models with
simulations, numerical analysis, and exact results. For
instance, the Monte Carlo simulations of various finite-
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lim R(T+ t', t') = TF(T),

lim B(r+t', t') = 6~(r),
lim C(r + t', t') = c~(r) .

(3.4)

The response and displacement functions are related by
the FDT

1 Bb~(T)
( )

1 &ca(T)
0( )2T 87 T 87

(3.5)

dimensional and mean-field spin-glass models [37], the
numerical study of the model defined by (1.1) for long-
range correlations [12], and the exact analytical results
[13] for the model defined by Eqs. (1.7) and (1.8) when

p = 2 provide evidence for this scenario.
In the large-t' limit we thus separate the t dependence

in two regimes: for small time difFerences (t —t')/t' « 1
there is equilibrium dynamics obeying the FDT and TTI

The second and crucial assumption can be called weak
long-term memory [10]. It states that the response to any
small perturbation applied during a finite interval [0, t ]
eventually decays to zero for a large enough subsequent
time t. In other words, the integral of the response func-
tion R(t, t') over t' in the interval t' 6 [ti, t2] w1th t2 —ti
finite vanishes for long enough t. In a spin system this
means that the thermoremanent magnetization decays to
zero for a long enough time after having switched-ofI' the
(small) magnetic field.

This separation in stationary and nonstationary dy-
namics allows us to write the dynamical equations (2.1)—
(2.4) for the two regimes, separating cleanly each con-
tribution. In what follows we shall refer to the former
time regime [(t —t')/t' « 1] as the FDT regime and to
the latter time regime as the aging regime. In Sec. V we
shall present some numerical evidence for the separation
in these two distinct time regimes.

Note that, by definition, lim ~ bp(T) = q and thus
the displacement is bounded in the equilibrium dynamics
regime.

The aging regime is defined by taking the limit of large
times t, t' ~ oo in such a way that the displacements
B(t, t') is fixed but larger than b~(oo), i.e. , B(t, t') ) q.
It corresponds to larger time difFerences and exhibits slow
dynamics violating both the FDT and TTI

R(t, t') = r(t, t'), B(t, t') = 6(t, t'), C(t, t') = c(t, t') .

(3.6)

A. The FDT regime

The equations obeyed by the FDT part [(t—t')/t' « 1]
read

db~(T) = 2T+ (—P + M) bp(T)

dr' V"(bp(T —T'))

(3.io)

The limiting values for b are then dr~(T) = ( &+M) TF—(T)
6~(t, t) = 0,

6(t, t ) =q,

lim 6F(T) = q,
7 WOO

6(t, 0+) = bo (3.7)
dr V (by'(T —T )) Ty'(T —T ) Tp (r )

[see Eqs. (3.2) and (3.3)]. We denote the initial time of
the asymptotic regime 8 = 0+. It has to be understood
as a very large time, as opposed to 8 = 0, which is the
actual initial time and hence finite. One thus has 6(t, 0) )
b(t, o+) = bp. For fixed t the aging regime extends from
t' = 0+ to t' = t and the FDT regime from t' = t to
t' = t. We shall use limi~ t /t = 1. Calling qp, qi aIld

q the large time limiting values of C

(3.11)

+2 lim

+V'(b(t, s)) r(t, s)] (3»)

ds [V"(6(t, s) ) r (t, s) b(t, s)

C(t, t) = cp (0) = q, 11II1 cy'(T) = qi

Taboo

(3.8) with

c(t, t ) = qi, c(t, 0+) = qp

it follows from these definitions that M=—4 lim
t—+oo

ds V"(B(t, s)) R(t, s), (3.13)

q = 2(q —qi), bo = 2 (q —qo) (3 9) dr' V"(bp (7.')) rg(r')
Note that the corresponding definitions in the statics

are as follows [5,19]. One defines q~i, = ~ (@ Pt, ), where
a, b are replica indices. The equal time correlation q'
corresponds to q . Within a replica symmetry breaking
the solution q s for a g 6 is parametrized by q(u), 0 &
u ( 1. While the precise shape of q(u) depends on the
Inodel, one has generally a constant q(u) = qi from
u. ( u & 1 and q(u) = qps™.

(3.i4)

M=M —My =4lim
t —+oo

ds V"(6(t, s)) r(t, s) .

(3.i5)

It is easy to prove that because of the FDT relation
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(3.5) the first two equations collapse and yield only one
equation involving b~. However, it also contains contri-
butions from the aging regime through a single, a priori
unknown quantity, the "anomaly" M. We shall see that,
conversely, the equations written in the aging regime do
not include the details of the FDT solution. Thus, in
order to find the full solution for the FDT regime the
correct procedure is to first obtain the solution for the
aging regime, compute the anomaly, insert it back into
the FDT equation, and then solve for the FDT regime.

The equation for the FDT regime is formally identical
to the equation one finds studying the equilibrium dy-
namics in the manner of Soxnpolinsky, though the mean-
ing of the anomaly is difFerent in the two contexts. In
the nonequilibrium situation the anomaly represents the
memory of the system and, as can be clearly seen from
its definition (3.15), it is associated with an integration
from the initial time of the asymptotic time regime up
to the final time t —+ oo. (An alternative interpretation
of the anomaly follows from the study of the nonequilib-
rium dynamics of finite-dimensional models, such as the
evolution of a manifold in a random potential, and the
formal comparison with the results from the replica anal-
ysis. See the discussion presented in Ref. [16]). In the
equilibrium dynamics instead, the initial time is chosen
to be —oo in such a way as to propose that the system
is at some equilibrium state at a finite time and that it
then is able to visit difFerent ergodic components at di-
verging (with K) time scales. The anomalous term is
then the contribution from all times starting at —oo and
it is related to contributions from the barrier crossing.

Despite the difFerent interpretation for the anomaly
one can still borrow or at least formally compare some
of the results concerning this equation from the previ-
ous works in which the equilibrium dynamics has been
studied. The equilibrium analysis has been done in great
detail by Kinzelbach and Horner [27,28] for the short-
and long-range model (1.1) and by Cule and Shapir [36]
for the RSGM. In the high-temperature phase one finds
M = 0. However, for T & T, (p) the FDT equation has no
solution for arbitrary large time difFerences if one keeps
M = 0. There is a critical time-difFerence scale beyond
which the FDT solution becomes unstable. It is then
assumed that the equilibrium dynamics is "marginal, "
meaning that the anomaly is chosen to have the mini-
mal value required to remove the instability of the FDT
solution [24,27,28].

Here instead we shall first solve for the well-defined
aging solution, compute the anomaly, and then return
to the study of the asymptote (large time difference 7.,
i.e. , lim ~ lim g& ~o) of the FDT regime. It turns out

that, for the models studied here, the value of M ob-
tained by this method coincides with the one obtained
from the postulate of "marginal stability. " Thus the de-
tailed behavior in the FDT regime, such as the power law
decay of the displacement to the asymptotic value q, also
coincides.

B. The aging regime

0 = r(t, t')
~

—p+ 4 ds V"(b(t, s)) r(t, s)
o

——V"(b(t, t'))~q

T
t

—4 ds V"(b(t, s)) r(t, s) r(s, t')
tl

(3.16)

and that for the displacement correlation function 6 reads

In Appendix 8 we derive the set of equations for large
and widely separate times t ) t' )) 1 and q & B = 6 ( bo.
The self-consistent procedure is as follows. In this slowly
varying time region, the time derivatives on the left-hand
side of Eqs. (2.1)—(2.4) are assumed to be small compared
to the right-hand side and so are then neglected. This is
related to the weak ergodicity breaking hypothesis that
states that, as time elapses, the relaxation of the sys-
tems slows down [23,10]. Typically, the integrals on the
right-hand side go from s = 0 to s = t or t'. In order
to approximate them we start by separating the contri-
bution of finite times, namely, integrals going &om the
actual initial time s = 0 to the starting time of the large
time regime s = 0+. These are assumed to be small and
hence neglected. This assumption is related to the hy-
pothesis of weak long-term memory [10] and it allows us
to write the long-time equations exclusively in terms of
the long-time functions 6 and r. Finally, we separate the
large time-integration intervals to distinguish the FDT
and aging contributions. We are typically left with in-
tegrals of slowly varying functions over the whole aging
time regime or with integrals of products of slowly and
rapidly varying functions over the short time intervals.
We then keep the first kind of integral and we approxi-
mate the second kind of integral by replacing the slowly
varying functions over the whole short integration inter-
val by just the value of the slowly varying function at the
integration border.

The large times dynamical equation for the response
function r reads

t
0 = b(t, t')

~

——+ 2 ds V"(b(t, s)) r(t, s)
~

+ T + —[V'(q) —V'(b(t, t'))]
0

t t
+2 ds V'(b(t, s)) r(t, s) —2 ds V'(b(t, s)) r(t', s)

0 0
t t t

+2 ds V"(b(t, s)) r(t, s) b(t, s) —2 ds V"(b(t, s)) r(t, s) b(t', s) —2 ds V"(b(t, s)) r(t, s) b(s, t') . (3.17)
0 0 tl
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[N.B. We have dropped all the subindices —,+ in the limits of the integrals. In particular, we have dropped the +
subindex in the zero limits. The zeros and all the (time) integration variables should be interpreted as being in the
asymptotic time regimes. ] We shall call these two equations the r equation and the 6 equation, respectively.

The equation for C(t, t) gives, at large t, another equation that contains contributions from the slowly varying parts
as well as the FDT parts. In this large time limit, C(t, t) is assumed to have reached its asymptotic value q. Thus

0 = —pq+ T + —V'(q) + 2
T

t t
V'{6(t, )) r(t, s) + 2 ds V"(6(t, s)) r(t, s) 6(t, s) .

0
(3.18)

For completeness we give the equation for c(t, t'). Using similar methods one has

0 = c(t, t')
~

—@+4 ds V"(6(t, s)) r(t, s) i
+ —V'(6(t, t'))

+2 ds V'{b(t, s)) r(t', s) —4 ds V"(6(t, s)) r(t, s)c(t', s) —4 ds V"(6(t, s)) r(t, s)c(s, t'), (3.19)

which we shall call the e equation.
We can obtain some relations between the asymptotic

values q, q, bo by considering particular values of the times
t, t'. Letting t' ~ t in the above equations and using
the limiting values (3.7)—(3.9) we find two conditions.
Indeed, assuming that the integral in the r equation van-
ishes in this limit, the condition for r(t, t ) to be nonzero
is that the term in large parentheses in the following
equation vanishes:

potential correlation V. Interestingly enough the equa-
tion is valid for all the potentials for T & T . It is also
independent of the mass and of the dynamical solution
of the model and hence q is a purely geometrical quan-
tity related only to the potential correlation. Besides, it
imposes a condition on V": it must be negative at q in
order to let (3.23) have a sensible solution for q. The re-
maining equation, Eq. (3.20), is important to select the
behavior of the models in the aging regime. Combining
both equations, one obtains

0 = r(t, t ) l

—p+4 ds V"(6(t, a)) r(t, s) 2T

p —M
(3.24)

2q
„V (q)T (3.20)

The solution r(t, t ) = 0 corresponds to the high-
temperature phase for which there is no nonequilibrium
dynamics. The equation arising from the requirement of
the vanishing term involves the anomaly: M is equal to
the integral above when t —

& oo [see Eq. (3.15)]. Hence,
in order to have a nontrivial low-temperature solution,
the anomaly must satisfy

One does not obtain any new equation by letting t' —+ t
in the c equation. One can check that when combined
with Eq. {3.18) it gives back Eq. (3.22), as expected.

Letting t' —+ 0 in the 6 equation, one finds

0 =
~

——+2 ds V"(6(t, s)) r(t, s)
i
be+ T

o )

+—[V'(q) —V'(6o)]T

M = p, + —V"(q) .
T (3.21) +2 ds [V'(b(t, s)) + V"(6(t, s)) 6(t, s)] r(t, s)

2T0= —p+ +4 ds V"(6(t, s) ) r (t, s) . (3.22)

This equation is also the marginality condition that de-
termines the anomaly in the equilibrium dynamics treat-
ment. We see here how it arises naturally in the nonequi-
librium approach. In addition, it is related to the condi-
tion of vanishing replicon eigenvalue in the static-replica
approach (see Sec. VI).

Similarly, the 6 equation, when t' ~ t, yields

ds V"(6{t,s)) r(t, s) b(s, 0), {3.25)

where 60 = b(t, 0). This is the equation that fixes bo It.
is important to note that this equation exists only for a
strictly nonzero mass. Finally, the energy density (2.5)
can be expressed using the separation of the FDT and
aging regimes as

Subtracting Eq. (3.22) from Eq. (3.20) yields

q' V"(q) = -T' . (3.23)

~(t) = —q+ —[V(o) —V(q)]
p 1

2 T

This equation determines q as a function of T and the
ds V'(6(t, s)) r(t, s) . (3.26)
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IV. EXTENSIONS OF THE DYNAMICAI
THEOREMS TO THE NONEQUILIBRIUM

REGIME

In this section we review the extensions of the equi-
librium theorems for the nonequilibrium dynamics of
systems with slow relaxations proposed in Refs. [10,11].
Since we shall mainly use in our calculations the dis-
placement instead of the correlation function, we here
reexpress these extensions in terms of the displacement
function. As opposed to the case of mean-field spin-glass
models, in this paper we deal with problems that do not
have a normalized correlation function. However, if the
mass is nonzero, the quadratic potential associated with
it ensures that the equal time correlation function reaches
a finite limit at large times. This indeed. can be easily
checked by solving numerically the dynamical equations.
Hence, in these cases there is basically no difference be-
tween working with the displacement or with the corre-
lation. We shall not discuss here in detail other further
extensions associated with the massless cases in which
there is unbounded diffusion and the equal time correla-
tion functions do not reach asymptotically a finite limit
[16]. We finally discuss the description of possible singu-
larities at the extremities of the aging regime.

B(t, t') = f (B(t,s), B(s, t'), t') . (4 3)

One then assumes that when all times are large t ) s )
t' and for a given B(t, t'), the explicit time dependence
disappears and

B(t, t') = f(B(t, s), B(s, t')), t ) s & t' m oo . (4.4)

The function f connects any three correlation functions;
it has been called a triangle relation. Formally, one can
also define the reciprocal function f (B',B) such that

We shall also assume that ~X(B)
~

is a monotonically
decreasing function of B. In Sec. V we shall present re-
sults from the numerical solution of the dynamical equa-
tions that support the assumption made in Eq. (4.2) and
the further assumption of monotonicity. The property
of monotonicity permits one to invert X(B) to have a
function B(X). This function is useful to compare the
asymptotic dynamical values with the equilibrium ones
and it is somehow related [10] to the replica Parisi func-
tion b(u) = 2[q" ' —q(u)].

Similarly, for three given times, because of the mono-
tonicity of the displacement B, one can always write the
relation

A. Definitions B(s, t') = f (B(t, s), B(t, t')) . (4.5)

One defines the function X(t, t') as

~( i) X(,i) ( )
Ot' (4 1)

Similar, and in the end equivalent, definitions of X and
f could be given in terms of C(t, t').

for t')) 1. (4.2)

with t ) t'. In the FDT regime X(t, t') = X~
—I/(2T), while in the aging regime it measures the de-
viation Rom the FDT theorem.

The mean-squared separation B(t, t') monotonically
increases when the two times t and t' become further
separated. It increases from B(t, t) = 0 to its maxi-
mum value B(t, 0), which explicitly depends on the ini-
tial value for the correlation C(0, 0): B(t, 0) = C(t, t) +
C(0, 0) —2C(t, 0). Since we shall only consider large
times, the maximum value that B(t, t') can take is then
B(t, 0+) = b(t, 0+) = bo Note, how.ever, that, in gen-
eral, B(t, 0) may be different from b(t, 0+), more pre-
cisely, B(t, 0) & b(t, 0+). If B(t, 0) & b(t, 0+) the weak

lang-term memory hypothesis requires that X[t, 0+] = 0.
The manotonicity of B(t, t') allows us to invert the func-

tion B(t, t') and to write the function X, for instance,
in terms of the smaller time and the displacement func-
tion X(t, t') = X(B(t,t'), t'). One then assumes that in
the large-t' limit and for a given B(t, t'), X(B(f,t'), t')
approaches a function that depends only on B(t, t'), i.e. ,

B. Properties of the triangle relations

Let us recall the general properties of the func-
tion f(x, y). By definition f (x, y) is associative
f(f(x, y), z) = f(x, f (y, z)). Since b(t, t') is an increas-
ing function of the separation between t and t' one must
have

f (z, y) & max(x, y) . (4.6)

f(b', x) = f(x, b*) = x, b* & x,

f(x, b') = f(b', z) = b*, x & b*.
(4 7)
(4.8)

Hence the relation between a fixed point b* and any other
point x is in this case "maximum. " Between two fixed
points bz ( x ( b2, one can show, under the assumption
that f (x, y) is smooth enough [38], i.e. , that it has a for-
mal series expansion, and using the fact that there exists
an identity (bi) and a zero (b2),

One defines "fixed points" b,
* such that f(b. ,*,b,

*)= b,*.
Clearly f(z, z) & x for x between two fixed points. Ove
can show that

f (y, z) for f commutative
i(g(x)g(y)) for f isomorphic to the product

(4.9a)
(4.9b)
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with g(bi) = 1 and g(bz) = 0. This implies y = f (x, z) =
~-'(~( )/~(*)),

It is useful to explicitly compute some derivatives of
f (x, y) and f(x, z) with respect to x, y, and z when they
are isomorphic to the product and division. For x, y C

(bi, b2) one finds

Of(x, y) OJ'(x y) (4.10)

Moreover, since f(b', x) = x and f (b*, x) = x for all x &
b', then Of (b*, x) /Ox = 1 and Of (b*, x) /Ox = 1 for all
x & b'. Instead, since f (b*, x) = b* and f (b*, x) = b* for
all x & b*, then Of(b*, x)/Ox = 0 and Of(b*, x)/Ox = 0
for all x ( b*. Thus Of(b*, x)/Ox = 0(x —b*)

It is useful to note that the form (4.9b) can be ex-
pressed as

. (q(B(t, t') )),(h(t') )
&&(B(t s)) ) 4 "(') )

(4.11)

where 8 is an arbitrary fixed time such that t' ( 8 ( t.
For a given interval tq ( 8 ( t2 with ti, t2 Gxed the
function h(s) can always be defined as

h(.) = '( (" '»
h(t )(B(t t ))

(4»)

p3/4
'(A) = 2i/2 (4.13)

with A = h(t')/h(t) = t'/t. y
i has a vanishing derivative

when A ~ 1 and hence g'(A)~& i ~ oo. A -+ 1 for g

corresponds to b' -+ b for f and f or t' -+ t for c and
b; i.e., it is the beginning of the aging regime. One of
the main results of the present paper is that many of
the models studied here do not admit a smooth solution
when b' —+ b but instead are solved in the aging regime
by an ansatz still of the form (4.9) with a nonanalytic

at Am 1.

C. General organization of Axed points

We concentrate on the analysis of the long-time dy-
namics for which the functions defined above have been

However, the requirement that f has a formal series ex-
pansion [38] turns out to be too restrictive and for certain
dynamical problems the large time dynamical equation
may not admit a solution with an analytic g or g in the
whole interval (bi, b2).

Indeed, studying the p = 2 spherical spin-glass model
[13], one finds that the exact solution to the dynami-
cal equations can be written, in the regime of large and
widely separated times, as a function f isomorphic to
the product as in Eq. (4.9), but with a badly behaved

g(A) when A -+ 1. This is indeed related to the fact that
the time derivatives Oc(t, t')/Ot = Oc(t, t')/Ot' = 0 when
t' —+ t implies that the inverse is not defined in this
limit.

More precisely, the zero-temperature solution corre-
sponds to [13]

proposed. Having neglected the time dependence in the
functions X and f suggests that the evolution of the sys-
tem should be measured in terms of the displacement
value (or the correlation value) instead of in terins of
the times. This implies that time scales are replaced by
correlation scales. A correlation scale is the range of cor-
relations between two fixed points of the function J' W.e
call a "blob" a discrete correlation scale between two sep-
arate fixed points, for which the function J is proposed
to satisfy Eq. (4.9).

It is clear that B(t, t) = 0 is a fixed point of f for all
the models we consider. The separation of large times
into close and separated amounts to assuming the exis-
tence of a fixed point at B(t, t ) = q that marks the
end of the FDT correlation scale and the begining of the
nonequilibrium correlation scales, the aging regime.

When the times are close to each other, the displace-
ments are homogeneous functions of time B(t, t')
B(t —t'). Setting vi ——t —t', 7 2 = t —t, Ts ——t" —t',
and Bi ——B(vi), B2 ——B(rz), and Bs ——B(ws), one
can immediately show that a function f as defined above
exists in the FDT regime. Indeed, the displacement
functions can be inverted to give T2 = 7 (B2),zand
Ts = Ts (Bs) and then using ri —— 'r2 + ~s we have
Bi ——B(7i) = B(~2+ ~s) = B(~2(B2) + ~&(Bs)). Thus
one finds that in the FDT regime B(r) = g [exp(i-)].
The function X is just the constant associated with the
FDT in this correlation scale X = —1/(2T).

Another particular value of the displacement function
is bo. Since it is defined as the maximum value the dis-
placement function can take in the large time dynamics
(for p & 0), it must necessarily be a fixed point of f.
The displacement cannot go beyond this value. More-
over, b(t, 0+) = b(t', 0+) = bo.

The strategy is to solve the large time dynamical equa-
tions viz. , the r, b, and c equations [Eqs. (3.16) and
(3.17)], using the general properties of the functions X
and f The dyn. amical equations for each particular
model, i.e. , for each particular P(x), will determine the
form of X and f

V. REPARAMETRIZATION INVARIANT
EQUATIONS FOR THE AGING REGIME

In this section we write the dynamical equations for the
aging regime Eqs. (3.16)—(3.19) in terms of the functions
X and f defined and decribed in the preceding section.
We discuss the implications of those assumptions and
we also present numerical evidence for them. We finally
describe the strategy we shall follow in the two following
sections to find an analytic solution to the nonstationary
dynamics.

Neglecting the time derivatives in the dynamical equa-
tions and the explicit dependence on time of the func-
tions X and f amounts to introducing an artificial time-
reparametrization invariance into the large time dynam-
ical equations. The solutions we shall find are, as a con-
sequence, invariant under time reparametrizations. This
problem has already been encountered when solving the
asymptotics of mean-Geld spin-glass models. The ques-



53 LARGE TIME NONEQUILIBRIUM DYNAMICS OF A PARTICLE. . . 1535

tion on how to select the unique actual solution from the
time-reparametrization invariant family of solutions has
not been answered yet. Indeed, this is already a well-
known problem in the theory of nonlinear one-time dif-
ferential equations. It is sometimes called the matching
problem and it has been solved only for some particu-
lar cases. How to match the solutions we find for short
time differences with one representative of the family of
large time-differences solutions remains a dificult, open
problem.

We can thus completely eliminate the times in the r,
6, and c equations and rewrite them just in terms of the
displacement b. With this aim we define

db' X(b'), M[b] = 4 db' V"(6')X(b') .

0= g (
, i (—p + M) F[6(t, t')] + M[6(t, t')](

Bt'
l 2T )

-4V"(6(t, t')) .(t, t') F[~]
g

—4
b(t, t')

db' V"(6') X[b'] F [f(b', 6(t, t'))] . (5.2)

Using F[q] = 0 and integrating over t' one finds

0 = F[b] (
—p+ M) + M[b]

In this case the second integral would be related to M,
Eq. (3.13).

We can then rewrite the r equation (3.16) as

(5 1)
+4 db' V" (6') X'[6'] F[f(6', 6)], (5.3)

The function M[b] is related to the anomaly M = M[bp];
see Eq. (3.15). These functions could be also defined
in such a way as to contain the FDT regime. The up-
per limit in the integrals should then be set to 6' = 0.

the integration constant being zero, as can be seen by
evaluating the resulting equation at b = q. This equation
is in fact equivalent to a first integral of the r equation.

The 6 equation (3.17) can be rewritten as

0 = (—P + M) 6 + 2T + —[V'(tI) —V'(6)] + 4V'(6 ) F[6'] + 4 db' V'(6') X[b'] + 4 db' V"(6') F[f(b, 6')]

+4 db' V"(6') 6' X[b'] —4 db' V"(6') f(b, b') X[b']+ 4 db' V"(6') f(b', 6) X[b'], (5.4)

where we denote bp
——b(t', 0). For t ) t' ) 0, 6(t, 0) )

6(t', 0). Since in the large time t' limit 6(t', 0) = bp

must be a fixed point, for all t' ) 0, bp ——6(t, 0)
f (b(t, t'), 6(t', 0)) = 6(t', 0) = 6', .

Both equations (5.3) and (5.4) are evidently time-
reparametrization invariant. In the same way we can
rewrite the c equation (3.19) in terms of 6

The 6 equation (5.4) evaluated in 6 ~ q and 6 —i 6p

gives back Eqs. (3.22) and (3.25), respectively, which in
terms of the functionals F and M read

(5.5)0 = (—@+M)q+2T,
0 = —pbp + 2T + —[V'(0) —V'(6o)] + 4V'(6o) F[bp]T

db', [V'(6') 6'] X[b']. (5.6)

Again, the latter exists only if p, g 0 from the start.
The solution to the aging regime amounts, in this lan-

guage, to solving Eqs. (5.3) and (5.4). Our strategy is as
follows.

(a) We propose the existence of only one discrete cor-
relation scale (one blob) with a constant X[b] = 2:. We
propose a completely regular f; by this we mean that the
integration of a finite function of 6' times f (6', 6) between
b and q tends to zero when 6 ~ q. We find that only the
p-spin spherical spin glass and the limit of vanishing mass

of the RSGM are solved by an ansatz of this type.
(b) We propose the existence of only one discrete scale,

but we allow for nonanalytic solutions around b q. This
implies, in particular, that the integral above contributes
in the limit 6 —+ q. We find the conditions that the po-
tential correlation must satisfy in order to allow for such
a solution. Model (1.1) with short-range correlations and
the massive RSGM are solved in this way.

(c) We propose an ultrametric ansatz for all the corre-
lations in the aging regime, namely f (6', 6) = max(b', 6),
6', b ) q. We show the condition that the potential cor-
relation must satisfy to admit this ansatz as a solution.
Model (1.1) with long-range correlations belongs to the
family of models with an ultrametric dynamical solution.
We present this analysis in Sec. VII.

In principle, it is possible to show that the dynamical
equations do not admit another type of solution with,
for example, two discrete scales (two blobs) and different
constant x inside each of the blobs or many other possi-
bilities. This is a rather extensive task that we do not do
in this paper. We study just the three cases we described
above.

Numerical evidence for the two regimes

The numerical solution of the full set of dynamical
equations demonstrates the existence of the two separate
time regimes and also the existence of a function X(B)



LETICIA F. CUGLIANDOLO AND PIERRE Le DOUSSAL 53

FIG. 1. m(t, t') vs B(t, t') for the
long-range power law model. p = 0.5,
p = 0.2, and 8 = 2.5. For the full lines
t = 200, 300, 400. In the main plot T = 0.2
while in the inset T = 1.0 ) T, . Note that
with the choice C(0, 0) = 0 one has automat-
ically C(t, 0) = 0 and thus B(t, 0) = C(t, t).

0
0

q = 1.03

for large times. One convenient way to show this is by
ting the equivalent of the thermoremanent magnetization
of a magnetic system

(5.7)

vs the displacement function B(t, t'). If R(t, t')
X(B(t, t')) OB(t, t')/Dt' for large t', then X(B) is the
local slope of these curves.

In Figs. 1 and 2 we plot m(t, t') vs B(t, t') for the

power law model with long p = 0.5 and short p = 1.5
correlations, respectively. The external parameters are
p = 0.2, 0 = 2.5, and T = 0.2 and we choose C(0, 0) = 0.
Three curves for three times t are included in both fig-
ures: t = 200, 300, 400 (1000, 1500, and 2000 iterations
of the algorithm with a step 6 = 0.2; all our numerical
results have been performed with h = 0.2). They show
clearly two B regimes: for B & q the slope is constant
and equal to —1/(2T) = —0.25 (the FDT holds). For
B ) q and if the potential correlation is long range the
slope is not constant, while if it is short range the slope
is still compatible with a constant ~z~ (

~

—1/(2T) ~. The
breaking point q and end point bo of the displacement
can be read from the figures and, as we shall see in Secs.
VI and VII, they coincide nicely with the analytical pre-
dictions. Note that it is important to keep a finite mass
in doing these plots since for p finite one can ensure that
bo stays finite.

The curves for di8erent total times t do not exactly
lie upon each other, showing that the numerical X(B)
still depends on t. We expect that for sufBciently large
times they will converge to the analytical prediction that
we describe in Secs. VI and VII and include in these
figures as broken lines. We can see that the numerical
convergence is indeed rather slow. In the insets we plot
the same curves for the same choice of parameters, but
for the high-temperature phases T = 1 and t = 400. In
both figures the slope is —0.5 for all B.

q = 1.17

8(i,t')

6, = 3.17

VI. SOLUTIONS TO THE DYNAMICAL
EQUATIONS: SHORT-RANGE POTENTIALS

FIG. 2. m(t, t') vs B(t, t') for the short-range power law
model. p = 1.5, p = 0.2, and 8 = 2.5. For the full lines
t = 200, 300, 400. T = 0.2, while in the inset T = 1.0 & T .
q 1.17 and bp 3.17.

In this section we apply a one-blob ansatz to the aging
regime equations and we show that those associated with
the short-range potentials are solved in this way.
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A. Asymptotic values: Comparison with the statics

We start by studying the asymptotic values q, bo, and
x. Though a deep understanding of the relation between
the dynamical A [b] and the statical replica function x[q]
is still missing, it is by now clear that, at least formally,
they play similar roles. We compare here the aymptotic
values q and bo and the parameter x = A [b] inside the
blob to the static [19] qs™,bo™,and xs™.

Equations (3.22) and (3.25) with A [b] = x are identica. '

to the ones obtained within the replica analysis [19] as
the extremum conditions for the static q and bo. This is a
consequence of an algebraic relation between dynamical
and static (replica) approaches [39]. Instead, Eq. (3.21),
dynamical in origin, is formally equal to the condition to
have a vanishing replicon eigenvalue of the replica treat-
ment. It does not coincide with the third equation arising
from the replica recipe, i.e. , the one obtained maximizing
the free energy with respect to x. As a consequence, the
dynamical value for x does not coincide with the static
one. This implies that also the values for q and. bo differ
since x enters in their equations. The dynamical phase
diagram turns out to be different from the static; the dy-
namical transition temperature is higher than the static
critical temperature for a range of masses. Moreover, the
dynamical asymptotic energy is higher than the equilib-
rium energy. This discrepancy has already been observed
for the special case of the p-spin spherical spin glass and
it seems to be related to a peculiar organization of the
metastable states of the Thouless-Anderson-Palmer [41]
free-energy landscape, with the existence of a threshold
(higher than the equilibrium free energy, below which in-
finite barriers appear [10,42]). A more detailed analysis
along these lines is in order to determine if this is at
the origin of the difference between static and dynamical
asymptotic values in these models too.

If the model is massive, the particle is constrained to
move in a restricted region of the space and hence bo and

q are finite. If we take the limit p ~ 0 afterward we shall
see that bo ~ oo in such a way that pbo remains finite.
Instead the case of a strictly massless model is more del-
icate. Let us now obtain the equations that fix q, bo,
and x for a massive model. Equation (3.23) determines
q. When x is constant the equations that 6x bo and x
follow from Eqs. (5.5) and (5.6) and read

B. The p;T phase diagram

In Fig. 3 we present the phase diagram for the power
law model with p = 1.5 and 0 = 2.5. The equation
for q, Eq. (3.23), determines a first critical temperature
(independent of the mass) given by

(6.6)

with q* the value of q at which q2V" (q) attains its max-
imum, i.e. ,

a*V"'(v*)
2V" (q*)

(6.7)

The glass phase cannot extend beyond T = T since
there is then no solution to Eq. (3.23).

Just from their definitions bo & q. This condition de-

termines a critical line T, (p). Equation (6.1), when
bo ~ q, yields

T(2)( )
&(T)& (6.8)

where q(T) is the solution to Eq. (3.23). The general
equation for this line is

t'2T(2) )~rl
) (6.9)

This same equation is found in the replica treatment as
the condition to have a vanishing replicon eigenvalue.

0.45

0 4 T(3)
~ ~

T(1)
C

&(&) = —&+ —[V(0) —V(q)] —2*[V(q) —V(b )) (6.5)p 1

2 T
and thus it is determined by the asymptotic values q, bo,
and x. Since x does not coincide with the static replica,
the asymptotic dynamical energy differs from the static
one. We shall show below some numerical results on this
point (Fig. 7).

V'(&) —V'(bo)

bo —q 2q

(2T
bo —V=-

2Tx ( p,

while Eq. (6.3) gives q,

q = — T+ —V' q +» ql" q —bo&' bo
p, T

The anomaly M can be immediately computed,

(6.1)

(6.2)

0.3

0.25—

0.2—

0.15

0.1

0.05—

0.1 0.2 0.3 0.4 0.5 0.6 0.7

M = 4x[V'(q) —V'(bo)], (6.4)

and can be used to solve the FDT equations (see Sec. III).
The asymptotic energy density reads

I"IG. 3. Phase diagram for the power law model with

p = 1.5 and 8 = 2.5. The glassy phase, with aging dynamics,
is located below the curve max(T, , T, ).
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q
i/(&+i)

T("(V) = —" (6.10)

lf p ) i, r."(p -+ O) ~ O and for p = i, T.")
(p, ~ O) =

Returning to the general potential correlation and eval-

uating x from Eq. (6.2) at the critical line T, , bo ——q+e,
e ~ 0, and one obtains

Statically this determines the line below which the replica
symmetric solution becomes unstable and hence the tran-
sition line from the replica symmetric solution to the one-
step replica symmetry-breaking solution [19]. Equation
(6.9) delimits a domain in the p, Tp-lane where the ag-
ing solution exists. When T —+ 0 we fi.nd a fi.nite critical
p = p, = 2+~V" (0)~ beyond which the above equation
has no solution. When p ~ 0 and the potential is short-
range [i.e. ,

V"(x) decreases faster than 1jx at infinity]

T.")(p) -+ o.
For the power law model the explicit formula for

T."(p) is

that the evolution starts at an equilibrium state. In the
nonequilibrium evolution there is a priori no reason for
the two transition temperatures to coincide and indeed
one knows this happens in real systems as glasses. We
shall return to this discussion later when we shall present
the numerical results for the asymptotic energy-density
vs the static one.

C. Equations within a blob with X [b] = x

Using X[b] = x,

+[b] = *(q ——b) M[b] = 4x [V'(q) —V'(b) l (6»)
and the first integral of the r equation (5.3) and the equa-
tion (5.4) read

o = (b —q) (-~+ 4* [V'(q) —V'(b. )]~
( 1

+4q
~

+ x
I

IV'(q) —V'(b)]
(2T

q V'"(q)
4T Vn(

(6.11) + 4x db' V"(b') f (b', b), (6.14)

(2T( )) (T( ))2 T( )

)
(6.12)

with q given, as always, by Eq. (3.23). The transition is

now continuous in x but discontinuous in q. T, (p) is
well above the transition line for the statics and it reaches
a finite limit at p —+ 0, as opposed to T —+ 0 when

p —+ 0 in the statics. For the potential correlation (1.6)
one finds that when p, -+ 0, [T, (p)] -+

( )
(~ )~

and q = 0/(p —1).
For model (1.1) with V given by Eq. (1.6) and p ) 1,

these conditions imply a phase diagram identical to the
one described by Kinzelbach and Horner in Ref. [27] for
the equilibrium dynamics. It is not clear why it should be
a difference between static and equilibrium dynamic tran-
sitions (and furthermore between static and asymptotic
equilibrium dynamic energies) especially if one remem-
bers that the initial assumption of the latter approach is

with q = 2T, /p, on the critical line. One sees that as
long as the function q V"(q) is increasing (small values
of q, q ( q*), one automatically has ~x,

~

( 1/(2T). Thus,
even if the transition is continuous for q and bo there is a
jump in x from the value x, below the critical line T
to the high-T phase value x = x~ = —1/(2T).

The value x, = —1j(2T) is reached exactly at the tem-

perature T = T where q attains its maximal value.(2) (x)

Equations (6.6) and (6.9) determine the tricritical point
(p,,*,T,*) at which bo ——q and x = —1/(2T) simultane-
ously. For p & p*. the nature of the transition changes.
The phase boundary is now determined by the condition
x, = —1/(2T), while bo at the transition is no longer
equal to q. Setting x = —1/(2T) in the equations (6.1)
and (6.2), one obtains bo ——2T, /p at the transition and
the following equations for the transition temperature:

o = b(-~+ 4* [V'(q) —V'(bo)l)
(1+2T + 4q

i
+ x

~

[V'(q) —V'(b)]
(2T )

+ 4x db' V" (b') f (b', b) . (6.i5)

We see that these equations coincide if we use p —M =
2T/q. We shall concentrate then on the r equation (6.14).

D. Analytic ansatx at t' ~ t

We can now show that a regular solution at t,' ~ t
cannot exist for all the models we consider. In fact, if f
is regular at b —+ q one can evaluate Eq. (6.14) and its
variations with respect to b in this limit. If f and all its
variations with respect to b are smooth when b m q, one
can set the integral in each equation to zero (the limits
collapse and the integrands are regular by hypothesis)
when evaluating at b —+ q. However, if this is so, one
gets new conditions on x, q, and bo that are not always
compatible.

More precisely, the erst new equation arises from the
second variation of the r equation with respect to b.
When b ~ q it implies

q V"'(q)
2T V"(q)

(6 16)

where we have used Bf(b', b)/Bb~(»~&)~~ ——1 and we
have set the remaining integral to zero. For general mod-
els, i.e., general V s, this condition is not compatible with
the x arising from Eq. (6.2) above.

In an alternative way, one can investigate the equation
that the potential correlation P has to satisfy in order to
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allow for a regular solution to the dynamical equation.
Combining Eqs. (3.23), (6.1), and (6.2) with Eq. (6.16)
yields

V'(q) —V'(bo) V"(q)
1 —(b —q) „„I')~

(6.17)

We can now consider the temperature T as a varying
parameter and then q as the independent variable in a
differential equation for V(q). Setting y(q) = V'(q) and
yo = V'(bo) we have

The variable u —u' = ln[h(t)/h(t')] is the natural variable
for the problem. When t increases it increases from u-
u' = 0 at t = t' to u —u' = oo and the function B(u —u')
then grows from 0 to bo —q. Eq. (6.19) becomes

0 = B(u)V"(q) —V'(q + B(u)) + V'(q) —
T V"(q)

B{u)
dB(u') V"(q + B(u')) B(u —u') (6.22)

or, integrating by parts the last term,

- (y —yo) [y' —(bo —q)y"] = (bo —q) y (6») o = -B(u)V"(q) + V'(q+ B(u)) —V'(q)

E. Nonanalytic solution at t' ~ t

Using p —M = 2T/q, the remaining equation (6.14)
reads

To=-—( -q)-2qi ~+
i

[V'(b)-V'(q)]
2T)

+2+ db' V"(b') g
&~(b')

(6.19)

It is useful now to remember the original time dependence
inside the integral using

b( ')= -'i () i.
g h(t) )

(6.20)

Thus, defining a new variable u and a new function B(u)
as [10]

The potential correlation has to satisfy this equation in
order to allow for a regular solution.

We have checked that from the potential correlations
described in the Introduction only the one associated
with the p-spin spherical model with p & 2 admits a solu-
tion with a well-behaved g when A ~ 1 (the case p = 2
is particular because the first derivative of g

i is zero).
The x arising from the second variation of Eq. (6.14)
given by Eq. (6.16) is compatible with the z arising from
Eq. (6.2). All the higher variations are trivial and do not
give further constraints. Conversely, if one perturbs the
original p-spin Hamiltonian with an arbitrary small term
associated with a diB'erent p in the manner of Ref. [40],
one immediately sees that a regular solution for the dy-
namics is no longer allowed. One can say that the p-spin
spherical spin glass is somehow a marginal model.

The problem for a general P is in fact so constraineo.
that it is not hard to believe that the potential correla-
tion associated with the p-spin spherical spin glass is the
unique function having a regular solution.

V"(q) —V'(q) B(u)

du' V'(q + B(u')) B(u —u') . (6.23)

This equation represents the homogenized version of
Eq. (6.19). It is important to note that it is not homoge-
neous in time and thus its solutions are not either. The
homogeneity holds at the level of nonlinear functions of
the correlation functions and not at the level of times. It
has no free parameters. q and z are fixed by Eqs. (3.23),
(6.1), and (6.2). The invariance of the aging regime equa-
tions under time reparametrizations t ~ h(t) implies the
invariance of Eqs. (6.22) and (6.23) under dilatations of
u: u M 'gu.

Equation (6.23) can be solved exactly for some spe-
cial choices of V such as the p-spin spherical model and
the RSGM in the limit of vanishing mass. The solutions
are B(u) = 2qI s [1 —exp( —gu)] and B(u) = gu, respec-
tively. We shall describe these cases in detail at the end
of this section. In what follows we shall instead ana-
lyze the small- and large-u behavior of B(u) for the gen-
eral potential correlation. A powerful method to study
both limits, small and large u, can be developed by using
Laplace transform techniques. We do not describe it in
the present paper, but we shall do so, applying it to the
case of finite dimensions D ) 0, in Ref. [16].

Small u

We solve Eq. (6.22) around u 0, i.e. , b q, which
corresponds to B(u) 0, by first expanding in powers
of B(u) and then proposing a series expansion of B(u)
in terms of u . o. is a positive exponent that should be
determined by the equation. An exponent o. smaller than
one related to an irregularity at u 0.

The expansion around B(u) 0 yields

exp(u)—:h(t),

b(t, t') = q+ B(u —u')

I

= ~ '(exp[ —(u —u')]) ., r'h(t') l
g h(t) J

(6.21)

y{n)q (q) d f [B( l)]TL i B( I)—
T (n —I)!

(6.24)
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It is easy to see that the zeroth- and first-order equa-
tions in B(u) are immediately satisfied. The second-order
equation is, however, nontrivial:

40

30

0 = '""
[B(-)]'

Vtt(q)

+ T V"(q)& du'B(u')B(u —u') . (6.25)

B(u) ao

15

10

We now proceed by proposing a formal series expansion
for the function B(u) around u 0 in terms of u

B(u)=8(u )= ) b u
m=o

(6.26)
8

~1/a
10 12 14

and then solving Eq. (6.24) term by term in the double
series expansion. More precisely, Eq. (6.25) at first order
in u implies

FIG. 4. B(u) vs u ~ with 1/a = n, p = 1.5, 8 = 2.5,
T = 0.2, and p = 0. Prom top to bottom the number of
coefEicients are 7, 9, 10, 8.

&V"'(q) 4*q V„[1'(I+)]'l
i V"(q) T I'(1+ 2n) )

This equation Axes the function

[I'(1+n)]''( ) = r(1+2.)

(6.27)

(6.28) p(n) -+ I m n —~0, (6.3o)

Assuming that the potential correlation P allows for
a solution of this type, we can study the behavior of
o, when we approach the transition lines T and T(2) (3)

Approaching the transition line T, from below, bo m q
and x —+ q/(4T) V"'(q)/V"(q). Thus V"(q) + —p, /4,
q -+ 2T/p, and

and hence the exponent o;. From its definition, the lim-
iting values of p are

lim p(n) = 0,
p(1) = 1/2,

lim pp(n) = 1.

using the limiting values (6.29). The aging part of the
dynamical solution becomes very steep near equal times,
while the total variation bo —q vanishes when we approach
the transition line T,

Approaching now the transition line T~ ~ from below,
z —+ —1/(2T) and then

For a general V

V'"(q)
4xq [V"(q)]2

' (6.29)

T' V'"(q)
2q [V"(q)]'

(6.31)

This last equation fixes p(n) and thus n. We shall see
below, in some concrete examples, how the limiting val-
ues in (6.29) select the kind of potential that allows for
a solution of the one-blob type.

The erst coeFicient bz is not Axed as a consequence
of the reparametrizations invariance. In Appendix D we
describe how we can obtain the coefBcients b, m, & 2,
in terms of bi and then reconstruct the series for B(u).
In Figs. 4 and 5 we show B(u) for model (1.1) with

p = 1.5, 0 = 2.5, and T = 0.2. Figure 4 corresponds
to the massless case and Fig. 5 to a massive case with

p = 0.2. The different curves in both figures correspond
to having approximated the series for B(u) with a sum
with different numbers of terms. We see that both in
the massless and massive cases B(u) can be obtained
in this simple way up to reasonable values of u . We
have checked, however, that in the massive case a Pade
approximation gives B(u —+ oo) bp —q, as expected.
In the massless case we obtain the analytic asymptotic
behavior of B(u) in Sec. VIF and find that it is in good
accord with the tendency of the curves in Fig. 4.

B(u)

0.5

0
0

FIG. 5. B(u) vs u where 1/a = n, p = 1.5, 8 = 2.5,
T = 0.2, and p = 0.2. The curve pointing upward has 30
coeKcients while the curves pointing downward have 50,20, 10
from left to right. The straight line is B = bo —q.
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and the exponent n as well as the aging function B(u)
reaches a nontrivial limit when approaching the transi-
tion line at a fixed p. At T, = T, one has p(n) -+ 1.(~) (3)

Summarizing, at early times in the aging regime early
epochs the displacement is

0.9—
0.8—
0.7—
0.6

R(t, t') 0.g

b(t, t') —q + b, ln
/h(t) )
(ht' )

( h(t)- q+bi
i(h(t')

(6.32)

0.4

0.3

0.2

0.1

0 I I I I I I l I I

0 200 400 600 800 1000 1200 1400 1600 1800 2000
t'

F. Solution for 6 ~ bo, large-u behavior
for the massless models

FIG. 6. Response function R(t, t') vs t' for t = ih, h = 0.2,
and i = 100, 200, 300, 400. p, = 0, T = 0.2, and p = 1.5.

1
OP x

V'(q) —V'(bo) -—
2/X

(6.33)

qV'(q) TV(q)
T qV'(q)

Thus bo m oo, V'(bo) ~ 0, and V'(q) T/(2qx). U—sing
this result Eq. (6.22) simplifies:

V'(q) —V'(q+ B(u))

V"(q) 0
V'(q) Bu

du' V'(q+ B(u')) B(u —u') . (6.34)

Let us now study the asymptotic behavior of B(u) at
large u. Since B(u) ~ oo one must have

du' V'(q+ B(u')) B(u —u') u .
V'(q)'
Vil( )

(6.35)

The analysis of Eq. (6.22) or (6.23) for large u is deli-
cate and we shall not pursue it in all generality. We shall
d.escribe instead what happens in the limit of a vanishing
mass for a general potential correlation.

In the limit p -+ 0 Eqs. (6.1), (6.3), and (6.2) imply

plot the response function R(t, t') vs the smaller time t'
for four times t in the massless case. The parameters are
T = 0.2 and. 0 = 2.5.

In the present section we are letting p —+ 0 and using
all the equations including (6.1). Note that an identical
equation (and solution) for B(u) would be obtained by
setting p = 0 first and then setting bo ——oo, abandoning
Eq. (6.1).

A very interesting quantity to calculate for the short-
range models in particular in the massless limit is the
asymptotic energy density

1
(p —i 0) = pq+ —[V(0) —V(q)] —2xV(q) . (6.37)T

As we shall see in the following subsection, the asymp-
totic energy density of the massive power law model with
short-range correlations (1.6) is higher than the equilib-
rium energy density obtained with the replica analysis
[19]. Moreover, within the dynamic approach we find a
nontrivial solution when p, —+ 0 with a finite asymptotic
energy density while statically the solution does not exist
in the massless limit since T, (p ~ 0) ~ 0 in the statics.
This difference between asymptotic and equilibrium val-
ues seems to be characteristic of mod. els solved. by 1RSB
ansatz statically and it is related to the fact that the
dynamic B(X) is not equal to static Parisi function b(u).

Defining I—:f du'V'(q + B(u')) and assuming I to
be a convergent integral immediately implies B(u) flu

with qI = &„(~
. One can check that this is the only+II (q)

possibility for short-range models. It implies

G. Some particular models

The gomez law model

For model (1.1) p(n) becomes

b(t, t') - q+ln
~

fh(t) )
qht' )

(6.36)

in the limit h(t')/h(t) « 1 for all short-range models.
This form that turns out to be exact for the RSGM in
the massless limit (see Sec. VI C) for all u iinplies that
r(t, t') is only a function of t' for widely separated times.
We have checked this result numerically. In Fig. 6 we

In Fig. 2 we show the analytical prediction (broken
straight lines) for this model with p = 1.5, p = 0.2, T =
0.2, and 0 = 2.5. The full lines are the numerical solution
to the dynamical equations for t = 200, 300, 400 from
Eqs. (3.23)—(6.2) q = 1.17 and bo = 3.17. The FDT decay
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and q are quite rapidly reached by the numerical solution.
Instead, the convergence towards the aging theoretical
curve and bo is slower. Note that the end of the full lines
is at b(t, 0), which is slightly larger than bo ——3.17, as
expected.

It is interesting to see what happens to o. when p ~
1+, i.e. , when p approaches the critical value p„=1 at
which the potential correlation becomes long range. The
limit p ~ 1+ of Eq. (6.38) above yields

T(f1+ q) & 1 —2p l
p q (~(I —~) )

(6.42)

1+7t(~)-
27

When p ~ 0, bo ~ oo and q ~ oo in such a may that
bop and qp remain finite. Thus, in the zero mass limit

1
lim p(n) = — = 1.

&~i+ 2x
(6.39)

Reconsidering the limiting behavior of p [cf. Eq. (6.29)],
we see that

The last equality holds since x -+ —I/~2 when p -+ 1+.
Thus

Q. mO (6.40)

—(i+~)
q (0+ q) ( +~1 = —T, bop, —— —(0+ q)

y x T

(6.41)

everywhere in the low-temperature phase. Since inside
the low-temperature phase bo —q reaches a (T and p,—-

dependent) nonzero limit and the aging function reaches
a steplike function. This is an illustration of the way in
which the ultrametric solution is reached when p ~ 1+,
as discussed in Sec. VI H. It can be shown that for p ( 1,
p(a) becomes larger than 1 and thus no solution exists.

When the mass p, tends to zero the asymptotic values

q and bo, as well as x, can be easily obtained. They are
given by the equations

oo M pM 1/2 W crM I,

pM 1

p(1 w p)1

o. —+0, (6.44)

Thus 0, decreases from 0; = 1 to o. = 0 for short-range
models. For p ( 1 (long-range potential) p & 1 but,
from its definition (6.28), p(n) cannot be greater than
1. Hence we have demonstrated that the long-range po-
tentials of type (1.6) do not have a one-blob solution, at
least in the massless limit, for any temperature. This
demonstration can be extended to show that indeed the
long-range model does not admit a one-blob solution even
when the mass is finite.

At the zero-temperature limit we can obtain the ex-
plicit dependence of q, 60, and x on the parameters 0
and p:

-0.2

-0,6

FIG. 7. Energy-density de-
cay: E'(t) vs t for the
short-range model with
p=15, 8=25, andT=02.
Inset: In[E'(t) + 0.137] vs 1nt

-1.4-

100 200 300 400
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0 (&1,
The exponent o. = 1 is consistent with this solution since
it translates into

g —1
0 & 1, B(u) = gu, (6.52)

1 —p
g 2 ~ 1

0&' —»~'
(

~
~

1.
v'2V

(6.45)
which is a solution of Eq. (6.34). The triangular relation
function is thus f (z, y) = x+y —q. Note that a particular
solution corresponds to h(t) = t, which we speculate
is a good candidate for being the solution selected by
matching at small times.

Note that x remains finite at zero temperature.
The asymptotic energy density for the power law model

1s

1 1

T 21 —p

(6.46)

in the massless case it reads

+ 1 [0' ' —(0+q)' ') . (647)
2T(1 —q)

In Fig. 7 we plot the energy-density decay for the mass-
less power law model with parameters p = 1.5, 0 = 2.5,
and T = 0.2. Equation (6.47) implies E —0.137. In
the inset we plot 1n[Z(t) +0.137] vs ln t. One can see that
the energy density approaches its asymptotic value with
a power law. Finally, at zero temperature we have

The p-spin spherical model

It is interesting to recall the known results for this
model and compare them with those obtained with
the general treatment described above. For spheri-
cally constrained models bp = 2. In the case of the
p-spin spherical model, with p ) 2, Eq. (3.23) im-

plies p(p —1)/2 (1 —q~s) qI, +
——T . The mass p,

in Eqs. (6.1) and (6.2) has to be interpreted as the
constant long-time limit of the time-dependent p(t) re-
lated to the Lagrange multiplier enforcing the spheri-
cal constraint; cf. Eq. (2.7). Solving for x one gets
& = —1/(2T) (p —2)(1 —qpz)/qJ s. These equations co-
incide with those found in Ref. [10]. Equation (6.22) is
solved, for all u, by B(u) = 2q~g[1 —exp( —gu)] with g
undetermined. Hence the function g defined in Eq. (6.9)
that relates any three displacements in the aging regime
is g(b) = q~s(l —b/2) and the triangle relation is just
f(» y) = *y/n s

If we study Eq. (6.23) for u 0 as described in Sec.
VIG3 from Eq. (6.29), p(a. ) is

(p — + ,0T-+ )0= g(i —~)/2 (6 «)
1

P(~) =
2

for p) 2. (6.53)

H. The zero mass random sine-Gordon. model

In the limit of zero mass, Eqs. (6.1) and (6.2) can be
easily solved. The maximum displacement bp tends to
infinity in this limit but the product pbp stays finite; we
obtain

The exact solution in the whole interval u g [0, oo] is ap-
proximated for small u as B(u) = 2qJ s[1 —exp( —gu)]
2q~sgu and we recover the exponent o. = 1 in this limit.
The case p = 2 is particular. Both the third derivative in
the numerator of Eq. (6.29) and x are zero. One cannot
naively use Eq. (6.29) to determine n. Equation (6.23)
can be used also to check that the large-u analysis of it
is delicate.

4T 1q' exp( —q/2) =, pbo - ——-,
x

Therefore, p(n) satisfies

1
P(~) =

2

4T 4T
qp

(6.49)

(6.50)

I. From short-range models to long-range models:
The appearance of the ultrametric solution

I et us study in detail the limit p —+ 1 from above for
the power law model. In general, we have solved the
short-range models with an ansatz consisting of a con-
stant x and a triangular relation f(x, y) = g i[g(x) g(y)],
with g i(z) a nonanalytic function at x = 1:

In addition, this is an especially simple problem that can
be solved completely from the original equations. Indeed,
the solution is

(1+a) =q+ce +O(e ), (6.54)

b(t, t') =q+ln~, ~, r(t, t') =, . (6.»)I' h(t)l, q &'(t') which is different for different models, i.e. , different V.
This implies, for f,
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In Sec. UI G we have also shown when p tends to
one the exponent o. for the power law model tends to
0. Hence, when p ~ 1,

f(q+ z, q+ z') - q+ max(z, z')

+(higher-order terms) (6.56)

and we see explicitly how the ultrametric solution is
approached when the potential correlation range is in-
creased. The FDT violation x stays constant when p ~ 1
from above and this is also valid when the limit is ap-
proached from below, as can be seen from Eq. (7.11).

f(q+ z, q+ z') = q+ (z' + z"~ ) + O(z, z', zz') .

(6.55)

q(b)

g(q)

VII/
with (7 4)

For instance, if the function V is of the form (1.6), we
have

(0+ q
(i—~)/2)+q

q8+ 6)
(7.5)

relations. We shall then choose the lower signs in the
expressions above. If f is a maximum, all the integrals
appearing in the higher variations of the equation with
respect to b in the limit b —+ q vanish.

We require that ~X~ be a decreasing or constant func-
tion of its argument b. This indeed selects the models
that can be solved by an ultrametric ansatz. Imposing
]X[6])( )X[q]) for 6 ) q yields

VII. SOLUTIONS TO THE DYNAMICAL
EQUATIONS: LONG-RANGE POTENTIALS

We shall apply the ultrametric ansatz to Eqs. (5.3) and
(5.4). The ultrametric ansatz means

6 = f (6', 6") = max(b', 6"),
6" = f (6', 6) = max(b', 6)

for all 6, 6', 6" inside the interval [q, bo]. Note that
Bf(b', 6)/Bb = 1 and Bf(b', 6)/Bb' = 0 since 6 ) 6'.

Furthermore, 0~")f(6', 6)/Bb~") = 0~")f(b', 6)/Bb' = 0
Vk ) 1. In the dynamic equations (5.3) and (5.4) only

f enters. We can then take variations of these equations
with respect to b safely.

Inserting the ultrametric form of f in Eq. (5.3) and in
its variation with respect to 6 and using Eq. (5.5) yields

exp(b/4)
exp(q/4)

(7.6)

Since b & q, then this imposes q = b and the RSGM does
not admit an ultrametric solution.

Finally, we study the p-spin model. In this case, 1—
B/2 = C and the correlation function decays from q when
t' ~ t to 0 when t' + 0. Then

(7.7)

If p & 1 this inequality cannot be satisfied. This means
that model (1.1) with short-range correlations cannot be
solved by an ultrametric ansatz. Instead, if p & 1, the
condition is satisfied for all 6 and model (1.1) with long-
range correlations can be solved by an ultrametric ansatz.

As a second example we can examine the RSGM.
Equations (1.10) and (7.4) imply

0= — V" q Eb + —Mb —E'bMb,

0 = X[b] —[V"(q) —V"(6)] —4M[6) + 4V"(6)F[b]

(7.1)

Solving these equations for E[b] and M[b], we obtain

q V (6) QV (6)V"(q)
E[b] = ~

M[b] = +—V"(q) —QV" (6)V"(q) (7 2)

4T V"(6)

Vll (q)
VII (6)

(7.3)

The sign must be chosen in such a way that X[b] is neg-
ative; it depends on the relative signs of V"' and V". In
the following we shall consider V" & 0 and V'" ) 0. This
is the case for the power law model with long-range cor-

The second variation of Eq. (5.3) combined with the
above expressions for E[b] and M[b] gives

2
Vll (6 ) 4

(7 8)

For the power law model with p & 1 q and bo are given
by

Since q & c the inequality is not satisfied.
In conclusion, from the particular cases we presented in

the Introduction, only model (1.1) with long-range inter-
actions, i.e. , p & 1, admits an ultrametric solution. More
generally, Eq. (7.4) selects the potentials that admit an
ultrametric solution.

Formula (7,3) for X, together with the ultrametric
form of f, rep'!*sents the full solution for the model.
Due to the time-reparametrization invariance we have
included in the equations we cannot go beyond these ex-
pressions and obtain the explicit time dependence of the
displacement b. We can check that Eq. (3.17) is also
solved by this ansatz.

We can now explicitly obtain q, bo, and q and compare
them with the static results obtained with the replica
approach [5,19]. Equation (3.23) determines q and with
X[b] given by Eq. (7.3), after a bit of algebra, we obtain
bo from Eq. (5.5):
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g
2

(0+ q)'+&

and X[b] is

X[b] = —— (0+ b)~~
2 g2p

In the limit p —+ 1 we have

2T2
(0+ b )

—(~+i)/2—
v~~

(7.9)

(7.10)

The case y -+ 0

R(t, t') = exp[ —p(t —t')],
2T

(I —exp[ —p(t —t')])
P

B(t, t') =

If we take the limit p ~ 0 the low-temperature phase
disappears (p,„-+0). Indeed, in this limit V = 1/2,
P" = 0, and the dynamical equations for A and B can
be solved exactly. The solutions are

X[b] =z=—1
(7.11)

— X(,) = --'
2 V"(q) 2 0+ q

(7.12)

The dynamical phase diagram is thus identical to the
statics.

which coincides with the constant x obtained for the
short-range models when p ~ 1+. Note that x is then a
constant in all the low-temperature phase (independent
of T and p).

One can check that these equations for q and bo coin-
cide with the equilibrium equations obtained with a fuljI

replica symmetry breaking ansatz [19,12]. One can also
check that the expression we obtained for X(B) is for-
mally identical to the Parisi function x(q) of the replica
treatment. Hence the asymptotic dynamical values, in
particular the energy density, coincide with the static val-
ues, though the particle is not visiting any equilibrium
state.

In Fig. 1 we confront the analytical predictions (bro-
ken curves) to the numerical solution to the dynamical
equations plotting rn(t, t') vs b(t, t') for t = 200, 300, 400.
p = 0.5, T = 0.2, p = 0.2, and 0 = 2.5 in the figure. q
and the FDT relaxation converge rather quickly to the
predicted value and straight line behavior. However, the
aging regime is still very far from the asymptotic analyt-
ical curve (for this choice of parameters the curve for the
aging regime is unfortunately very similar to a straight
line). The convergence for the long-range model is slower
than for the short-range model (see Fig. 2 and the dis-
cussion in Sec. VIG). We observe that the evolution of
the numerical curves as t increases is, though exceed-
ingly slow, towards the dotted line. This family of long-
range models behaves in every respect as the Sherrington-
Kirkpatrick model of a spin glass [11].

The discussion of the phase diagram for power law
models with p ( 1 is very difFerent from the short-
range case. The function qzV" (q) is increasing mono-

tonical, thus there is no T ~ The critical tempera-
ture T, (IJ) is determined by the condition bo ——q that
implies V"(2T,/p) = —p /4. This equation coincides

with Eq. (6.9) and hence its solutien is T, (p, ) given by
Eq. (6.10). We can check that below this line ~X[b]~ (
1/2T since

r T 15+
I C(o o) ——+ —,

I

x (exp( —2pt) + exp( —2pt')
—2 exp[ —p(t+ t')]) . (7.13)

The response is time homogeneous for all times. It is
interesting to note that both the response and the dis-
placement have exponential decays for all times t, t' and
hence some of the assumptions we have made in this pa-
per are nat fully justified in this case (for example, one
is not allowed to throw the time derivative for large and
separated times). This is most clearly seen by keeping
the mass finite and taking the limit of large t (indepen-
dently of its relation to t); B(t, t') also becomes a TTI
function

/ 2T
lim B(t, t') = (1 —exp[ —p(t —t')]) .

t'~oo P
(7 14)

The FDT relation holds. The large time dynamics is like
the relaxation inside a well and equilibrium dynamics
holds for all large times t, t' ) t,~ related to the mass p
and there is no aging regime. Though our approximated
analysis is not fully justified in this case it does not dis-
agree with what we find from the exact calculation. The
glassy region of the p-T plane with nonequilibrium dy-
namics disappears in this limit. [If the limit of zero mass
is taken before the large time limit there is difussion, e.g. ,
C(t, t) m C(0, 0) + 2T t when p ~ 0.]

The case p = 0 has also been investigated by Parisi [43]
from the static point of view using the replica approach.
The solution was replica symmetric and hence a sort of
trivial dynamical behavior was to be expected.

VIII. SUMMARY AND CONCLUSIONS

We have studied analytically the r~onequilibrium dy-
namics of a particle moving in a general random poten-
tial. We have described in more detail three particular
potential correlations associated with three well-known
models: a power law correlation, the random sine-Gordon
model, and the p-spin spherical spin-glass model.

The model with power-type long-range correlation
[madel (1.1)] is solved by an ultrametric ansatz for the
triangular relations and with a nontrivial function of the
displacement B as the measure of the violation of FDT
in the aging regime
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b(t, t') = max (b(t, t"),b(t", t)), t' ( t" ( t,

(8 1)

(7 l frl'
)

for 7

gill (b)
A[b] = P/I (q)

Pll (b)

( 7. 5 f 7. 5
for w&)t

In this case the asymptotic values of the one-time pa-
rameters such as the energy density, the equivalent
of the Edwards-Anderson parameter q, and the maxi-
mum displacement bo coincide with the equilibrium val-
ues obtained with the full replica symmetry breaking
scheme. Though the system never reaches equilibrium,
these quantities approach the equilibrium values asymp-
totically. This has been also shown to hold for the
Sherrington-Kirkpatrick model and is expected to hold
in models without a threshold in the Thouless-Anderson-
Palrner energy landscape [10—12]. This seems to be a
characteristic of models that are solved statically with a
full replica symmetric scheme. Our results also agree
with the numerical observations of Franz and Mezard
[12].

Model (1.1) with short-range correlations is solved with
a one-blob ansatz for the triangular relations. This means
that in the aging regime the function A [b] measuring the
departure from the FDT is simply a constant and the dy-
namical equation determines the function f relating any
three correlation functions. We have found that in most
of the models we consider the inverse function f presents
an irregularity at the beginning of the aging regime. Ex-
plicitly we find

m(t„+7., t„)- x
~

—1
~ +x(q —b, )

(h(t + 7)
ht

/Blnh(t„)) (~ l= x +x q —boBint ) gt
(8.4)

[see Eq. (6.32)]. Thus the behavior (8.3) is recovered with
1 —xi ——n provided that h(t ) is a power law at large

. If this is not the case a t -dependent amplitude may
spoil the form (8.3).

At the end of the aging regime, i.e. , when t'/t 0, we
can compare with the behavior obtained in the limit of a
massless particle:

b(t +r t-) - q+lnl (1(t +~)l
ht (8.5)

w represents the extra time elapsed after t . Our results
for short-range correlated potentials show that the mean-
field dynamics of a particle in a random potential may
also be represented by a law of this type, at least in the
beginning of the aging regime. Indeed when times are
such that the displacement is larger than q we find m(t +
T, t ) = x[b(t + 7, t ) —bo], which at the beginning of
this regime reads

(8.2)

where n is a continuously variable exponent. This irreg-
ularity is an interesting feature that, although generic,
has not been previously observed, as far as we know, in
the off-equilibrium dynamics of mean-field models (e.g. ,
it does not appear in the p-spin spherical model). A re-
lated irregularity, at the beginning of the out of equilib-
rium relaxations, has been predicted to occur in a model
of traps with a broad distribution of trapping times by
Bouchaud [23]. This allows for a comparison of the mean-
field glassy dynamics with the trap description of aging.

The one-step trap model for the nonequilibrium re-
laxation of glassy systems [23] predicts that the inte-
grated response of a system to a perturbation applied
during the interval [0, t ] (the thermoremanent magneti-
zation for spin systems) has a very sharp decay to q@~
in a microscopic characteristic time. Afterward the ag-
ing regime sets on and the waiting time t is its only
characteristic time. The decay is then described by
m(r, t ) (1 —q~~)g(w) + q~~ f (w/t ), where the first
term is the FDT relaxation and the second one is the
aging relaxation. The aging part is characterized by two
exponents

which naturally leads to logarithmic behavior rather than
power law at variance with (8.3).

The RSGM with nonzero mass belongs to the family
of models solved by a one-blob ansatz with irregularities.
The RSGM in the limit of a vanishing mass as well as the
p-spin spherical spin glass are particularly simple; they
can be studied in an independent way and they serve as
checks to the method to obtain the exponent character-
izing the decay at the beginning of the aging regime. As
regards the case of a general correlation V we have ob-
tained the conditions that P must satisfy in order to be
solved by each particular ansatz.

On many occasions it has been pointed out [44,35] that
the mean-field spin-glass dynamical equations, with the
assumption of the relaxation being at equilibrium, are
very similar to Gotze s mode-coupling equations for a
phenomenological description of the glass transition [45].
The mode-coupling equations for glasses involve only the
density-density correlation function and are time homo-
geneous by construction. Recently, a very interesting first
generalization of the mode-coupling approach to account
for nonequilibrium phenomena has been proposed [46].
The mean-field dynamical equations for the correlation
and response function (without any time homogenous as-
sumption) of the p-spin spherical spin glass are indeed
the dynamical equations arising from the mode-coupling
treatment of a model without explicit quench disorder—
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the Amit-Roginsky Ps model [46].
The equations we have studied in this paper consti-

tute an enlargement of the class of possible extensions of
the mode-coupling equations for glasses. Indeed, one can
show that some of the mode-coupling equations of Gotze
are those associated with the high-temperature phases of
the models we consider here with particular choices of
the random potential. Though in these models there is
explicit quench disorder, it is, however, interesting that
the same equations appear. The further advantage of
these equations is that they imply a more complicated
behavior for their solutions as compared to the solution
of the p-spin spherical spin glass. As we have shown in
this paper they have nontrivial singularities at the be-
ginning of the aging regime. These singularities may be
relevant experimentally for glasses [47,48], an issue which
will be discussed in Ref. [48].

Finally, this work opens the way to study other disor-
dered models in finite dimension D ) 0. We expect some
features found here to extend to higher dimensions, such
as aging efFects with irregularity in the scaling function.
Recent results on instabilities of renormalization group
Bows in several models, such as the sine-Gordon model
[49], suggest that aging efFects may be relevant also at
finite ¹ We shall report on the finite-dimensional case
D & 0 elsewhere [16].
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iP(~', t') = b z b~(~ —~') b(t —t'),
big~(m, t)

(A3)

with A"&(P —@')—:—(b /bP bP' )A(P —@'). The in-
dices n, P label the components of the N-dimensional vec-
tors P, i@.

The dynamical equations for R ~(m, t; m', t')
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= (8, —v' + p) R ~ (a, t; a', t')

xi/~(m, t") ), (A5)

respectively. These are exact equations of motion that
can be derived by standard methods [50]. The angular
brackets here and in what follows denote a mean over the
fields weighted with the dynamical effective action.

The first equation reads

b & h~(~ —~') b(t —t')

APPENDIX A where we have used the fact that (i@i@)must be zero to
preserve causality. The equation for C reads

In this appendix we extend the Gaussian variational
method (GVM) to the dynamics of disordered systems.
This method was previously used to study the statics [5].
Here we extend it by applying a Gaussian decoupling to
the exact equations of motion obtained from the Martin-
Siggia-Rose generating functional. We derive in this way
a set of dynamical equations associated with the model
defined by the Hamiltonian (1.1) with a general Gaussian
random potential V.

We start by defining

2T B ~(x', t';x, t)

= (c), —V'+y) C )'(~, t;a', t')

xi'~(m, t") ) . (A6)

—) dt" (gP(~', t') Ap [@(a,t) —p(a, t")]



1548 LETICIA F. CUGLIANDOLO AND PIERRE Le DOUSSAL 53

The last term on the right-hand side of Eqs. (A5)
and (A6) can be computed using a Gaussian approxi-
mation, i.e. , assuming that the fields @ and iP have a
Gaussian distribution. Using the Ito prescription, which
states R(m, t; m, t) = 0, and the following rule for aver-
aging any set of Gaussian variables (p,}: (p,F(y))P.(p;p~) (E'(p)), the equation for R becomes

h p h (~ —x') h(t —t')
= (Og —V + p) R P(a, t; a', t')

—) dt"R"(x, t; ~, t")[R'P (~, t; ~', t')
phd

-R'(* t" *' t')](&.",'„(&—4'))
Similarly, the equation for C reads

(A7)

2T R p(~', t'; ~, t) = (O, —~2+ &) C p(~, t; ~', t') —) dt"R '(~', t'; ~, t") (Ap, (@—@'))

dt"Rs~(a, t; ~, t")[C' (a, t; a', &') —C' (, &";~', ~')](&p s, (4' —0 ) ) (As)

where ( ) denotes an average over a Gaussian distribution.
These are the general dynamical equations obtained from
the GVM. We now specialize to the case of O(N) sym-
metry, i.e. , isotropy, which also includes N = 1 (RSGM)
as a trivial case, and show that with the definition of
V appropriate for studying the large-N limit, the same
function V has to be used in the statics and the dynamics.

Berne the two functions

2 2

NV
~

—~—:Z(@), —N V
~ ~

—= (a(@)). (A9)

substituted for V. In the limit of N ~ oo these two
functions become identical [5].

One can also apply the Gaussian decoupling in the
e~act equations of motion for the static replica theory.
This provides an alternative way of obtaining the ap-
proximated saddle point equations of Ref. [5]. The exact
saddle point equation is

(&'+ ~)(&-(*)&b(0))

Using isotropy, Eqs. (A7) and (A8) contain only A"p and

p, which are related to V through(4)

(&."p(~)) = Nh-p ~ &(~)~"xp
I

—
2N l

27r

=2h pV'/

l�&a')

2) b, ((p) =4h pV"
~iN) (A10)

Replacing these expressions in (A7) and (A8), one re-
covers the dynamical equations (2.1) and (2.2) with V

— &-(*) ). , ).V(~.(0) - ~.(0))
c,d=1 (c,d=l )

= Th (x) h b (All)

Applying now the Gaussian decoupling, one recovers the
saddle point equations of Ref. [5].

APPENDIX B

In this appendix we describe the derivation of the long-
time dynamical equations, i.e. , for times such that t )
t' )) 1 and B(t, t') = b(t, t') ) q. Neglecting the time
derivative, the r equation reads

Or(t, t')
0 r(t, t') —p+ 4 ds V"(B(t, s)) R(t, s) + 4 ds V"(b~(t —s))r~(t —s)

ds V"(b(t, s)) r(t, s) r~(s —t') —4 ds V"(b(t, s)) r(t, s) r(s, t')

ds V"(b~(t —s)) r~(t —s) r(s, t') .
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We have explicitly separated in the integrals the FDT
regimes (integrals symbolically denoted f, ds ) from
the widely separated time regimes. In the last term of
Eq. (Bl) s varies from t to t and it is very far away
from t'. The assumption is that in that case the func-
tions vary very slowly (we have already neglected the
time derivative in the left-hand side). Hence r(s, t ) is
almost constant in this interval and it can be approxi-
mated by r(t, t'). The last term then cancels the third
one. In addition, using the same approximation and the
FDT relations (3.5) one computes explicitly the integrals
involving the FDT parts

The same procedure can be carried through for b(t, t').
First, one can use that at large t, t', C(t, t) C(t', t')
cy (0) = q. Then the integrals that appear in the b equa-
tion and contain FDT pieces are

t
s V'(by(t —s)) r~(t —s) = '

[V(O) —V(~)]
t T

t'
—2 ds V'(b(t, t')) ry(t' —s) = V'(b(t, t')),

tt

—4 ds V"(b(t, s)) r(t, s) ry(s —t')
tl

- —4V"(b(t, t'))r(t, t') dr ry'(r)
0

V"(b(t, t'))r(t, t'),T

t
2 ds V"(bF(t —s)) ry (t —s) by (t —s)

t

(bf(t ))" (t ) = lv(0) V( )lT

t
2 ds V"(by (t —s)( ry (t —s) [b(t, t') —b(s, t')] - 0.

t

(B2)

using by (oo) = q and by (0) = 0. Finally, the second term
inside the set of large parentheses involves both short and
long times since the integral goes from the initial time,
which is strictly zero, to t, which is large and belongs
to the asymptotic regime. One should then separate the
contribution &om Gnite times to that of long times

ds V"(B(t,s)) R(t, s)

0+
d s V"(b, (t, s) ) r, (t, s)

0

t

ds V"(b(t, s)) r(t, s) .
0+

(B3)

We recall the weak long-term memory hypothesis and
assume that the Gnite times do not contribute to the long-
time dynamics and that the system "forgets" at large
times what happened in the very short times after the
initial time. Then the erst term on the right-hand side of
Eq. (B3) is neglected and one finally obtains the equation
for the slow part of the response function

One also needs to compute

t'+
—2 ds V"(b(t, s)) r(t, s)by(s, t')

t'

t'+
—2V" (b(t, t')) r(t, , t') ds by (s, t') . (B6)

ti

One can see that this integral is subdominant and gives
a vanishing contribution to the b(t, t') equation in the
large-t limit. Since r(t, t ) itself is of order I/t (see be-
low) it results that the FDT part of this integral is of
order q(t+ —t' )/t. The rapidly varying part of the total
integral is thus vanishingly small compared to the total
integral, which is dominated by the slowly varying part.

Again, this equation could have contributions from the
initial times 0 & s ( 0+. We assume they are subleading,
i.e. ,

0+
0 ds V'(B(t, s)) [R(t, s) —R(t', s)],

0

0+
0 ds V"(B(t, s))

0
0 = r(t, t )(—p, +4 ds V"(b(t, s))r(t, s)

x R(t, s) [B(t,s) + B(t, t') —B(s, t')] .

——V"(b(t, t'))) —4 ds V"(b(t, s)) r(t, s)r(s, t').
One finally obtains the equation for the slow part of the
displacement correlation function
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t
0 =

~

——+ 2 ds V"(b(t, s)) r(t, s)
i
b(t, t') + T + —[V'(q) —V'(b(t, t'))]

+2 ds V'(b(t, s)) r(t, s) —2 ds V'(b(t, s)) r(t', s)

+2 ds V"(b(t, s)) r(t, s)b(t, s) —2 ds V"(b(t, s)) r(t, s)b(t', s) —2 ds V"(b(t, s)) r(t, s)b(s, t') . (Ii8)

From (2.3) one finds, using the same decomposition of the
integrals and formulas (B5) to evaluate the FDT parts,
the large time dynamical equation for C(t, t) and C(t, t').

APPENDIX. C

I.et us also indicate the derivation of another (equiva-
lent) form for the equation for B(t, t') and r(t, t'). Start-
ing from (2.1) one defines

APPENDIX D

In this appendix we obtain the recursion relations
for the function B(u) suitable for a numerical solution.
Defining v = u and B(u) = vg(v), one introduces
g(v) = g Og(n, m)v™and g(n, 0) = l. Equation
(6.24) then leads to

0 = ) c v g(v) +Xc iv H(n, v), (Dl)

X(t, t') =— dsB(t, s) (Cl)
where c—:V! + l(q)/n!, X = 2Tx/q, a—nd

BI" ttsuch that B(t, t') = &!,' l . One obtains

p
8 8, BX(t, t')
Bt Bt' ' Bt'

H(n, v) = ) h(n, m)v
m=O

1
QV

V dQ,
d»!"-'l~ (1 —~)-

BX(t, s) BX(t, t')
xg(vx )" 'g(v(l —x) ) (D2)

= —1+
~

—p, + 4 ds V"(B(t,s)) '
i
X(t, t')BX(t, s) )

0 08

—4 ds V"(B(t, s)) X(s, t'), BX(t, s)
gt 19s

(C3)

The integration constant has been Axed using the limit
t —+ t' and

0%(s, t') BX(t, s)
Ot' Bs

(C2)

Integrating over t' and using X(t', t') = 0, one obtains

BX(t, t')
Bt

After some algebra, we obtain two recursion relations for
the coefficients g(n, m) and h(n, m)

m

g(n, m) = ) g(n —1,j)g(l, m —j), (D3)
j=O

( n+ml
h. (n, m) = ) g(n —1,j)g(1, m —j) ~

1+
)

x
i
1+,1+. , D4( n —1+j m —j+11

G a

where P(x, y) = I'(z)I'(y)/I (x + y). At the iteration n
the coefficients g(i, j) and h(i, j), with i = 3, . . . , n and
j = n —i = 0, . . . , n —3, are first directly obtained from
the recursion relations (D3) and (D4). The coefficients
g(1, n —2) and g(2, n —2) [and h(l, n —2) h(2, n —2)] are
then obtained from the equation

2g(1, 0)g(1, n —2) [c(2) + Xc(1)P(l,n —1)]

BW(t, t') . ( BR(t, s) )ilim ' = —lim
~
Rt, t + dst'~t Bt t'~t ( ~, Os )

= lim[rp(0) —r~(e)] = —1. (C4)

Note that at this stage equation (C3) is exact and pro-
vides another convenient form of Eq. (2.1).

n
= —) [c(k)g(k, n —k) + Xc(k —1)h(k, n —k)]

k=3
n —3

—) g(l, k)g(l, n —2 —k)
k=1

x[c(2) + Xc(1)P(1+k, n —1 —k)], (D5)
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with

g(2, n —2) = 2g(1, 0)g(1, n —2)

+ ) g(1, k)g(1, n —2 —k), (D6)

h(2, n —2) = 2g(1, 0)g(l, n —2)P(l, n —1)
n —3

+ ) g(l, k)g(1, n —2 —k)
1

xp(l+ k, n —1 —k),
where P(x, y) = [1 + (x + y)/a]P(1 + x/a, 1 + y/a).
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