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Seemingly unrelated empirical hydrologic laws and several experimental facts related to the
fractal geometry of the river basin are shown to hand a natural explanation into a simple finite-size
scaling ansatz for the power laws exhibited by cumulative distributions of river basin areas. Our
theoretical predictions suggest that the exponent of the power law is directly related to a suitable
fractal dimension of the boundaries, to the elongation of the basin, and to the scaling exponent
of mainstream lengths. Observational evidence from digital elevation maps of natural basins and
numerical simulations for optimal channel networks are found to be in good agreement with the
theoretical predictions. Analytical results for Scheidegger s trees are exactly reproduced.

PACS number(s): 64.60.Ht, 68.70.+w, 92.40.Gc, 92.40.Fb

I. INTR.ODUCTION

Power laws, which are the signature of fractal behav-
ior [1], have been experimentally observed over a huge
range of scales in probability distributions describing
river basin morphology [2—6]. As a part of the river
basin, Quvial networks display a rich variety of fractal
and multi&actal structures [1,7] whose dynamic origin
and geometrical description are of greatest importance
both &om the practical point of view and for a deeper
understanding of how natural events occur.

The starting point for this work is the seminal work of
Hack [8]. He demonstrated the applicability and the far-
reaching implications of a power function by relating the
area of a drainage basin with the length of the principal
river of the basin, for rivers of the Shenandoah Valley and
adjacent mountains in Virginia. This empirical relation
is widely accepted nowadays although its spatial range
of validity [9—ll] and the inference of the complex role
of unchanneled valleys [5] are still debated. Many other
empirical laws describing structural properties in natural
basins through power functions have been likewise dis-
covered [10,12]. All of them support the ubiquitous pres-
ence of IIractal forms in the river basin. Furthermore,
the independence of the characters of the scale-&ee spa-
tial organization of a river network from, say, geology,
climate, vegetation, or exposed lithology has suggested
[13,14] that principles of self-organized criticality [15] are
at work in the development of a river basin.

Although recently significant steps forward have been
made in the understanding of the evolutional properties
of river networks [13—19], it is only currently that a com-
mon theoretical basis where all hydrological empirical
laws can find a natural explanation is being developed.
In this work we shall show how a simple finite scaling

ansatz [20] leads to such a natural explanation for many
empirical and experimental facts, as well as for the scal-
ing properties exhibited by real natural basins and their
suitable numerical simulations.

A river basin is an anisotropic system defined by a lon-
gitudinal typical length I

~~

= I (which we will identify
with the linear size of the system) and a typical perpen-
dicular length I~ & I (see Fig. 1). We shall assume that
the latter scales as

Li+0 (2)

valid whatever the self-aFine scalings of the boundaries
[22].

Hack's law [8] relates the length of the longest stream
I, in the drainage region measured from any site to the di-
vide, with the drainage area of the basin, say a (the num-
ber of sites connected to the actual site through drainage
directions; that is, the area of land that collects precipi-
tations contributing to the network):

and call the basin self one if H -& 1 and self-similar if
H = 1. Here H is called the Hurst exponent due to the
similarity to the analog in the fractional Brownian mo-
tion context [1]. On the other hand the Hurst exponent
can be regarded as a wandering exponent by mapping
the two-dimensional substrate into a 1 + 1 tracer mo-
tion, where the time plays the role of the longitudinal
distance [21]. Equation (1) postulates that basin bound-
aries are self-aKne cumes for which L~, L~ can be seen,
respectively, as diameter and width [7]. Interestingly, it
is a fairly general property of self-affine boundaries that
their embedded area, say a, is related to the diameter
and width via
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II. SCALING OF AREAS

FIG. 1. Fella river network (Northern Italy). The solid
lines are drainage directions indicating local gradients of ele-
vation. In the inset we show a sketch of the river basin where
L is the longitudinal length (and also the linear size of the
system), L~ is the transverse length, and t is the length of
the mainstream.

Within this context, a river network is a spanning tree
defined in a lattice of arbitrary size and shape. A net-
work is therefore a set of drainage directions (Fig. 1). A
river basin is a scalar field of elevations that is consistent
with the mapping of drainage directions defined by the
corresponding network. Drainage directions are usually
identified by steepest descent, i.e., the local gradient of
the elevation field.

In a river basin, the area of a point of the substrate is
defined as the total contributing area draining into the
point through drainage directions, or the number of sites
upstream of the point connected by the network. From
the computational point of view, it can also be regarded
as a measure of the How rate if a unit weight is assigned to
each source a unit rainfall (constant mass injection) is
applied uniformly over the basin. In natural basins, total
contributing areas are amenable to detailed experimental
investigation through the experimental analysis of digital
elevation maps (DEM's) [3] (see below).

Let then a be the area at a given site x (in the case of
real basin the site is assumed to coincide with the pixel
in the DEM). The equation for the area at site x, say a
reads

a = ) W yay+1,
yGNN{x)

(6)

where the accepted values for the exponent are in the
range h = 0.57 —0.6 [9]. The significant departure of h
from the Euclidean value 0.5 led [1] to early speculations
on the &actal nature of river networks.

Many observations of real basins [3,4,23] reveal that
the length t is related to the linear size of the system
through

l - L"', 1& d& &1+0,

1 —a) 0. (5)

where d~ 1.1. Here the bounds mean that the main-
stream ranges &om straight (di = 1) to space filling
(d& = 1+H).

Another well-known hydrological law states that the
density of sources in a basin is constant, i.e., its number
is independent of the size of the system [24]. The fact
that 6 ) 0.5 is an indication of anisotropy in the basin
shape. Indeed Hack noted that if geometrical similarity
is to be preserved as a drainage basin increases in area
downstream, meaning that there is no change in shape,
then the exponent in Eq. (3) should be 0.5. We shall
define 1 —H as the elongation exponent [23] because

p(a, I) =a f( ), 1(w(2,.(L)
' (7)

where a, (I ) is a characteristic area and f(x) is a scaling
function satisfying the following properties:

where TV~ y is a matrix that is 1 if x collects water &om
its nearest-neighbor (NN) site y and 0 otherwise.

Rodriguez-Iturbe et al. [4] showed that real river basins
exhibit a power-law probability of exceedence of the total
contributing area a, say P(a), that scales like P(a) oc a
with P = 0.43 + 0.02. This was shown for several log
scales, and the finite scale efFect shown by all probability
plots was not considered therein. We will now explore the
inference of the finite-size efFect yielding P(a, L), where
L is a given linear size of the system. Figure 2 shows
P(a, L) in four sub-basins of difFerent size L within the
river Fella region [25].

Let us define the probability density distribution
p(a, I) = BP(a, L)/Ba f—or a basin to have area a for
a given linear size L. If the system is self-organized [15],
then one might expect, in analogy to critical phenomena
[20,26], that the finite-size distribution p(a, L) obeys a
scaling form of the type

lim f (x) = 0 sufBciently fast, (8a)
The different experimental values [9,11] of Hack's expo-
nent suggest that in real basins there is a tendency toward
elongation of the larger catchments; that is, basins tend
to become longer and narrower as they enlarge. In terms
of the elongation exponent this means (1 —H) ) 0, while
i.f (1 —H) ( 0 the basins experience contraction.

lim f(x) = c,
x —+0

where c is a suitable constant. We observe that w cannot
be smaller than 1 because for L ~ oo we expect a pure
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hQ -j.5-
0.45

markedly difFerent behavior, and the relationship Eq. (7)
is characteristic of the Quvial network. Nevertheless, the
result p(1, oo) = const is reminiscent of the observational
properties of drainage density. Also, in topologically ran-
dom networks [2] where w = 1.5 exactly, Eq. (11) applies
since 50'% of the links are indeed sources.

Often one is interested in the behavior of the distribu-
tion probability of the total contributing area; that is,

P(a, L) = dA p(A, L) . (12)

-2.5-
Since P = 1+H and using Eqs. (7) and (12) jointly with
a, (L) L~, one gets

-3-

0 2
log a with

P(u, I) =o. ~x( ~) (13)

FIG. 2. Frobability of exceedence P(a, L) of total con-
tributing area of any site in the basin of size L for four real
sub-basins of the River Fella of different size L. The largest
basin covers 4 log~o scales of a. Here we employ pixels units
for which a source has a = 1. Here the dashed line indi-
cates a reasonable threshold for channelized areas [30] (i.e. ,
the suitable minimum area supporting a channel head).

power-law behavior and j p(a, L)da must be 1. Similar
arguments require that 7 & 2. Equation (Sa) ensures the
correct behavior at infinity, while Eq. (Sb) gives a power-
law behavior in the infinite-size limit. Due to Eq. (2) we
have that the characteristic area a, (L) obeys

(14)

and where we have defined the quantity

(15)

do, ap(a, L) - L. (16)

which is independent of I .
Many network models that have been studied in difFer-

ent contexts have a directed character due to the fact that
they are typically grown on a slope that gives a preferred
direction to the How. Under this condition one expects
[27,30] that

a, (L) L~,

with P = 1 + H. Since we require normalization,

(9) In this case, the lower cutofF can be allowed to go to zero,
since the integral is convergent for L —+ oo, and thus one
easily finds

1= da a

L4(~-~) dx x f(x) = (10)

The last equality follows by noting that since 1 & 7. &
2, we cannot allow the lower cutofF to go to zero. There-
fore we find

(17)

which means that there is only one independent exponent
in Eq. (7). This result has already been observed [26,28].
Notice, however, that Eq. (16) holds only if statistically
relevant river configurations are directed [27].

Using Eqs. (14), (17), and (9) we get

p(1, L m oo) = c = ~ —1;
that is, the number of sources in a basin is independent
of the size of the system. This property resembles the
well-known geomorphological result known as the inde-
pendence of drainage density on total basin area [24],
where drainage density is a measure of the number of
sources (i.e. , the ratio of channelized area divided by to-
tal area). However, we recall that p(1, L ~ oo) is an
extrapolation of the power-law behavior for low values of
a, a procedure that is impaired, in practice, by the lower
cutofF imposed in natural river basins by channel initia-
tion [2]. Hillslope, i.e. , nonfluvial areas, have, in fact, a

in substantial agreement with theoretical results [23] and
experimental data [4,23,29] &om which we expect H in
the range 0.75 —0.8 and P = 0.43 6 0.02. Interestingly,
the elongation exponent is 1 —H [see Eq. (5)], thereby
showing elongation because H ( 1. We will now show
that the nondirect character yields a minor modification
to (18).

In the general case (nondirected networks), from
Eq. (7) one obtains (a) = I~(z ) J'

&&&
dxxi f(x),

where the lower cutofF is irrelevant because the integral
converges for L m oo. It thus follows [30] that
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(a) ~ L~i'- l III. SCALING OF LENGTHS

The above results also allow one to relate the exponents
~ and P, thus linking the planar aggregation structure to
the elongation imposed by the characteristic size, since
(a) = E oc L+ [30]. Whatever the definition, we find the
relationship linking the scaling coeKcients to be

(20)

(21)

We finally note that, from Eqs. (7) and (9), one obtains

(22)

and thus we can provide an alternative definition of char-
acteristic size of the contributing area, A, as

A= (~')
(n)

(23)

which, once substituted in Eq. (7), yields the final scaling
relationship in the form

where y 1.05 is defiiied in [23,30]. Notice that in the
case &p = 1 one recovers Eq. (18).

The above relationship is analytically verified, for in-
stance, in the simple Scheidegger models of network de-
velopment [31], where ~ = 4/3 and rp = 1 yields exactly
P = 3/2. We also note that in the general case one ob-
tains

R(l, L') = j dun'(t, a) p(a, L) . (25)

We shall further denote with II(l, a) and II(l, I ) the cor
responding probabilities of exceedence, e.g. , II(l, a)
j& m(x, a) dx. In general nothing can be said about
the distribution fr(/, L)or II(l, L) unless the distribution
vr(t, a) is known. However, it is generally accepted that
the function vr(t, a) is a sharply peaked function of one
variable with respect to the other, thus leading to an ef-
fective constraint between areas and lengths. Thus one
may assume that

vr(l, a) = b(l —a"), (26)

which is a mathematical statement of Hack's law when
this law is assumed to hold without dispersion (see be-

The stream length at any point is defined as the main
distance measured through the network from the point
to the boundary of the basin. Technically one defines the
mainstream pattern upstream of any junction following
the site having maximum area (in case of equal contribu-
tions one chooses at random) until a source is reached.

Let us now define the probability distribution vr(t, a)
of the lengths defined in this way for points with a given
area a. The latter constraint plays an important role
in the definition of Hack's law (see below). From the
convolution property, the length distribution is given by

p(u, A)=a f(—
) (24)

From the data shown in Fig. 2, one obtains the results
shown in Fig. 3. for the river Fella basin, in domains
ranging &om 2200 to 140 km . Here the exponent of the
power law is the experimental value w = 1.45 [25]. The
collapse of the various curves is deemed excellent, and
thus we conclude that the generalized scaling law (7) is
supported by experimental and theoretical data.

3.5

2. 5

0.8 .

1.4 1.6 1.8

0.2 lo L
0.

0 2500 5000 7500 10000 12500 15000
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PIG. 3. Collapse of the scaling curves a~5'(a, A) vs a/A for
the four sub-basins shown in Fig. 1. The collapse is correctly
obtained for P = 0.45.

FIG. 4. Experimental scaling relationships for the river
Fella basin: an independent veri6cation of the relationship
A oc L@ and I oc L~ with P = 1.8 + 0.01 and p = 1.05+ 0.02.
Here we employ pixel units, i.e., A is obtained from the second
moment of total contributing area whose units are discussed
in Fig. 2. Lengths I,E, are multiples of the unit ruler iden-
tified by the linear size of the pixel. Logarithms are in base
10.
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TABLE I. Summary of scaling coefficients defined in Eqs. (3), (9), (14), (17—20), (29), (32).
Notice that only the results of di rect measurements are shown. As an example, the value of P = 1+H
is measured through the scaling relationship of A vs L [Eq. (23)], while H has been measured [33]
from the self-affine properties of the basin boundaries. The matching of the corresponding (and
independent) values of P and H can be appreciated, as well as the other related quantities.

Exponent
r = I+P
$=1+H
H

h = di/@

p = 1+P/h

Scheidegger [21]
4/3
3/2
0.5
1

2/3
1
1

1.5

OCN [18,19,26,33]
1.43 + 0.02
1.8 —1.9

1.1
0.57 —0.58

1.1
1.05

1.8 + 0.05

Real basins [4,3,29,32]
1.43 + 0.02
1.8 + 0.1

0.75 —0.80
1.05 —1.12
0.57 —0.60
1.1 + 0.01
1.05 + 0.01
1.8 —1.9

low). In this case it is easily derived that in the L ~ oo
limit;

II(&, L ~ ~) ~ I-l'/"

and fr(/, I,) oc l ~, with p = 1 + P/h.
The same result (27) can be derived if we assume for

a(l, a) a scaling form such as

(lb
vr(l, a) = —g ~l (a") (28)

l—:(l) dl vr(l, a) l, (29)

which is a generalization of Eq. (26). We notice that
Eq. (28) does not strictly presume Hack's law, since the
original assumptions do not consider statistical Huctua-
tions about the mean value. Our interpretation suggests
that Huctuations are indeed scaling, and Hack's law holds
for the mean; see below. The same data [25] used to pro-
duce Figs. 3 and 4 support our interpretation from direct
measurements [23).

A summary of scaling exponents in real basins
[3,4,8,29,32], optimal channels networks [18,19,26,33],
and Scheidegger's trees [21] is shown in Table I. Notice
that in the table we make the explicit use of a divider frac-
tal dimension df [32] for basin boundaries, which cannot
be directly related to the value of H for self-aKne bound-
aries [23].

We will now show how the above scaling properties
relate to Hack's law. It is important to stress the fact
that a priori the areas a and the lengths l are dependent
random variables. As we said above this means that the
lengths of the streams must be measured with respect to
a given value of the area a. Let us define

where the distribution vr(l, a) has been assumed to be
normalized to unity and is given by either Eqs. (26) or
(28).

We shall identify the length of the maximum stream
with the typical value of the distribution of the length
that becomes equal to the average value if the distribu-
tion is self-averaging. Using Eqs. (1,4) and identifying l
with the length I and a, (I) with the area a one indeed
gets Hack's law (3), with

6= 1+H (30)

Notice that it would be inconsistent to infer d~ g 1
without assuming p g 1 in the determination of the
proper value of H [Eqs. (18,21)]. In the important case
where one assumes p d~, we obtain the result

P = 1 —h, (31)

1 —H=2 ——) 0,6 (32)

which implies again that the basins elongate with the
size. This result is also consistent with observational evi-
dence [8,9,11] and recent numerical results [13—19,28,33].

which is an intriguing result. Notice that one cannot
justify theoretically the equality of y and d~ because the
former is related to the scaling of the mean distance to
the outlet and the latter to the scaling exponent of the
mainstream. The observational coincidence h, 0.57 and
P 0.43 is noteworthy.

Finally, using the inequality 1 & d~ & 1 + H it imme-
diately shows that the elongation exponent in Eq. (5),
1 —H, is
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