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Nonclassical kinetics in three dimensions: Simulations of elementary
A + H and A + A reactions
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Monte Carlo simulations are employed to study the rate laws of A + A ~ 0 and A + B —+ 0
difFusion-limited elementary reactions in three dimensions (3D). Using re8ective instead of cyclic
boundary conditions, we do observe the Zeldovich regime in 3D for the A+ B reaction. The time
and density values for the crossover into the Zeldovich regime in 3D agree with the existing scaling
laws and provide the hitherto missing scaling coefIicient. We show that the behavior of the A+ A
reaction rates and the early time behavior of the A + B reaction rates in 1D, 2D, and 3D map the
rate of distinct sites visited by a single random walker, giving nonclassical kinetics at early times in
all cases. We also determine a simple scaling law for crossover to finite size effects, which depends
only on the linear lattice length, except when the crossover to finite size effects and the crossover to
the Zeldovich regime are concomitant.

PACS number(s): 05.40.+j, 05.60.+w

I. INTRGDUCTIQN

Much work has been done on anomalous, nonclassical
reaction kinetics, but the simulations, the experiments,
and much of the theoretical work iias been largely con-
fined to low-dimensional systems [1—92]. The prevailing
belief has been that classical kinetics [93—100] applies in
three dimensions. For the pseudomonomolecular elemen-
tary reaction A+ C —+ t + products and for the bimolec-
ular elementary reactions of the form A + A —+ 0 and
A + A i A it is well known [4,14—17,22] that the criti-
cal dimension is two and therefore no anomalies should
occur in dimensions higher than two. The same is true
for A + B -+ 0 reactions with a source terin [47, 52].
For the elementary A + B ~ 0 batch reactions there
has been doubt whether the anomalous Zeldovich, regime
(with segregation of A and B) is obtainable in finite times
for real systems in three dimensions (3D). Furthermore,
for extremely long times, segregation may not occur in
experimental systems because of various antisegregation
factors such as minute convection currents [46] or back-
reaction [30].

Theoretical and simulation work in lower dimensions
have established the existence of [17,23, 30] and crossover
times for [101—103] the Zeldovich regime in A + B reac-
tions. Similarly, the depletion zone anomalies and their
kinetic consequences for lower-dimensional A + A and
A + C + C reactions [50, 51, 53, 103] have been estab-
lished by both theory and simulations. Challenging ex-
periments have been carried out in low-dimensional sys-
tems —IIractal and one-dimensional systems, bearing out
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the theoretical predictions [51, 91]. However, no such
experiments are available for three-dimensional systems,
except some old work on trapping and annihilation in
crystals [104], where no deviations &om classical, Srnolu-
chowski kinetics have been reported for the A + A and
A+C —+ C cases (we exclude here the case of geminate re-
combination [97, 102, 105]). The aim of the present work
is to encourage careful experiments in three dimensions
by pointing out under what conditions anomalous kinet-
ics should be observable for A+ B and even for A+ A
reactions in three dimensions.

For the A+ B reaction in 3D, we map out the time and
the density regimes for the Zeldovich segregation and its
concomitant anomalous [92] rate law which describes the
decay of the reactant density in time t ~ . Our simula-
tions [92] are performed with reflective boundary condi-
tions (typical for real systems) and with vessel (lattice)
sizes larger than in most previous simulations. Previous
simulations have mostly used cyclic boundary conditions,
which act as efFective convection currents, especially in
three dimensions, and thus hinder the system's transition
to the Zeldovich regime (unless other algorithmic changes
are made [92]).

For the A + A + 0 reactions we show that it takes
much longer than usually assumed to reach the classical
behavior. Furthermore, flnite size effects can cut into the
classical regime at longer times, especially for simulations
with cyclic boundary conditions, thus giving the appear-
ance of nonclassicality over the entire time regime of the
simulation. We get better results using reflective bound-
ary conditions as well as larger lattice sizes. We note
that there is no rigorous theory available for the three-
dimensional A + A reaction and thus the Monte Carlo
simulations are crucial to our conceptual framework.

The A+ B' reaction rate is shown to match the anoma-
lous early time behavior of the A+ A reaction rate until
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the crossover to the Zeldovich regime affects the A + B
rate. We claim that the anomalous behavior of the A+ A
and A+B reaction rates at early times are simply a reflec-
tion of the mapping of the A+ A reaction behavior onto
that of the single random walker, specifically its rate of
distinct sites visited [14, 15, 26]. As has been argued be-
fore [17,30, 101], the A+ B reaction hugs the behavior of
the A+ A reaction at early times. The result is that both
A + A and A + B reactions relate to the single random
walker's net visitation efficiency, a well known quantity
[106—108]. We also note that the A+V ~ C reaction has
been long shown [4, ll, 109] to follow this visitation efB-
ciency under most circumstances. We thus demonstrate
a united, nonclassical early time behavior for all three el-
ementary bimolecular reaction cases in three dimensions
(as well as in one and two dimensions).

We stress the large role played by the bound. ary
conditions in three dimensions. We demonstrate un-
equivocally the attainment of the Zeldovich regime and
Bnd the crossover time to this regime to follow the previ-
ously suggested universal formula. The crossover density
p, is also shown to follow the very simple relation given
by a universal fraction of the original density, p, i.e. ,

p, = fop where fg is a constant depending only on di-
mensionality (but not on lattice size, p„etc.). We also
find that the crossover time to 6nite size effects scales as
L2 regardless of reaction type or dimensionality.

II. METHOD OF SIMULATION

Monte Carlo comuputer simulations are often used to
model random processes such as diffusion [109,110]. Our
computer simulations for diffusion-limited chemical reac-
tions are performed according to the following algorithm.
A population of reactive particles is initially placed on
a lattice by randomly choosing the coordinates for each
particle. Particles diffuse on the lattice, which is modeled
by independent random walks of the individual particles.
The coordinates of all particles are monitored as a func-
tion of time. Steps are allowed to nearest-neighbor sites
only. There is no interparticle interaction. A reaction oc-
curs when two reactive particles collide, i.e., land at the
same site. Every collision leads to a reaction with proba-
bility one. When two particles react in this fashion, they
are removed from the system (they are annihilated). In
the present study we treat the case where all reactants
are generated only at time zero, before any reaction has
occurred, and thus the particle density decreases as a
function of time. For the A+ A type reaction, reaction
occurs if two A particles collide. For the A+B type reac-
tion, reaction occurs when an A and a B particle collide.
No reaction occurs if two A particles (or two B particles)
collide. If an A (B) particle attempts to land on a site
already occupied by another A. (B) particle, the parti-
cle does not move in that time step (excluded volume
condition).

For any space dimensionality, one-dimensional arrays
are used to store the coordinates of the position of ev-
ery particle. Another array, which has a d.imensional-
ity equal to the dimensionality of the lattice, is used to
store the occupancy status of each site. A zero value for

an array element specifies that the corresponding site is
empty. For the A+ A reaction, a positive integer in an
array element indicates that the corrsponding site is oc-
cupied by an A particle. The value of the integer is the
tag number for the particle whose position is stored in
the coordinate arrays. For example, in two dimensions,
M(17, 3) = 5 shows that site (17,3) is occupied by the
Mth particle.

For the A + B reaction one additionally must distin-
guish between the two types of particles. A zero array
element still speci6es an empty site. Now we have pos-
itive and negative integer values in the site array. A
negative integer specifies that a site is occupied by an
A particle, while a positive integer specifies that the site
is occupied by a B particle. The absolute values of the
integers are now the tag numbers for particles. If here
M(17, 3) = —5 this shows that site (17, 3) is occupied by
the fifth A particle.

The simulation proceeds by running through the par-
ticle list (coordinate arrays), moving one particle at a
time in a random direction from (i, j) to (i', j'). Before
a particle is moved. , the product of the array elements
M(i, j)M(i', j') is formed. If this product is zero, this
means that the new site is empty and the move is im-

mediately performed. If this product is nonzero then,
for the A + A reaction, there is a reaction between the
particles on the sites (i, j) and (i', j'), and both parti-
cles are removed Rom the system (annihilated). The site
elements M(i, j) and M(i', j') are set equal to zero and
the coordinate arrays are shrunk by two elements. The
easiest way to make this change is to move the last two
particles into the array positions with the tag numbers of
the two annihilated particles. In the A+ B type reaction,
if the M(i, j)M(i', j') product is nonzero then this may
or may not lead to reaction. If it is positive then the
two colliding particles are of the same type, nothing hap-
pens, and the two particles remain in their positions. If
the product is negative, this means that the two particles
are of opposite type and they are annihilated. Again, the
M(i,j) and M(i', j') elements are set equal to zero. The
coordinate arrays are shrunk as in the previous case.

It may seem redundant to keep the same information
in two separate arrays but it is a time saving practice. A
simple alternative is to keep only the lattice array and to
refer to this array when we need to know the occupancy
of a given site. However, this method is not the most
efficient. Consider the nature of the reaction process. If
only the site array is kept, in each time step the entire
array of sites must be scanned for unreacted particles.
Using the present method, only the list of all remaining,
unreacted particles is scanned once in each time step. It
is straightforward after moving a particle to determine
its new location. If this list were not kept in memory,
then we would have to locate and. move the reacting par-
ticles by sweeping through the entire lattice at each time
step. This sweep is considerably more time consuming,
especially when only a few particles are present.

III. RESULTS AND DISCUSSION
According to Argyrakis et aL [101] the A + B ~ 0

batch reaction has three major time regimes: (1) the
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early time, "A+ A regime" (called so because of its sim-
ilarity to the A+ A reaction behavior), (2) the Zeldovich
regime, where segregation has occurred and the rate of
reaction is much reduced, and (3) the finite size regime,
where few particles are left and the reaction rate increases
exponentially. The onset of this regime obviously de-
pends on the lattice size. In the present work we explore
all three regimes and are particularly interested in the
two crossover behaviors. The crossover time from the
A+ A to the Zeldovich regime is t,, and that to the finite
size effect is tI. If t~ & t„all three regimes exist; how-
ever, if t~ & t, the Zeldovich regime is "squeezed out. "
Obviously, for a genuine A+ A ~ 0 reaction there is no
Zeldovich regime and there is only one crossover time, tI,
signaling the onset of the finite size effect.

For the A+ B reaction on a simple three-dimensional
cube, Fig. 1 shows the standard presentation of the reac-
tion progress, given by the reciprocal density: (p ) —po
vs time. Note that p = p~ = pic and po = p~(t = 0) =
p&(t = 0). Figure 1 clearly demonstrates the asymptotic
results of the Zeldovich theory, i.e., a p t ~ power
law in the time interval of about t = 10 to 10 . At later
times the finite size effect regime is reached. Somewhat
unexpectedly, only when refiective boundary conditions
are employed is there a clear-cut crossover to the Zel-
dovich regime, followed by a td' power law where P =
0.75, 0.75, and 0.75, respectively, for linear lattice lengths
of L = 200, 150, and 100. Upon employment of cyclic
boundary conditions, finite size effects start earlier due
to a faster decay, which results in a higher power law.
For the saine time intervals in which we found P = 0.75
using reflective boundary conditions, we now find P =
1.00, 0.99, and 0.96, for L = 200, 150, and 100, respec-
tively, i.e. , no Zeldovich regime. While past works [71,
27] have reported P's of 0.85 or 0.89 as indicative that the
Zeldovich regime is approached. , we find that even for the
A+ A regime, at early times, one gets an approximate
value of P = 0.85 for all three 3D lattices, irrespective of
the nature of the boundary conditions. This is because
in this so-called A+ A regime the early slopes (power P)
mimic those of the A + A reactions (Fig. 2) and these

also show a P of about 0.85, rather than 1, for reasons
discussed below.

From Eq. (24) of Argyrakis et al. [101], the crossover
time is given by

1
2/d~4/d

where D is the diÃusion constant (1/2d in our simulation)
and fd a diinension (only) dependent constant. Obvi-
ously choosing a larger p0 gives a shorter t, . This not
only saves computer time but helps to achieve t,
where tI is the finite size effect crossover time. The fac-
tor po in the denominator of Eq. (1) makes it appear
easier to reach t, for d = 3, compared to lower dimensions
for the same p0. However, two factors oppose each other:
(1) the fd factor is much smaller in d = 3, not only

4/d

because of the power of 4/3 (note that fd & 1), but also
because of fs « f2 « fi (see below) and (2) the finite
size effects start "earlier" in cubic lattices simply because
of the finite memory of the computer which limits the lin-
ear dimension of the simulated cube to be much smaller
than that of a square, and even more so compared to a
line (for the same total number of lattice sites). In order
not to miss out on the Zeldovich regime we thus selected a
high particle density, po

——p~(t = 0) = pii(t = 0) = 0.4.
In addition, we simulated cubes that are larger, or at
least as large, as in previous simulations [69, 70, 89].

As mentioned, even for our largest lattice, L = 200
(i.e. , 8 x 10 sites), the cyclic boundary condition simula-
tions do not show a Zeldovich regime. Our interpretation
is that the cyclic boundary effects work against the seg-
regation tendency by essentially circulating particles, like
a convection current. The latter causes a continuous ef-
fective mixing at the boundary area and thus a breakup
of the segregation zones, which are responsible for the
Zeldovich regime.
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FIG. 2. (p) —p vs t for 3D lattices of linear size I =
100, 150, 200 (top to bottom, respectively) for the A+ A ~ 0
reaction. Dashed lines indicate cyclic boundary conditions,
solid lines indicate reBective boundary conditions. See text
for discussion. Initial particle densities, in number per site,
are 0.8. Also shown is the curve for S~, the number of distinct
sites visited by a single particle in N steps on a 3D lattice
(lower single curve).

100
100 10 10 101000

FIG. l. (p) —p vs t for A + R m 0 reaction on 3D
lattices of linear size I = 100, 150, and 200 with either cyclic
or reBective boundary conditions. Cylic boundary conditions
are designated by cbc, refiective only by rbc.
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For comparison with the A + B reaction we also sim-
ulated A + A reactions. Figure 2 shows the behavior
of the A + A ~ 0 reaction on large cubes. Again the
cyclic boundary conditions seem to hasten the finite size
effects, although not as drastically as in the A+ B case.
Due to the absence of segregation, the mixing effect is
less crucial, though still affecting any nonclassical power
(i.e., P ( 1).

According to the conventional scaling arguments [17,
30], for any elementary A. + A reaction with an initial
random distribution of particles, the critical dimension
is d = 2. Thus, for d = 3, the classical, mean field results
apply, giving the textbook behavior, i.e., a linear (P = 1)
dependence of the reaction progress on time:

———= kt,1 1

p po
(2)

where k is the traditional rate constant (in our simula-
tions, k = 1, 1/2, and 1/3 in 1D, 2D, and 3D, respec-
tively). However, our results (Fig. 2) show that at early
times P is in the range 0.8 —0.9, an apparent contrachc-
tion. An alternative scaling argument [14, 15, 80] starts
from a model which depends on the single particle explo-
ration volume, i.e., the number of distinct sites visited S,
resulting in a linear dependence of the reaction progress
on the exploration volume:

1 1

P P0
(3)

10

While asymptotically in 3D [106] S t, this is not the
case at early time, where S is sublinear in time [106]. We
have therefore added to Fig. 2 the relation of S„vs t from
an analytical solution of [106]. It is easily seen that the
reaction progress (p —po ) curve is eff'ectively parallel
to that of S„vs time. This is seen even more clearly in
Fig. 3. Here the A+ A reaction progress is essentially
linear with S in all dimensionalities (d = 1, 2, 3) until
finite size effects appear at long times. We also see in Fig.

3 that the corresponding A+ B reactions follow the A+ A
curves at early times (only). In this figure, the crossover
to the Zeldovich regime is more clear than in Fig. 1 and
so Fig. 3 is actually used below to find crossover times
t, (and crossover densities p, ).

Figure 4 is a scaling test based on Eq. (1). We find
that for different initial densities (po) the crossover to seg-
regation (Zeldovich) occurs approximately at the same

tpo value. From this, one can derive the p, /po ——fs
2/t'3

values, which give approximately fs ——0.007. Compar-
ing to the approximate f2 and fi values derived before
[101],fi ——0.4 and f2 ——0.03, we find a rough but simple
relation

fs & f2 & fi, (4)

which may be intuitively obvious.
Finite size sects after the Zeldovich regime: When

tI ) t„Gnite size effects arise when the segregated ag-
gregate size approaches the size of the lattice. Argyrakis
et at. [101]give the expression

ti —— L
1

2dD (6)

Obviously this case will arise for small lattices (small
L), low initial densities po, or combinations thereof [Eqs.

L
st - gd2

o.~D

where gg and ng are constant for a given dimensional-
ity d [92]. One way of testing this expression, and also
deriving the crossover values tI and p~, is to plot the re-
action progress p

i —po vs t/L for various lattice sizes
I. Figure 5 demonstrates that this scaling idea works
reasonably well for different lattice sizes I.

Finite size effects that appear before, and thereby nul
lify, the Zeldovich regime: When tl ( t,, the A+ B reac-
tion's Gnite size effect takes over directly from its "A+ A
regime. " Using Einstein's diffusion equation we write the
scaling equation

1 1
P P
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& ~A+B~, =.

I I I Il«ll 1 I I II«ll

- A+B~O
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10— II.'&
i«ill s & i«i& ~ l1

N

FIG. 3. (p) —p vs S~ for reactions on 1D, 2D, and 3D
lattices. Boundary conditions are re8ective. Initial particle
densities in particle per site are 0.8 for A + A ~ 0 and 0.4
per species for A + R —+ 0. Subscripts correspond to the
dimensionality of the lattice. Note that for the A+A reactions
the slope is effectively unity in the second, third and fourth
decades.

0.01 0.1 1 10 100 1000

tp "'
0

10 10 10

FIG. 4. (p) —p
' vs tp ~ for A+ B m 0 on a 200

lattice. Different curves arise from different initial densities:
0.01, 0.04, 0.07, 0.1, 0.2, and 0.4 (top to bottom, respectively)
in particle per site per species. For all curves, crossover to the
Zeldovich regime occurs between the two vertical lines.
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TABLE I. Parameters describing crossover to finite size effects.

Dimension

+cate
A, )

A+A
1

0.5
2
1

1.1 + 0.1

A+A
2

0.85 —0.9
0.6
1.7

1.7 + 0.2

A+A
3

0.8 —1
0.3-0.4
1.6 —2

2.3 + 0.4

A+B
1

0.25
2

0.5
0.6 + 0.3

A+B
2

0.5
0.5

1
1.0 + 0.2

A+B
3(L ( 50)
0.8 —1

0.2
1.6 —2

1.7 + 0.4

A+B
3(I. & 50)

0.75
c

1.5
1.4 + 0.4

Range due to logarithmic correction.
Range due to time dependent behavior of S~.

'The factor (qs/ns) in Eq. (5) is not known [101].

(1) and (6)]. Basically we expect this case to be equiv-
alent to the finite size effects of the A + A reaction.
Some approaches have assumed that the condition for
the crossover density p~ is given by comparing the aver-
age interparticle distance to the lattice size:

( 1 ) 1/it

I«J
or, equivalently,

1

pi

We show below that this relation is not borne out by the
simulations —see Fig. 6 and Table I.

A different approach is based on the time it takes a
particle to reach the wall, given by the Einstein analog
to Eq. (6). Equation (6) again relates to L [compare Eq.
(5)]. Thus the primary relation is based on the time t~,
rather than the density p~. Using the asymptotic power
law [14] relating p to t, gives

1 k p

p& . We assume that P can be taken from the regime
immediately preceding the crossover time t~. As pointed
out earlier, the power P depends on the dimensionality d,
the kind of reaction (A+ A or A+ B), and the particular
regime (Zeldovich or pre-Zeldovich).

Combining Eqs. (6) and (9):

—= aL (10)

tr I.
The validity of this relation can be seen in Fig. 7. On
the other hand, for the crossover to the d-dimensional
segregated Zeldovich regime, the primary quantity is p,
rather than t„with the simple universal scaling relation
(Eq. 23 of [101])

where a is constant, a = (k/P)(D/2d)4' and A = 2P.
Figure 6 appears to bear out this relation for the various
sizes, dimensionalities, reaction kinds, and regimes, as
can be seen in the last row of Table I.

From this last discussion, it is apparent that for all
crossovers to Rnite size effects the primary quantity is tI
rather than p~, with the simple universal scaling relation

where k is the rate constant. Obviously here p0 pa = fitpO . (12)

710
- A+B~O

This is easy to understand; the origin of this effect is the
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P P
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i I I i I I

3D A+B
—~ -3D 4+8
--+--- 2D A+B

— ~-- 3DA+B
~ --3D A+A

1D A+A~2D A+

I I I I IIIII I1
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»I il i i I i I I i i 1 1 I i i 1 I I

1000 10'

FIG. 5. (p) —p vs t/L for A + B ~ 0 in three
dimensions for L = 50, 80, 100, 150, 200. Initial particle
density in particles per site is 0.4 per species. For all curves,
the crossover to the Zeldovich regime occurs between the two
vertical lines.

FJG. Q. (p~) —p vs L for A+ A —& 0 and A+ B ~ 0
in 1D, 2D, and 3D. For the 3D A+ B case, open circles depict
linear lattice sizes with L ( 50 and filled circles depict linear
lattice sizes with L ) 50. The I ) 50 points are the only
data in the Zeldovich regime.
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initial time density fluctuation. When both crossover
regimes overlap, the situation is more complex.

10'

10

IV. CONCLUSIONS AND SUMMARY 10

Our simulations for the A + B reaction have demon-
strated the existence of the Zeldovich segregation regime
in three dimensions and the validity of its peculiar power
law, p t ~ . This was achieved using simula-
tions that employed large enough cubic lattices, refiec-
tive boundary conditions, and large initial densities. We
have also valid. ated, for cubic lattices, the scaling law for
the crossover density p, and crossover time t, pertain-
ing to the onset of the segregated Zeldovich regime and
established the empirical fs value for the simple scaling
relation p, = fdpo. The crossover time to the Zeldovich
regime depends on density only, implicating the source of
the Zeldovich type behavior initial spatial Buctuations
in reactant density.

We show as well that even for the A + A reaction
and the A + A regime of the A + B reaction, the early
time regime does not give the classical kinetics result

p —p0 ——kt but rather p
1 —p0 g t&, where

P is a power smaller than unity over a significant time
regime. This regime for A+ B may cross over directly
into the Zeldovich regime where P = 3/4. In such a case
the reaction may never reach the classical behavior of
P = 1. Concomitantly, the particle distribution cannot
be random if P ( 1, because then the reaction rate is not
second order in the density [103]. We note that for a ran-
dom particle distribution the binary collision probability
is always second ord.er in the density, i.e. , proportional
to p

We have also validated in three dimensions the scaling
of the finite size effect crossover time t~ for t~ )) t„ i.e. ,
for the Zeldovich regime of the A+ B reaction, namely,
t~ L, where L is the linear size of the reaction domain.
Furthermore, we have also shown that also for t~ && t„
i.e., the non-Zeldovich regime 6nite size crossover, the
basic relation is t~ L . These simple scaling relations

1000

100

I I I I I I III ill

dA+A
dA+A
dA+A
dA+8
dA+8
dA+8
OPe=2

10 100
I

1000 104

FIG. 7. t~ vs L for A+ A —+ 0 and A+ B —+ 0 in 1D, 2D,
and 3D. The straight line has a slope of 2.00. Note: A+ B
results do not include the Zeldovich regime.

apply universally to both A + A and A + B reactions,
for both reaction regimes of A+ B, at all dimensionali-
ties (d = 1, 2, 3) and for all initial densities po and lattice
sizes L (see Fig. 7). The fact that the crossover time to
finite size effects depends only on the linear lattice size
emphasizes the fact that the reactant particles obey the
Einstein diffusion equation and that it is the particles'
mean free paths that determine when finite size effects
set in, i.e., when the mean free path length is on the
order of the linear lattice size. When tI = t„ the sit-
uation is more complex. Finally we have shown some
unexpected boundary condition effects. These are rel-
evant not only for simulations but also for mesoscopic
(small, finite) experimental systems.
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