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We present a generalization of Benettin's classical algorithm for the calculation of full Lyapunov
spectra to the case of dynamical systems where the smooth streaming is interrupted by a differen-
tiable map at discrete times. With this formalism we derive the transformation rules for the offset
vectors in tangent space for a system of hard particles in equilibrium and nonequilibrium steady
states. In particular, we study the color conductivity of a system of hard disks carrying color charges
subjected to an external color field. Full Lyapunov spectra are obtained numerically for equilib-
rium systems of 64 and 144 hard disks. Furthermore, the maximum Lyapunov exponent and the
Kolmogorov-Sinai entropy are studied over a wide range of densities. Both mimic the collision rate
very well. In the low density regime the maximum Lyapunov exponent is found to follow the relation
Az oc —plnp, as conjectured by Krylov. Full Lyapunov spectra are also reported for nonequilibrium
steady-state systems of 64 hard disks, which carry color charges and are externally perturbed by an
applied color field. The simulations cover a wide range of densities and fields. From a careful study
of small three- and four-particle systems the validity of the conjugate pairing rule is established
numerically with an error less than 0.1'Po. Also the number of vanishing Lyapunov exponents due
to the conserved quantities —center of mass, linear momentum, and kinetic energy —is discussed in
some detail.
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X. MOXZV&rZOX

Since the pioneering work of Alder and Wainwright
[1,2], in which they laid down the foundations of the
molecular dynamics method, a huge amount of work has
been done on systems of elastic hard disks or spheres.
A wealth of highly interesting phenomena has been dis-
covered in this apparently simple model, one of the most
fundamental being that the hypothesis of local molecular
chaos is not strictly valid [3]. Stated in more exact terms,
the velocity autocorrelation function of the particles does
not decay exponentially, but follows a power law for long
times, which means that the system loses memory of past
states very slowly. In spite of this, well behaved transport
coeKcients are found in molecular dynamics simulation of
nonequilibrium steady-state systems, even in two dimen-
sions and in the thermodynamic limit [4]. Since the trans-
port coefBcients of a many-body system are intimately
related to its Lyapunov spectrum [5,6], it seems plausi-
ble that this peculiarity of two-dimensional hard-disk flu-
ids should be reflected also in their Lyapunov spectrum.
Another property of hard disks and hard spheres, which
turns out to have a major impact on the Lyapunov in-
stability of the system, is the solid-fluid phase transition
first discovered by Alder and Wainwright [7,8].

Hard-sphere systems belong to a minority of models for
which rigorous mathematical results exist. It has been
proved that they are unstable in the sense of Lyapunov

and exhibit C-system behavior, which means that they
are ergodic and mixing [9—ll]. But no attempts at the
numerical computation of Lyapunov spectra have been
undertaken up to now. For many-body systems this prop-
erty has been explored only for models with smooth inter-
action potentials [12]. The reason for this disparity lies in
the availability of practical and accurate numerical algo-
rithms for the calculation of Lyapunov spectra for smooth
dynamical systems, and the lack of such methods for sys-
tems involving hard-core interactions. Nevertheless, due
to their simple dynamics hard-sphere systems should pro-
vide new insight into the microsopic processes determin-
ing the mechanical instability of many-body sytems.

In this paper we demonstrate how the classic algorithm
of Benettin et al. [13,14], already used for the calculation
of Lyapunov spectra of fluids in equilibrium and nonequi-
librium steady states with phase space dimension ranging
from 2 to 400 [15] for the evaluation of full spectra, and
to 129600 for the maximum exponent [4], can be general-
ized to the case of hard elastic interactions. In Sec. II the
theoretical background and necessary definitions are pro-
vided. In Sec. III algorithms for the computation of full
Lyapunov spectra are derived for a number of models of
increasing complexity which involve hard-disk collisions
without or with an applied external force. In Sec. IU we
study many-body systems of hard disks in equilibrium
and nonequilibrium steady states and provide a numer-
ical test for the validity of the conjugate pairing princi-
ple. We also show that due to subtle properties of the
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algorithm concerning the conservation of momentum in
the tangent space dynamics d Lyapunov exponents in a
d-dimensional space may be negative instead of zero in
contrast to naive expectation.

II. IYAPUNOV EXPONENTS

Typically, the many-body systems Inentioned above
have a strong sensitivity to initial conditions, which
means that two phase points initially separated by a
small distance in phase space tend to diverge exponen-
tially. In this case the system is said to be chaotic. To
state the problem in a more quantitative way, we consider
a general L-dimensional smooth dynamical system

F = F(F),

where I' is an L-dimensional vector in the phase space of
the system. The integration of this coupled set of ordi-
nary differential equations gives the temporal evolution
of the system, the so-called phase How,

r(') = @ (r(0)) (2)

which will be assumed to be bounded. Let F (t) denote
the reference trajectory, and F, (t) a perturbed trajectory
connected to F (t) by a parametrized path with param-
eter s such that lim, ~0 F, (t) = F (t). The associated
tangent vector is defined by

r (t) —r(t)
s-+0 8

Its equation of motion is obtained by linearizing (1),

(r) sr, (4)

where D (F) = OF/Or is the Jacobi matrix of the system.
To avoid unnecessary notation we will not make the limit
and the denominator of (3) explicit in the following and
will refer to br (t) as an infinitesimal vector separating
neighboring orbits and describing the temporal evolution
of an (infinitesimal) perturbation.

For chaotic systems this perturbation grows exponen-
tially, which motivates the definition of the Lyapunov
exponents of a trajectory for initial conditions F (0) and
an initial displacement Sr (0) as

A(r(0), br(0)) = lim —ln
1 ibr (t)i

Oseledec's multiplicative ergodic theorem [16] states that
for ergodic systems under very general assumptions A

exists and that there are L orthonormal initial vectors
Sri (0) yielding a set of I exponents (Ai), which is re-
ferred to as the Lyapunov spectrum of the system. The
exponents are taken to be ordered, Aq & A2 & . - & Al. .
Since, according to Oseledec, the A~ 'are independ. ent of
the metric and the initial condition, we can drop the ar-
gument F (0). Geometrically the Lyapunov exponents
can be interpreted as the mean exponential growth rates

of the principal axes of an infinitesimal ellipsoid sur-
rounding a phase point and evolving according to (1).
Thus the Lyapunov spectrum describes the stretching
and. contraction characteristics of the phase How.

The Lyapunov exponents of the class of symplectic sys-
tems, to which our hard particles belong if in equilib-
rium, exhibit a Smale-pair symmetry, A~ + Ay+i )

——0,
for l = 1, . . . , L. This symmetry reduces the numerical
eKort for the calculation of full Lyapunov spectra by a
factor of 2, and can also be used as a check of the algo-
rithm. Furthermore, for each quantity conserved by the
equations of motion one Lyapunov exponent vanishes. In
a d-dimensional equilibrium system of % hard particles
and phase space dimension I = 2d& the total momen-
tum, the total (kinetic) energy, and the center of mass
coordinates are conserved. Since also one exponent as-
sociated. with a displacement in the Bow direction equals
zero, altogether 2d+2 Lyapunov exponents vanish in this
case.

Nonequilibrium steady-state systems cease to be sym-
plectic and become dissipative. Nevertheless, the Smale-
pairing symmetry is not totally lost for homogeneous
systems for which conjugate pairs of exponents add up
to a constant negative value [17]. The total sum of all
Lyapunov exponents is negative and corresponds to irre-
versible entropy production [5]. Furthermore, it can be
shown [18] that the sum of all Lyapunov exponents can
be related to the respective macroscopic transport coef-
ficients. The number of vanishing exponents due to the
conserved. quantities center of mass, momentum, and
kinetic energy in the nonequilibrium case is a more sub-
tle question which will be treated in detail in Sec. IV B.

The practical computation of Lyapunov spectra ac-
cording to the classic algorithm of Benettin et aL [13]
proceeds by simultaneously solving the original equations
of motion (1) for the reference trajectory F (t) and the
linear variational equations (4) for a complete set of offset
vectors (8ri). The difficulties associated with the choice
of the generally unknown initial vectors br~ (0) and the
rounding-error eKects of the computer are overcome by
periodic reorthonormalization of the set of offset vectors,
such that the Lyapunov exponents are obtained from the
time averaged logarithms of the respective normalizing
factors. For a more in-depth treatment of this algorithm
the reader is referred to [13,14].

III. AI CQRITHM AND MODELS

Whereas the classical method of Benettin et al. can
be straightforwardly applied to differentiable dynamical
systems, more refined methods are necessary to treat
systems, which are, loosely speaking, hybrid models of
ordinary diKerential equations and discrete maps. Re-
cently [19,20] we calculated the Lyapunov exponents for
the Sinai stadium billiard and for the Lorentz gas in equi-
librium and nonequilibrium steady states by adapting the
Benettin et al. algorithm to the case of elastic impulsive
collisions. In this section we reformulate the problem in a
more general way and derive a scheme for the calculation
of Lyapunov spectra for such hybrid models.
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Let us consider the autonomous set of L coupled or-
dinary differential equations (1) with initial conditions
F (0), and let us assume that, in addition, the transfor-
mation

Ff = M(F;)

is applied at discrete times (vq, &2, &s, . . .). The map
M (F) is assumed to be differentiable with respect to the
phase space variables. The subscripts i and f denote the
initial and the final states of the map M. In the time
intervals w;+z —7;. the trajectory is determined by inte-
grating Eq. (1), which yields the smooth fiow 4~. The
time evolution of the offset vectors is obtained by inte-
grating Eq. (4). Taking into account also the singular
mapping events at the times (7;.), the whole time evolu-
tion in phase space and in tangent space can be written
as

sr, = M (F; + 6F,) —[Ff + F (Ff) 87 ], (1o)

where we have taken advantage of the short time approx-
imation

In the following this discrete event is called a collision,
but we stress that our results are valid for all differen-
tiable discrete maps, and not just for elastic impulsive
collisions.

In Fig. 1 the reference trajectory is drawn as a solid
line, whereas the satellite trajectory is represented by
a broken line. For the reference trajectory the collision
takes place at the phase point F, and at the time ~
and maps the phase space vector F,. into the vector Ff.
The satellite trajectory undergoes collision at a displaced
point F; + bF and at a different time ~ + b~ . We
note that the time delay bw can be positive as well as
negative. As can be seen &om Fig. 1 the offset vector
bFy immediately after the collision of both trajectories
is given by

Sr (t) = L' —- S.L " "-' .L"—". S.L" . br (0),

F (t+ ht) = I'(t) + F (F) bt

Using the same linearization we obtain

sr. = sr,- + F (r, ) s~.. (12)

where L is the propagator of bF in the smooth segments,
and S is the map in tangent space corresponding to M.
The propagator L can be formally written as

Insertion of this result into (10) and application of the
linear approximation

L ' ' = exp+ D fF(t')] dt ), '

tl
(9) M(r+sr) =M(r)+ . arOM

where exp+ denotes a time ordered exponential.
The effect of a single application of the map S on the

offset vectors is schematically shown in Fig. 1. For sim-
plicity the phase space is taken to be two dimensional.

finally yields an expression for bFf as a function of the
phase space vector and the offset vector before the colli-
sion:

sr, = . br, + . F (r, ) —F(M(r, ))
OM OM
BF ' t9F

(14)

F; + bI.'„T,+ 67;

M(r, +sr, )

We note that the time delay bw, is a function of F, and
bF;. This equation, obtained from a linear approxima-
tion in time and in phase space, is our point of departure
for all subsequent calculations. We stress that it gives the
exact linear tranformation rules for the offset vectors due
to a discrete mapping. The ingredients necessary for the
application of Eq. (14) are the equations of motion given
by the vector F (F), the map M (F), and its derivative
ctM/Br. As a first example for the application of Eq. (14)
we rederive the transformation rules for the offset vectors
of two model systems, which were recently deduced by us
from purely geometrical considerations [19,20]. Then we

apply (14) to derive the ofFset-vector transformation rules
for a hard-sphere system carrying color charges both in
equilibrium and in the presence of an external field.

A. Collision of a two-dimensional point particle
vrith a Hat surface

FIG. 1. EKect of the noncontinuous transformation M on
the o8'set vectors in the tangent space of the system.

The simplest system is given by a two-dimensional
point particle of mass m colliding with a flat surface,
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on which it is elastically reHected. One can find this case
in two-dimensional billards such as the stadium billiard
[19]. The phase vector is

q

that the reflection rule for the position components is au-
tomatically obtained from Eq. (14) and is a consequence
of the time difference bw between the collisions of the
reference and the satellite trajectory. Geometrical argu-
ments lead to identical results [19].

where q and p are the position and the momentum vec-
tors of the particle, respectively. Since the particle moves
force-Bee between collisions, the equations of motion are
given by

(f q l! !( p/m l!
kp) (i6)

The particle is elastically reflected, which means that the
transformation M leaves the position q and the momen-
tum component parallel to the surface unchanged and
changes the sign of the perpendicular component of the
momentum:

B. Collision of a two-dimensional point particle
with a curved surface

Next we consider the collision of a point particle with a
curved surface. This type of collision occurs, for example,
in billiards with curved walls, and in the so-called Lorentz
gas [19].Again the phase vector, the equations of motion,
the collision transformation rule and the time delay are
given by Eqs. (15), (16), (17), and (18), respectively. But,
due to the curvature of the surface, the normal vector n
is now a function of the collision point. This must be
taken into account for the derivation of the collision map
M:

Ff =M(1';) =!(p, —2(p;n)n) ' (17) BM fl 01
BF (21)

where n is the unit vector perpendicular to the surface at
the collision point. The collision of the satellite trajectory
is delayed with respect to the reference trajectory by

where

A = = —2 [n p, + (p; n) 1]
Bpf 011

t9qi q (22)

(bq, n)
(p;/m n)'

BM fl 0
gZ' (0 (1 —2ntan)) ' (i9)

which is simply the satellite-particle separation perpen-
dicular to the surface divided by its normal velocity. For
the Jacobian matrix associated with the map M we ob-
tain

B = =1 —2nn.Opf
Op~

(23)

Thus the operator B corresponds simply to a reflection at
the collision point. Bn/Bq is the matrix of the derivatives
of the normal vector n with respect to the position of the
collision point. Equation (14) finally yields

where 0, 1, and n n are 2 x 2 submatrices. The notation
d (3 e implies a tensorial product of two vectors d and e.
Insertion of these expressions into (14) finally yields

hqf = hq; —2 (hq,"n) n,

bpf ——B bp, +A bq,

(24)

(25)

&bq, —2(bq; n)nb
(2O)

i.e. , both the position and the momentum components
of the offset vector are reBected on the surface. We note

where bq, = hq; + (p;/m) bw, is the difference vector in
configuration space between the collision points of the
reference and the satellite trajectory. Thus the exact
transformation rule for the offset vectors becomes

( hp, —2 (hp; . n) n —2( (p, . bn) n + (p, . n) hn) )
' (26)

Here, bn = Bn/Bq, . hq, is the variation of n due to
the displacement bq . We observe that the additional
term A hq appearing in (25) is a consequence of the
curvature of the collision surface and is orthogonal to the
final momentum pf as can be seen by direct calculation.

For a flat surface bn vanishes and Eq. (20) is recovered.
We now express the tranformation rules (26) in terms

of the curvature of the collision surface, to make contact
with previous work [19]. Since n is a unit vector, bn
can be viewed as an infinitesimal rotation and is there-
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& = (E.p) /(p. p) (2O)

FIG. 2. Geometry of the collision of a point particle with
a curved surface.

fore orthogonal to n. Using the curvature KR, defined
as the rate of change of the tangent vector orientation
with growing distance f'rom the collision point, we write
8n =ribs s. Here, Ss is the displacement on the surface,
and s is the tangent unit vector at the collision point and
orthogonal to n. We introduce the unit vectors t, and
tf orthogonal to the vectors p, and pf, respectively, as
depicted in Fig. 2. Since (p; s) n + (p, . n) s = ~p; ~

ty
and bs = (bq; . t;) / cos n, where a is the incidence angle
of the particle, the complete transformation rule for the
ofI'set vector bF; may be written as

In collisions with a scatterer the momentum component
perpendicular to the surface of the scatterer changes sign,
while the parallel momentum component, as well as the
position of the particle, remains unchanged by the col-
lision. This transformation is again described by (17),
where the unit vector n points into the direction from
the center of the scatterer to the collision point. Since
also the Jacobian of the collision map M as well as the
configurational part of the equations of motion is identi-
cal to the case treated before, the transformation rule for
the configuration components is given by Eq. (24). To
take the efI'ect of the external field and the thermostat
on the onset vector br' into account, we write down the
momentum part of the transformation rule (14):

bpf ——B.bp, + A bq,
+{B [E —&(p*)p*]

[E ~(pf)pf]) b~ (30)

(
(E.n) (p;.n)

p,.
(31)

where the operators A and B and the time delay b~ are
the same as in the previous section. The first two terms
on the right-hand. side of this equation are identical to
the field-free case (26). However, due to the field an
additional term emerges. Since the thermostat variable

( changes by

(bq; —2(bq, n)n
( bp; —2(bp,"n) n —2K~

'" '
~p, [ tg )

'(sa;.&;)

due to the collision, we finally obtain

bpy = B 5p; + A bq, —287; (E n) (ty.n) ty, (32)

This expression is identical to that found in Ref. [19]. If
Eq. (27) is applied to circular scatterers such as in the
Lorentz gas and in the stadium billiard, the curvature
~R = kl/R, depending on whether the collision takes
place on the outer or the inner side of the circle.

where ty is the unit vector normal to py as before.
Since the kinetic energy K = p2/2m is conserved, also

bK = p bp/m must be conserved by the collision. As
can be checked by direct calculation, our transformation
rules obey this condition.

We want to make contact with the results of Ref. [20],

C. The driven Lerentm gas

As one of the simplest models for transport in deter-
ministic systems the driven Lorentz gas has been the
object of several recent studies [20—22]. In this model
a two-dimensional point particle with mass m is mov-
ing through an array of circular scatterers, on which it
is elastically refIected. In addition, the particle is sub-
jected to an external homogeneous field E. Furthermore,
to enforce a nonequilibrium steady state a Gaussian ther-
mostat is coupled to the system. Between collisions with
the scatterers the particle evolves according to the mo-
tion equations

bp" = ~E~b~, [sin(8,„—p) + sin(0 „~ —y)] ty,

where 0, and 8 q are the angles of orientation of the
incoming and outgoing momenta, respectively, and y de-
termines the orientation of the field E. bp" is the field-
induced part of bpf . Since

(sinpp ' '
g cosg;~) '

cos O~~g )

(( q &) (( p/m
&E-~» ' (28)

and t; + tf = 2 (ty-n) n, we get

bp" = 2br, (E.n) (ty n) tf—,

where the thermostat variable is chosen to keep the ki-
netic energy of the moving particle constant:

which is identical to the last term of Eq. (32).
The full transformation can be summarized as
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f bq; —2(bq, n)nbr, =
I( bp, —2(bp; n)n —2& ' ' Ip;Ity —2hz, (E n)(ty n)ty )(bg, .t;)

Thus the joint action of the field and the thermostat gen-
erates an additional term in the momentum-component
tranformation rule.

OM f1 0)
~r

=
I&A B) (44)

D. Cas of Pf hard disks

New we turn our attention to the calculation of the
Lyapunov spectra for hard disks (two dimensional) and
hard spheres (three dimensional). For simplicity we dis-
cuss only disks in the following, but all our considera-
tions are also valid for hard spheres. Consider a system
of N identical hard disks of diameter o and mass m. The
state of such a system is described by the 4N-dimensional
phase space vector r = (q~, q2, . . . , q+, p~, p2, . . . , p+),
where q~ and p~ are the position and the momentum of
the jth disk, respectively. In the times between collisions
the disks stream according to

19pf Opga = and b
Oq",. Op.

(45)

lf k and l are the colliding particles one obtains from (41)
and (42)

= 0 1f (m n) g ((k, k), (k, l), (l, k), (l, l)), (46)

1
akk a« —,[q '3 p + (q p) 1], (47)

where 1 and 0 are the 2N x 2N unit and zero matrices,
respectively. The 2N x 2N matrices A = (a ) and
B = (b ) are composed of the 2 x 2 matrices a „and
b referring to the particle pair m, n for m = 1, . . . , N
and n = 1, . . . , N, which are defined by

q' = p~/m
for j =1, . . . , N,p2 —0

and the equations of motion for the ofFset vectors are

1
akl = alk = —,[q p + (q p) 1] . (48)

for j = 1, . . . , ¹

bq' = bp'/m
p

(38)
The prod. uct W = A U of A with an arbitrary 2N-
dimensional vector U becomes

q~f ——q~ for j = 1, . . . , N,

p~y ——p~ for j g k, l,

py = p," + (p q) q/~',

py = p,' —(p q) q/~',

(»)
(4O)

(41)

(42)

The streaming is interrupted by impulsive elastic calli-
sions. A transformation to relative and center-of-mass
coordinates shows that a collision between the disks k and
l leads to the following transformation in phase space:

w~ =OV jgk, l,
A; A: l - l kw =agA. . u +aA, ~. u =a. u —u =a. u,
l k l - A: lw =a)t, . u +a)). u =a u —u = —a-u,

(49)
(»)
(51)

b „=0 if m g n and (m, n) g ((k, l), (l, k)), (52)

b =1 if mgk and mal,

where a = [q (Q p + (q . p) 1] /u2 and u = u —u". For
the matrices b we obtain

where q = q,'. —q," and p = p,'. —p," are the relative posi-
tion and momentum of the colliding d.isks k and l. The
positions of all particles and the momenta of all the other
particles not involved in the collision remain unaffected,
while the momenta of the colliding particles su8'er an
instantaneous change. Again the collision of the disks k
and l does not occur simultaneously for the reference tra-
jectory and its satellite trajectory. The time delay b7 is
given by the separation of the two trajectories along the
vector q connecting the centers of the colliding particles,
divided by the relative velocity in this direction,

(b'q. q)
(p/m q)

'

where bq = bq —bq". Next, we calculate the Jacobian
for the collision matrix M:

1
bAA = bii = & ——,q(3q, (54)

1
bA, ~

——b~A,
———q q.

0 2 (55)

The product V = B U of B with an arbitrary 2N-
dimensional vector U reads

v~ =u~ Vjgk, l,
k b k+b l k+( ) /

2

v' = b&k u" + b«u' = u' —(u q) q/0. .

(56)
(»)
(58)

Thus the operator B corresponds to a specular reBection
in relative coordinates of the components of U belonging
to the colliding particles.
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bq~) ——bq',. + p',. m —p~) m &-. (59)

We are now able to apply Eq. (14) to the hard-disk
system. First we d.etermine the effect of the collision of
particles k and l on the configuration components of the
offset vector:

bp~& ——hp~ if j P k, l,

hpf =», +(».q)q/~ +A; A: (b ' . t')

hp~ ——bp,' —(hp. q) q/o. — * '
)p) t~.

(71)

(72)

(73)

by~& ——bq~ if j g k, l. (60)

For j g k, l the momentum does not change in the colli-
sion, and we find

If we combine these rules with the smooth equations of
motion between collisions we can follow the exact time
evolution of the offset vectors necessary to calculate the
full Lyapunov spectrum.

For the components belonging to the colliding particles
we obtain E. Color conductivity in a gas of N hard disks

bqf bq," + (p,"/m —p j/m) &; = hq,
" + (bq . q) q/o

(61)

bqy ——bq; + (p;/m —py/m) b7; = bq,' —(bq. q) q/o

(62)

where bq = bq —bq". Applying the operators A and B
we get the transformation rules for the momentum com-
ponent of the offset vector,

SPY = A. hQ; + B.hP; + (A. P;/m —0) h~,
= A. bQ, +B.bP;, (63)

where Q = (qq, q2, . . . , q~) and P = (pq, p2, . . . , p~)
are the 2N-dimensional vectors in configuration and mo-
mentum space, respectively. From Eqs. (49) and (56) it
follows that

q' = p'/m, (74)

An interesting question is how is the Lyapunov spec-
trum of the hard-sphere system affected. by an external
perturbation'? To investigate this question we consider
the so-called "color conductivity" problem [5,17,18,23].
The system consists of N hard disks of equal mass m,
which carry positive and negative color charges c~ = +1.
Charge neutrality is assumed: P. ~

c~ = 0. Through
these charges the particles interact with a homogeneous
external field E giving rise to the total interaction en-

ergy —g. ~c~ (E q~). The interaction between the
particles is not affected by their color charge. Since
the charged particles continuously extract energy from
the field, they are coupled to a Gaussian thermostat to
achieve a steady nonequilibrium state. The equations
of motion for the intercollisional trajectory segments be-
come

bp~ ——bp~ if j g k, l,

bp) ——bp,"+ (bp . q) q/o'
1+—,[(p bq-) q+ (p . q) bq. ]

p', =bpI —(» q)q/o'
1——,[(p bq. ) q+ (p . q) bq.],

(64)

(65)

(66)

p' = +E —(p',

g (c&E p')

(75)

(76)

where bp = bp' —bp". The displacement of the collision
point bq is given by

(hq; t;)
bq = s,

cos 0! (67)

hq~ ——bq', if j g k, l,

hqf ——Sq,"+ (bq q) q/o

bq( ——hq,
' —(hq . q) q/o. ,

(68)

(69)

(70)

where n is the angle of incidence in relative coordinates
and s is a unit vector normal to q. Furthermore, we
observe that (p . s) q/o' + (p . q/o) s = ~p~ t&, where t,
and tf are defined in the usual way in relative coordinates
of the colliding particles. In this way we finally obtain the
full and exact transformation rule for the offset vector:

hq' = bp'/m, (77)

The Gaussian thermostat keeps the kinetic energy K =

g (p~)2/2m or even the total internal energy in the
j=l
case of hard spheres —exactly constant. Because of
charge neutrality also the total momentum of the sys-
tem is conserved if it vanishes for t = 0. For simplicity
we do not thermostat the system with respect to the lo-
cal streaming velocity of the two particle species [17],
but keep the total kinetic energy in the laboratory frame
constant. As demonstrated by Posch and Hoover [18],
this difference has no qualitative effect on the Lyapunov
instability of the system.

From (74) and (75) the linearized equations of motion
for the offset vectors between collisions are obtained:
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(ckE 2pk() hpk

(pk . pk)
(7s)

bq( ——bq,
' —(hq. q) q/o. 2,

hp~ ——hp~ + Agp,'h~, for j g k, l,

(88)

(89)

Spy
——[c'E—((P;)p~ —c E+g(Py) p~&]b~,

if j g k, l. (79)

The momenta of these particles do not change, i.e. , p; =
pf . This implies

hp~
——b, (p', b7., if j g k, l, (80)

where 4( = ( (Py) —( (P;) is the change of ( due to the
collision of particles k and l:

Since with the constraint of conserved total energy the
collision rules between particles do not change even in
the presence of a driving 6eld, the collision map M and
also its derivatives BM/BF are the same as in the case of
unperturbed hard disks in equilibrium and need not be
repeated here. Also the collision delay time bw does not
change. This implies that also the transformation rules
for the configurational components of the offset vectors
remain unchanged. However, the presence of the field and
thermostat is responsible for an additional term bpf in
the momentum tranformation rules. From (14) and the
multiplication rules for the matrix B of the components
belonging to the noncolliding particles we get

bpk~ ——bp,"+ (bp. q) q/cr'+ ' '
~p~ tf

bq, t;

+ 6 p". + —E-q q bv. , (90)

bp&
——bp, —(hp. q) q/cr — (p( t&

l (bq, . t;)

+ 6 p' ——E.q q b~. (91)

We note that these rules obey h'K = g(bp~ p~)/m = 0
as they should for the total kinetic energy to be con-
served Als. o bQ—:P hq~ = 0 and bP—:g bp~ = 0 hold
as required by the conservation of the center-of-mass and
linear momentum, respectively, provided that these con-
ditions are fulfilled initially. We come back to this point
in Sec. IV B.

It is worth mentioning that one may derive approxi-
mate algorithms by not taking the limit in Eq. (3) and
treating hF (t) as a small but finite separation vector in
phase space. We have used this method for checking our
exact procedures outlined above, which treat hF (t) as a
true tangent vector.

In the next section we describe the details and the
results of our simulations for the two-dimensional hard-
disk system in equilibrium and in nonequilibrium steady
states.

6( = —c(p q) (K. q) o2) pi . pi (81)
IV. RESULTS

k kK q(P )
k kE+((P )

k

+(cE q) q/o'h~. ,

b'p& —— c E—((P;) p', —c E+((Pf) p~
—(cE.q) q/o. h~„

which leads to
(83)

hp~ —— A(p,". + (cK. q) q/o b~„
p', = t&&p,

' —(cE q) q/o']
(s4)

(85)

In summary, the total transformation rules for the
color-conductivity system are given by

bq~f ——hq, . for j g k, l,

bqk~ ——bq,
" + (hq. q) q/o-', (87)

Here, c = (c' —c") is the charge difference of the colliding
particles. For collisions of particles with the same charge
b,( vanishes and, consequently, the additional term hp~f
vanishes for noncolliding particles. For the momentum
component belonging to the colliding particles we can
write

In all our numerical work we use reduced units for
which the disk diameter o, the disk mass m, and the
Boltzmann constant k are equal to 1. The unit of time
is (mcr2%/K)i~, where K is the total kinetic energy.
The density of the system is defined by p = N/A, where
A. = L L„ is the area of the simulation cell, and L and
I„are the lengths of the simulation box in the x and y
directions, respectively. We use periodic boundary con-
ditions in both coordinate directions. In order to be able
to simulate high density systems, we use a simulation box
with an aspect ratio of I„/I = 2/~3 = 1.1547, which is
compatible with the triangular close-packed lattice and
deviates only slightly &om a square shape. For the ini-
tial conditions the disk centers were located on a regular
triangular lattice, and the momenta were chosen from a
Gaussian distribution with zero mean and then adjusted
to make the total momentum vanish. It sufBces to con-
sider a single isotherm for an unperturbed hard system.
Since also Lyapunov exponents are proportional to ~T,
we restrict ourselves to the case K = N, i.e. , the kinetic
energy per particle is equal to 1. Thus, the only free
parameter is the density p. For the temperature T the
kinetic theory definition, K = P p /2m = (N —l)kT, is
used throughout.
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As usual for the simulation of hard spheres we use a
collision-by-collision approach. The collisions of the par-
ticles as well as the intersections with the simulation-box
boundaries are treated exactly, so that our simulation
results remain valid also for very low densities, since no
collision event is missed.

0.9
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0.7

0.6

0.5

A. Equilibrium systems

We computed full Lyapunov spectra for various den-
sities and particle numbers. Since this requires the si-
multaneous integration of 4N(4%+ 1) = 16% equations
of motion, we restrict ourselves to N = 64 and N = 144
particles corresponding to 256 and 576 exponents, respec-
tively. These numbers are too small to allow a complete
assessment of the thermodynamic limit, but sufBce to
give an overview of hard-disk Lyapunov spectra. Just
as in the continuous case, we found that after a few col-
lisions the Smale-pairing rule is obeyed exactly also for
the local expansion and contraction rates of the offset
vectors [24]. The computation of Lyapunov spectra for
constrained continuously interacting particle systems has
been discussed recently in Ref. [25].

Figures 3 and 4 show typical spectra for 64-disk and
144-disk systems, respectively, for the densities p
0.2o, 0.4o, 0.6o, 0.8o, and 1.0o . All spectra
are normalized by their respective maximum exponents
Aq listed in Table I. On the abscissa the index i enu-
merates conjugate pairs of exponents such that i = 2N
corresponds to the maximum and minimum exponents,

0.4

0.3

0.2

0.1

0
0 50 100 150 200 250

i = 2N —1 to the next smaller and next larger exponents,
and, finally, i = 3 to 1 refer to vanishing exponent pairs.
Since the spectra in these 6gures belong to equilibrium
systems, only the positive branches of the spectra are de-
picted. From the rate of convergence one can infer that
the accuracy of the exponents presented in this and the

2

FIG. 4. Lyapunov spectra, normalized by the maximum
exponent Ai, for a system of 144 hard disks in equilibrium
and for densities p = 0.2', 0.4', 0.6o. , 0.8o, and
1.0o (from bottom to top). The respective Aq is listed in
Table I. The index i labels the Lyapunov exponents, which
are de6ned only for integer i. For clarity a solid line is drawn
through all exponent points. Only the positive branches of
the spectra are depicted. The density p = N/A is given in
units of cr, where o is the disk diameter.

0.9

0.8

0.7

TABLE I. Parameters characterizing the Lyapunov spectra
for a system of N hard disks in equilibrium. p is the particle
density in units of o' . The collision rate 1/r, the maximum
Lyapunov exponent Az, the smallest positive Lyapunov expo-
nent A2N 4, and the Kolmogorov-Sinai entropy per particle
h~s/N are all given in units of (K/mNo ) ~ .

0.6
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20 40 60 80 100 120

FIG. 3. Lyapunov spectra, normalized by the maximum
exponent A1, for an equilibrium system of 64 hard disks and
for densities p = 0.2', 0.4', 0 60 ) 0 8o ) and 1 00
(from bottom to top). The respective Aq is listed in Table I.
The index i labels the Lyapunov exponents, which are defined
only for integer i. For clarity a solid line is drawn through all
exponent points. Only the positive branches of the spectra
are depicted. The density p = N/A is given in units of cr

where o. is the disk diameter.

N
64
64
64
64
64
64
64
64
64
64
144
144
144
144
144
144
144
144
144
144

p
O. l
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

1/r
12.9
29.6
52.1
83.0
126.7
192.4
295.3
468.5
596.3
999.2
28.8
67.0
11?.0
186.9
286.0
434.5
662.3
1052.6
1356.2
2258.0

A2N —4

0.121
0.258
0.424
0.631
0.886
1.180
1.596
2.206
2.825
4.287
0.263
0.550
0.862
1.233
1.664
2.219
2.912
3.857
4.531
6.132

Ai
1.275
1.850
2.359
2.908
3.528
4.281
5.232
6.506
7.165
9.060
1.315
1.919
2.436
2.974
3.603
4.367
5.403
6.664
7.341
9.252

has/N
0.726
1.326
1.961
2.679
3.520
4.582
5.957
7.848
9.086
12.242
0.721
1.330
1.959
2.675
3.527
4.592
5.951
7.843
9.143
12.296
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FIG. 12. Field dependence of the color conductivity of a
64-disk system for the densities p = 0.4o. and p = 0.8o
The conductivity is measured in units of (oN/Km, )

. ~, and
the field in units of K/No.

(p = 0.4a. 2).
At higher Belds the system can be trapped in non-

ergodic trajectories, where the particles drift past each
other without collisions. The probability of such states
increases with higher Gelds. The irregular behavior of
Az for strong fields in Fig. 11 means that the system
has reached such an ordered state characterized by small
or vanishing Lyapunov exponents, and that Az has not
yet converged in spite of a long simulation run. This
irregularity is visible also in Fig. 12, which shows the
conductivity as a function of the Geld strength. K is only
weakly dependent on K except for these singular states.
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0.2

FIG. 14. Snapshot of a typical nonequilibrium steady-state
configuration of a 100-disk color-conductivity system at a den-
sity of p = 0.6o . The color field E = (2, 0) K/No points
in the x direction. The instantaneous particle velocity is in-
dicated by the arrows.

Of course, for these states the current is bounded only
by the action of the thermostat, which results in a high
conductivity. Except for this singular behavior the con-
ductivity decreases with increasing density, as expected.

If the system is driven at high enough dissipation rates,
an interesting demixing instability occurs as was observed
by Evans, Lynden-Bell, and Morriss [46]. In contradic-
tion to intuition the &action of collisions between disks
carrying opposite color charges decreases with increasing
Beld strength as may be seen in Fig. 13. This behavior
is explained, however, by Fig. 14, which shows a typical
steady-state conBguration of a 100-particle system at a
density of 0.6o and with a field E = (2, 0) (mK/N)
in the x direction. One observes the formation of clusters
of particles with the same color charge. The clusters are
not stable, but are continuously formed and disrupted
again. Since a particle belonging to a cluster is more
likely to collide with one of the surrounding disks car-
rying the same color charge, the fraction of collisions of
particles with opposite charges decreases.

0.1

2. Systems rsith three and four hard disks

I I I I I I I I I
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FIG. 13. Fraction of collisions between particles carrying
opposite charges for a 64-disk color-conductivity model at the
densities p = 0.4a. and p = 0.8o as a function of the field
strength. The Beld points in the x direction and is measured
in units of K/1Vo .

The conjugate pairing rule (93) has been rigorously
proved only in the limit N ~ oo when corrections of
0 (1/N) can be neglected [6,17,45,47]. In order to check
whether or not an N dependence may be observed and a
pairing rule exists for systems with only a few particles,
we performed a series of color-conductivity simulations
with N = 3 and N = 4 particles. For N = 3 two disks
carry a color charge c = 2/3 and one a charge c = —4/3
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such that the total color charge vanishes. If the density
of the system is low and the driving field strong, the sys-
tem is observed to converge towards a limit cycle after a
few collisions on which the disks drift collision-&ee in the
field direction. A similar phenomenon was responsible for
the singular behavior at large fields for the 64-disk simu-
lations of Figs. 12 and 13. In order to avoid such noner-
godic trajectories characterized by a I yapunov spectrum
without positive exponents, we choose a field direction
which is not parallel to one side of the simulation box.
This ensures that, due to the periodic boundaries, a disk
traveling in the field direction necessarily collides with a
disk carrying an opposite charge.

Figures 15 and 16 show the results of these three- and
four-particle simulations, where I yapunov spectra are de-
picted for a density of p = 0.5' and for the field com-
ponents indicated by the labels. For clarity the various
exponents belonging to one spectrum and defined only for
integer i are connected by solid lines. For each conjugate
pair of exponents their arithmetic mean (A~+A4~+i i)/2
is also connected by the dashed horizontal lines. The re-
spective conductivities K, the time averaged thermostat
variables ((), and the maximum Lyapunov exponents Ai
for these runs are listed in Table II.

I et us discuss the three-particle case in more detail.
The spectra in Fig. 15 were obtained by performing the
simulation in the full 12-dimensional phase and tangent
spaces without explicit consideration of the natural con-

N

) q' = O,

N N

) p'=O, ) p"/2m=It

are constants of the motion for a charge-neutral system
with vanishing total momentum. Then the respective
components of the tangent vectors obey

N

) bq'=8+=0,
N

) Spy =bP =0,

stants of the motion —kinetic energy, linear momentum,
and center of mass. (It should be noted that due to the
periodic boundaries the center of mass is not literally
conserved. But since this does not afI'ect the dynamics
in tangent space each component of the center of mass
still causes one of the Lyapunov exponents to vanish. )
There are altogether 12 exponents for each spectrum ar-
ranged in such an order that the conjugate pair A», A12
is located at index i = 6, the pair A2, A11 at i = 5,
and, finally, the two vanishing exponents, A6 and A7, at
i = 1. In view of the five constants of the motion and
the vanishing exponent in the direction of the phase fIux
one expects six of the exponents to vanish. However,
an inspection of Fig. 15 reveals that there are only four
vanishing exponents, A4 —Ay, with two further exponents
As ——As ———(g) & 0. The reason for this discrepancy is
clarified if one realizes that the quantities

) (p' hp')/m = bK = 0. (96)

N=4

o

p c

FIG. 15. Lyapunov spectra of a three-disk color-
conductivity system in nonequilibrium steady states specified
by the density p = 0.6a and the fields indicated by the la-
bels. The field components are given in units of K/No. Only
the magnitude of the field is varied, its direction is kept fixed.
Six pairs of conjugate Lyapunov exponents are arranged ac-
cording to an index i along the abscissa. Points denoting the
arithmetic means of conjugate Lyapunov exponent pairs are
connected by dashed lines. The Lyapunov exponents are mea-
sured in units of (K/Nmo ) ~ . For details we refer to the
main text.

FIG. 16. Lyapunov spectra of a four-disk color-conductiv-
ity system in nonequilibrium steady states specified by the
density p = 0.6' and the fields indicated by the labels.
The field components are given in units of K/No. Only the
magnitude of the field is varied; its direction is kept fixed.
Eight pairs of conjugate Lyapunov exponents are arranged
according to an index i along the abscissa. Points denoting
the arithmetic means of conjugate Lyapunov exponent pairs
are connected by dashed lines. The Lyapunov exponents are
measured in units of (K/Nmo ) . For details we refer to
the main text.
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E
(2.0, 1.0)
(3.0, 1.5)
(4.0, 2.0)
(2.0, 1.0)
(3.0, 1.5)
(4.0, 2.0)

0.066
0.063
0.061
0.102
0.126
0.173

(&)
0.16513
0.35874
0.61925
0.25624
0.71392
1.73552

Ag

5.758
5.575
5.341
3.752
3.359
2.458

TABLE II. Parameters characterizing a planar nonequilib-
rium steady-state system of N = 3 and N = 4 disks subjected
to an external color field E = (E,F„) T.he Beld components
are given in units of K/No. The color conductivity e is given
in units of (cr N/Km) i, the time averaged thermostat vari-
able (I,') and the maximum Lyapunov exponent Ai in units of
(K/Nma. )'i .

4{%—1)

(Vr".a I'"
) = ) Ai = —(2N —3)((). (98)

case, of which two vanish due to energy conservation and
the phase fiux direction. We have experimentally verified
that the Lyapunov spectra obtained with both methods
are identical except for the four exponents missing in
the reduced phase space description: two vanishing ex-
ponents due to center-of-mass conservation (A4 and As

for N = 3 in Fig. 15), and two exponents equal to —(g)
associated with this subtle violation of the momentum-
conservation constraint in tangent space (As and As for
N = 3). Furthermore, in the reduced phase space de-
scription the expression for the phase space divergence
(92) must be replaced by

Each of these five constraints constitutes a hyperplane
in tangent space. If one follows the dynamics of 4N or-
thonormal onset vectors in the full 4N-dimensional tan-
gent space there is necessarily one of these vectors per-
pendicular to this constraint plane, thus violating the
respective constraint. It was noted at the end of Sec. III
E that the quantities hg, hP, and hK are not afFected by
the hard-core collision map. However, for the streaming
between collisions we find from the linearized equations
of motion (78)

bg = O, hP = gbP, h—K = 0. (97)

It follows that off'set-vector components perpendicular
to the center-of-mass and energy hyperplanes in tangent
space do not change at all in the course of time and conse-
quently contribute three vanishing Lyapunov exponents
to the spectrum. The two vector components normal to
the two hyperplanes associated with linear momentum
conservation, however, shrink and lead to the two nega-
tive exponents As ——As ———(() ( 0 for the case N = 3.

As suggested in [25] the dynamics can be followed also
in the reduced phase space of the first N —1 particles by
expressing q~, p~, hq~, and hp~ in terms of the re-
spective negative sums of the remaining N —1 particles.
There are, of course, 4(N —1) Lyapunov exponents in this

The case of N = 4 particles in Fig. 16 is completely
analogous and need not be discussed any further. It is
also obvious that a system of only N = 2 particles has
only one nontrivial conjugate pair of nonvanishing expo-
nents and is therefore unsuited for a test of the conjugate
pairing rule.

All spectra in Figs. 15 and 16 are for the same density
p = 0.50 . The external field is indicated by the labels.
It varies only in magnitude but not in direction. Each
run was followed for 5 x 10 time steps corresponding
to 1.6 x 10 collisions for the three-disk system, and to
1.8 x 10 collisions in the four-disk case. In these figures
all points denoting the arithmetic means of nonvanishing
conjugate pairs of the various spectra are connected by
dashed lines. A close inspection of these results reveals
that any possible deviation from an exact pairing rule-
if it exists at all is very small. To make this statement
more precise we have listed in Table III the conjugate
pair sums Ai + A4N+1 i) E = 1, 2, . . . , 2N —1, for various
spectra obtained with N = 2 and N = 3 particles. Their
maximum relative deviation is less than 0.1% in all cases.
The pair sums also agree extremely well with —(() listed
in Table II—as required by Eq. (93) for the conjugate
pairing rule to hold.

Tiny numerical deviations of a few pair sums from their
mean may be noticed in Table III, but only for the largest
applied color fields and still smaller than the accuracy

TABLE III. Sums of conjugate Lyapunov exponent pairs A& + A4~+z & for a stationary nonequi-
librium color-conductivity simulation of a planar hard-disk system containing N = 2 or N = 3
disks. l denotes the exponent pair (l = 1 refers to the sum Ai + A4~ of the maximum and the
minimum exponents). The components of the color Beld E = (E,E„) are given in units of K/No
and the Lyapunov exponent sums in units of (K/mNo)i . .

E = (2, 1)
-0.16518
-0.16518
-0.16518
-0.16517
-0.16518

N=3
E = (3, 1.5)

-0.35871
-0.35873
-0.35873
-0.35869
-0.35872

E = (4, 2)
-0.61916
-0.61916
-0.61916
-0.61910
-0.61916

E = (2, 1)
-0.25622
-0.25622
-0.25625
-0.25623
-0.25622
-0.25622
-0.25623

N=4
E = (3, 1.5)

-0.71394
-0.71394
-0.71394
-0.71393
-0.71396
-0.71390
-0.71394

E = (4, 2)
-1.7355
-1.7355
-1.7355
-1.7355
-1.7347
-1.7339
-1.7355
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claimed in this paper. Work is in progress for a further
reduction of the error bars.

We conclude that the conjugate pairing principle is nu-
merically conGrmed to within an accuracy of better than
0.1% for our systems as small as three and four particles.

V. SUMMARY

In this paper we have presented a method for the cal-
culation of full Lyapunov spectra in systems for which
the smooth phase space flux is interrupted by a difFer-
entiable map at discrete times. We derived the exact
transformation rules for the tangent space ofFset vectors
for systems of hard spheres in equilibrium and in nonequi-
lbrium steady states.

Full Lyapunov spectra were obtained for a whole range
of densities p and particle numbers ¹ For small parti-
cle numbers (N ( 64) the spectra display an interesting
steplike shape, which is smoothed out for larger K and
does not seem to persist in the thermodynamic limit.
From the positive branch of the Lyapunov spectrum the
Kolmogorov-Sinai (KS) entropy was calculated. In the
density regime of the fluid-solid phase transition the KS
entropy is found to have a local maximum. As the den-
sity approaches the close-packed density the KS entropy
as well as the maximum Lyapunov exponent diverge due
to the singularity of the collision rate. For low densities
the maximum Lyapunov exponents behaves as —pin p,
as conjectured by Krylov on the basis of a mechanical

stability argument [34,48,49].
In the steady nonequilibrium case with a color current

in the direction of an external Geld, full Lyapunov spectra
were calculated for various densities and Geld strengths
both for large (64 disks) and for very small systems (three
and four disks). The steplike shape of the spectra, typ-
ical for hard disks in equilbrium, is smoothed out by
the action of the external perturbation. Simulations for
the few-particle systems reveal that the conjugate pairing
rule is obeyed. The numerical accuracy for the sums of
conjugate exponent pairs used for this test is better than
0.1%. This result is quite remarkable in view of the fact
that the the Lyapunov exponents are global properties
of the system, and that the conjugate pairing principle
need not necessarily be obeyed locally but only in the
long time limit. Furthermore, the analytical proof of this
principle relies on the assumption that quantities of the
order O(1/jV) can be neglected.
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