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The spectral properties of the Probenius-Perron operator of one-dimensional maps are studied
when approaching a weakly intermittent situation. Numerical investigation of a particular family of
maps shows that the spectrum becomes extremely dense and the eigenfunctions become concentrated
in the vicinity of the intermittent fixed point. Analytical considerations generalize the results to
a broader class of maps near and at weak intermittency and show that one branch of the map is
dominant in the determination of the spectrum. Explicit approximate expressions are derived for
both the eigenvalues and the eigenfunctions and are compared with the numerical results.

PACS number(s): 05.45.+b

I. INTRODUCTION

Correlation functions play an important role in the
characterization of' chaotic systems. In certain classes
of systems they decay exponentially. Cases when it is
proven are Axiom A systems [1—3], mixing maps [4],
and maps that are analytic on a set of rectangles [5].
It is generally believed that hyperbolic systems usually
exhibit an exponential correlation decay, although the
rigorous proof of this can be quite a diKcult task in
particular cases [6]. On the other hand, there are
similarly important classes of systems where the decay
of correlations is slower than exponential. Such a be-
havior has been found in intermittent one-dimensional
maps [7] and in Hamiltoruan systems with mixed phase
space [8]. Intermittency, the alternation of almost regu-
lar and chaotic motion, can precede the birth of a pair
of stable-unstable fixed points or periodic orbits (tangent
bifurcation) [9,10]. It can be associated with a marginally
uristable fixed point [7,11—14] or the marginal behavior
at the boundary of an island in general Hamiltonian sys-
tems [8]. It can also arise when a chaotic attractor be-
comes unstable due to crises [15], effect of noise, or driv-
ing of another attractor [16,17]. Intermittency is known
to possess several special properties. The spectrum of the
Renyi entropies of intermittent systems shows a phase-
transition-like behavior [13,18—21], and the decay proper-
ties of their truncated entropies, complexity and the dy-
namical fluctuations also difFer from those of expanding
maps [12,20,22—25]. The kind of intermittency we study
is due to a marginally unstable fixed point [11,7,12—14].
The vicinity of the Axed point is visited by typical tra-
jectories and the time needed to leave this vicinity scales
with a power of the distance from the Axed point instead
of the logarithm, as for an unstable fixed point. Depend-
ing on the actual map there can even exist a smooth
invariant density to which initial densities converge, as

in the case of our example. This case is called weak
intermittency; otherwise, we talk about strong intermit-
tency [7].

The decay of correlations may be related to the spec-
tral properties of the Frobenius-Perron operator describ-
ing the time evolution of the probability density given in
the phase space of the system in question. The rough
picture is that the largest eigenvalue is unity (except for
transient chaos [26], which is not to be treated here) and
the corresponding eigenfunction is related to the natural
measure, while the leading asymptotics of the correlation
decay is related to a spectral gap between the largest
eigenvalue and the rest of the spectrum. Note that in
two-dimensional systems or higher, even in hyperbolic
cases the direct study of the spectrum of the Frobenius-
Perron operator involves a series of diKculties, related
to both the suitable de6nition of the Frobenius-Perron
operator and the relevant function space in which the
eigenvalue problem is to be solved.

In the case of one-dimensional maps the
Frobenius-Perron operator takes the form Lp(z)

,I( } ~ I ( ) ~

Here the sum goes over the preimages
z of z. The existence of a unique invariant density (be-
longing to eigenvalue Ao ——1) is proven for expanding
piecewise t maps [27] and fully developed maps with
a negative Schwarzian derivative [28]. If a unique er-
godic measure exists the correlation function can be ex-
pressed in terms of' the Frobenius-Perron operator. If
the spectrum is discrete eigenvalues A„and eigenfunc-
tions &p may be used to explore the time evolution
of an initial probability density rp(0, x). Then the de-
cay of correlations and the convergence of rp(t, x) to-
wards the invariant density is governed by Ar (where
&o & l&rl & I&21& "& I&-l &" ).

The relation between the spectral properties and the
correlation decay becomes much more complex if the lat-
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ter one is slower than exponential. In such a case, arising
typically in intermittent systems, the largest eigenvalue
must be an accumulation point of the spectrum. The
standard methods [3,29—32] developed for determining
the eigenvalues of operators similar to the Frobenius-
Perron operator cannot be used to determine the non-
leading eigenvalues when the system is close to an in-
termittent situation. A direct study of the spectrum of
generalized Fzobenius-Perron operators in case of inter-
mittency can be found in Ref. [33]. Working in the space
of functions with bounded variation a nonzero essential
spectral radius [34) is obtained, which reaches Ao for the
case of L [33]. A study of the spectrum for intermittency
that precedes tangent bifurcation is presented in [35].

Our motivation has been to calculate the spectral prop-
erties near and. at intermittency and to establish their
link to the correlation decay. In the present paper we con-
centrate on the first task, while the derivation of the cor-
relation functions will be presented elsewhere [36]. In or-
der to avoid the difficulties arising in higher dimensional
systems we consider piecewise analytic one-dimensional
maps and choose the function space of real analytic func-
tions. Note that the methods and the function space
used here are different &om those in Ref. [33], and allow
us a more detailed description. The paper is organized
as follows. In Sec. II we study the spectral properties of
the Frobenius-Perron operator numerically in a family of
fully developed chaotic maps [37,38], where the parame-
ter is tuned up to weak intermittency. Some aspects of
the numerical work are discussed in Appendix A. Section
III contains the analytical results, which are valid for a
wider class of maps. Details of the calculation are given
in Appendix B.

II. MODEL AND NUMERICAL CALCULATION

Our model is the piecewise parabolic map [38]. This is
probably the simplest dynamical system that can show
intermittency. The general form of the map is

In the case of our model the action of the Frobenius-
Perron operator on an arbitrary function p(x) can be
given by

LV (*) = [~(&i(z)) + ~(+2(z))] 1+2(z)I, (2)

where Ei 2(x) =
2 p (z — +2"x+ zx~) stands for the

inverse branches of the map.
Expanding the function p(z) in terms of Qg(z) as

rp(x) —P& ob~Q~(x) we obtain the (infinite) matrix
representation of the Frobenius-Perron operator,

Lv (z) = ) Li~&aQi(x),
A:,l=o

where the matrix elements I~g, are of the form L7A,

J i Qi(x)LQi, (z) dx. In the numerical calculation we
have truncated this matrix confining the indices between
0 and ¹ The integrals have been evaluated by numeri-
cal integration. Exploiting the symmetry of the map the
matrix size has been effectively reduced by a factor of
2. Then the eigenvalue spectrum A„, n = 0, 1, 2, . . .(N}

of the matrix has been determined. It was quite remark-
able that the eigenvalues turned out to always be positive
real numbers. This calculation was performed for differ-
ent values of the parameters r and ¹ Figure 1 shows
the spectrum as a function of the parameter r at two dif-
ferent values of ¹ The solid parts of the curves in Fig. 1
correspond to cases where, at the given value of N, the
precision of the eigenvalues has reached 0.003 (which is
approximately the resolution of the figure). The preci-
sion was determined by comparing results for different
values of N.

It is seen that all the eigenvalues A„with fixed n tend
to value 1 for r ~ 1. On the other hand we find. that
near any fixed. A value the density of the eigenvalues in-
creases, suggesting a continuous spectrum at intermit-
tency. The eigenfunctions of the operator also show a

f.(x) = 1+r —g(1 —r)'+ 4r~1 —2x~
(a) (b)

It maps the interval [0, 1] twice onto itself for every value
of the parameter r in the interval [

—1, 1] . Its name comes
6.om the fact that its inverse has parabolic branches. The
point x = 0 is a fixed point that becomes marginal in the
intermittent case r = 1 [38,39,7]. For the other special
case r = 0 we obtain the uniformly expanding tent map.
A special property of the piecewise parabolic map is that
the stationary probability density has a simple form [38),
p„(x) = 1+r(1—2x). This is still normalizable for r = 1,
which means that the map possesses weak intermittency.
Note that the average I.iapunov exponent is positive.

In order to study the eigenvalue spectrum of the
Frobenius-Perron operator we derive a matrix represen-
tation on the basis of the I egendre polynomials PA, . After
normalization Qg(x) = gk+ 1/2'(x) these polynomi-
als form a complete orthonormal system on the interval
[—1, 1]. In order to use them we have to transform the
map and t,his basis to the same interval.
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FIG. 1. Eigenvalues of the Frobenius-Perron operator L for
the piecewise parabolic map with maximal matrix index (a)
N = 40, (b) N = 80. Solid lines: precision higher than 0.003;
dashed lines: precision lower than 0.003.
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remarkable behavior when approaching the intermittent
case r = 1. Apart &om the first one, they become more
and more concentrated in the vicinity of the fixed. point
(see Fig. 2). That means, the limiting eigenfunctions are
singular. One might expect the strange case that the
eigenvalue Ao ——1 becomes in6nitely degenerate in the
space of analytic functions. This is avoided since the
eigenfunctions become singular in the limit. At the same
time the tails of the eigenfunctions outside the vicinity
of the fixed. point are smooth functions and become more
arid more similar to the invariant density p(x) (see inset
in Fig. 2). In fact, with a suitable normalization they
converge to p(x).

It has been observed that for r & 0.9 the eigenvalues
converge quite fast when increasing the value of ¹ Going
closer to the case r = 1 the convergence becomes slower
and the limiting eigenvalues get closer to the largest one
(Ao ——1). In the case r = 1 the eigenvalues converge
to unity, but slower than exponentially. At the same
time the eigenvalues with higher index converge slower,
consequently the closer r is to unity the less eigenvalues
are precise. Its reason is twofold. . Qn the one hand, the
spectrum becomes denser and d.enser when approaching
the intermittent case, which certainly leads to numerical
problems. On the other hand, the eigenfunctions p (x)
close to the intermittent situation after suitable conju-
gation can be well approximated by powers x" . As
is explained in Appendix A, this leads to the problem
that only a few eigenvalues and eigenfunctions can be
obtained numerically.

III. ANALYTICAL B.ESULTS

We can understand. the behavior of the spectrum
near the intermittent case by keeping only the term of
the Frobenius-Perron operator Iy(x) = P ..:f(-)=-

I f ('-)I

6

that corresponds to the lower inverse branch. This
branch contains the intermittent fixed point. (We shall
d.enote the corresponding operator by L z, while the oper-
ator containing the upper inverse branch of the map will
be denoted by I2.) The first explanation is the follow-

ing. The numerical results show that the eigenfunctions,
except for the invariant density p(x), are concentrated in
the vicinity of the fixed point. Therefore the most im-
portant region is this neighborhood. The contribution of
12 comes from the rightmost piece of the interval [0,1],
while this piece is reached &om the neighborhood of the
maximum in one iteration. At the same time the eigen-
functions are smooth and [except for p(x)] have quite
a low value there compared to the vicinity of the fixed
point. Therefore the contribution of the upper branch is
small and is a slowly varying function. So we 6rst study
Lq and later we return to the full Probenius-Perron op-
erator to estimate the efFect of the upper branch. The
considerations are quite general; we assume that the map
is single-humped, that special properties of the map exist
at the endpoints and the maximum, and that the map is
smooth and expanding everywhere else.

Without restricting generality we let the map act on
the interval [0, 1] so that the fixed point is at x = 0. We
assume that the map satisfies the following formulas such
as model (1) does:

(I+s)x+ ax'+O(x') if x « 1 (4)
d(1 —x) + 0((1—x)') if 1 —x « 1, (5)

*)+"i2(
+ O((1 —*)')

where x is the location of the maximum, e, a, d, gy 2, h, i 2

are suitable positive constants, and. Ei 2 are the inverse
branches of f (x). For s' ~ 0 keeping a, d, gi 2, hi 2 fixed
we are approaching the intermittent situation. The eigen-
value equation for I q takes the form

Ap(f(x)) =, , 0 & x & x .~(x)
(7)

We can solve it in the neighborhood of the origin by
introducing u(x) = ln p(x) . Since f (x) —x is small when
we are close to the intermittent case, u(f (x)) —ur(x) can
be approximated by the linear term of Taylor expansion.
Then one obtains

ln f'(x) + lnA
cd x +0 s

f(x) —x

Substitution of (4) and integration yields

0.2 0.4 0.6 0.8
X

FIG. 2. Eigenfunction pq for r = 0.9 (solid line), r = 0.97
(dashed line), and r = 0.99 (dotted line). Inset: The eigen-
functions po (solid line), yi (long dashes), p2 (short dashes),
&ps (dotted line), and p4 (dashed-dotted line), for r = 0.999
with di8'erent normalization.

v(A)

(~)+2 'x+—

where v(A) = ""—1+2. I et us restrict ourselves to the
case of analytic eigenfunctions; that means v(A) = n —1,
where n is a positive integer. Then

x 1

~-(x) = '( + .).+, .
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r. Since the spacing LA = A —A +q of the eigenval-
ues decreases in the limit the relative precision bA /AA„
is important. Figure 4 shows that this ratio is roughly
constant in function of n (depends on A only) when it is
considered as a function of n and A, and it is small for
A 1. According to these numerical findings one may
assume that also the expression (10) for the eigenfunc-
tions is valid with a fixed precision in the limit e ~ 0
for fixed A. Therefore an approximating eigenfunction
can be obtained for the intermittent case r = 1 as the
lixnit of (10), which can also be calculated using (9), the
expression of v(A) and keeping A fixed. This way one
obtains

plying partial integration:

/2n+ l(m!)2
for n&m= ~ (m-~)t(m+~+1)!

, 0 for n& m.

The maximum number N of eigenvalues and eigenvec-
tors that can be reliably computed can be approximately
read oK from the singular value decomposition represent-
ing a matrix R' as R';

~
= U, ~D~~V& . Here U and V are

orthogonal n x n matrices and D is diagonal one with the
property D;; & D~~ & 0 for i ( j. We have determined
N &om the condition

I los &
I +2pp(x) ~ Ap —e

X2 (16) DN'tn o xx: x
N'rn o a &b D&no o xx: +& x &rra o xs +& (A4)

while the spectrum is found to be continuous.
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with two di8'erent choices for h (10 s and 10 io). It is
seen in Table I, that N increases slowly with increas-
ing n. Therefore we conclude that close to intermittency
the shifted Legendre polynomials represent a good basis
to determine the first few eigenvalues and eigenfunctions.
Beyond that they are expected to produce misleading re-
sults. We surmise that these conclusions are intrinsic
for any orthogonal basis, since the matrix W is nearly
degenerate. This corresponds to the fact that the basis
functions y are nearly parallel for large n when angles
are defined through the usual Z2 norm.

APPENDIX B:EFFECT OF THE UPPER
INVERSE BRANCH

TABLE I. Values of N in function of n for di8'erent b.

5
10
20
50

100
500

1000

b = 10-'
5
8

10
12
14
18
20

b=10
5

10
16
21
24
32
35

To obtain estimations (14) and (15) we start &om Eqs.
(12) and (13). It follows that the order of the maxixnum
value of &p(x) is Ps' . The nuxnerical calculation not
only supports these estimates but shows that the function
outside that region is smooth and slowly varying. The in-
tegral of the eigenfunction should be zero, since it should
be orthogonal to the first left eigenfunction of I. At the
same time its integral in the above mentioned region near
0 is of order Ps"; hence, it should be of the same order
around the position x where f has its maximum. Thus
the Taylor expansion y(x) = g& o cx, (x —x)" possesses
coeflxcients of order Ps" at most, cx, = O(Pe' ). Going
to the iterate of x we apply Eq. (12) for x = f(x) = l.
Using Eq. (6) we obtain estimation for the Taylor se-
ries around the point x = 1. The second terxn of (12)
connects it to rp(x) around x = 0. Since the expres-
sions E2(f(x)) and f (x) in (13) start linearly for x = 0
the coeflxcients in the expansions y(x) = P& 0 cx,x" and
y(x) = Px, 0 cg(l —x)" are of the same order of magni-



53 EIGENVALUE SPECTRUM OF THE FROBENIUS-PERRON 1421

+'A(l+s) + —1 P =c + ) O(P ), (B1)

tude: co, co ——O(Ps"+'), ci, ci = O(Pc"), I-„)0.
Returning to the neighborhood of the intermittent

fixed point we apply (12) for x 0. We describe
the corrected eigenfuiiction by the expansion p(x)

o P~x", where Pg, k & n —1 are small and P i = P,
which ensures that the eigenfunction gets small correc-
tion. Substituting the expansions for &p(x), g(x) and (4)
into (12), expanding the powers and collecting terms pro-
portional to x we obtain

m —1

) b na k(—1 + )
2k+i naP-

AI=Int( ~ )

m —2

where b, g —— ( &)+2( & i), and (") = 0 if q ) p or

q & 0 . Using this equation and the estimations for cy it
can be shown recursively that P = O(Ps" ), if m (
n —1. For m = 0 only the term containing P re-
mains on the left-hand side. Since the eigenvalue (11)
is expected to get small correction the coefficient of P
in (Bl) is of order s. This yields Po ——O(Ps"). For
m ) 0 the sum in (B1) is not suppressed by c, so we get
P = O(s P i), which proves our statement for P
However, for m = n —1 the eigenvalue (ll) would give
zero for the coefficient of P; therefore, this coefficient
depends strongly on the perturbation of A . At the same
time in the case m = n —1 the order of P = P i = P
is known; hence, this case determines the corrected value
of A with the help of P: A„= (1 + s) + O(s ).
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