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Hamiltonian approach to the kinetic Ising models
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In the framework of the quantum approach to stochastic dynamics, the master equations govern-
ing the temporal evolution of the kinetic Ising models (KIM) are cast in the form of imaginary-time
Schrodinger equations with second-quantized Hermitian Hamiltonians. On the basis of the quan-
tum formalism a classical evolution equation is derived for an e8ective time-dependent Ising-type
Hamiltonian. The grand ensemble corresponding to the latter describes the statistics of the spin con-
figurations evolving under the dynamics of the KIM. The latter approach was used to qualitatively
explain the results of recent Monte Carlo simulations of the Kawasaki KIM.

PACS number(s): 05.50.+q, 02.50.—r, 05.70.1 n, 75.10.Jm

The kinetic Ising models (KIM) with spin-Hip
(Glauber) [1] and spin-exchange (Kawasaki) [2] dynam-
ics were originally designed [3] to introduce in a mathe-
matically simple way a nonequilibrium kinetics into the
Ising model (IM) which, as is known, does not possess
any inherent dynamics. The Markovian character of the
stochastic master equation (ME) governing the dynam-
ics of KIM makes them very convenient objects for the
application of the Monte Carlo method [3]. Numerous
studies performed with the use of this technique revealed
that KIM, in spite of their simplicity, describe in a qual-
itatively correct manner a broad variety of phenomena
found in real systems [4,5]. Among these, major at-
tention attracted essentially nonequilibrium phenomena
qualitatively different &om the familiar quasiequilibrium
relaxation processes. Because of their novelty and in the
absence of an exhaustive theory, these phenomena are
necessarily being discussed in terms of such rather intu-
itive concepts as nonequilibrium phase diagrams, nucle-
ation, spinodal decomposition, the late-stage scaling, etc.
[4,6]. This lack of exactness inakes it rather difficult to
introduce these notions into the rigorous &amework of
the Markov chains theory [7] which, besides, is not well
adopted to specifically physical applications.

Therefore, there have been continuing efforts [3,8—16]
to cast KIM in more appropriate terms of physical the-
ories, namely, of quantum and statistical mechanics, in
order to use their concepts and techniques to study the
physics underlying KIM. In the quantum approach to
stochastic dynamics [2,3,8—13,17—21] one exploits the for-
mal analogy between the ME and the (imaginary-time)
Schrodinger equation. A general conclusion that may
be drawn &om these studies is that whenever a ME can
be reduced to a Schrodinger equation with a Hermitian
Hamiltonian, sophisticated techniques of quantum the-
ory successfully apply [3,8,11,13,19,20]. Another conclu-
sion that has not yet been fully appreciated in the KIM
context is that the use of the second-quantization rep-
resentation of Refs. [9,10] greatly clarifies both physical
and formal aspects of the theory [12,13,18,21].

The statistical approach [14—16] aims at reducing the
statistics of the ensembles of the IM configurations evolv-
ing under the stochastic dynamics of KIM to the form

of canonical ensembles with some e8'ective Hamiltoni-
ans. At present this approach has been successful only
in accounting either for the most probable configurations
[14,15] or in the case of steady states [16].

The aim of the present paper is to present a unified
quantum-mechanical approach based on the techniques
developed mainly in Refs. [3,8,9—ll] by giving a second-
quantized Hermitian Hamiltonian representation of the
KIM and to develop on this basis a purely classical for-
malism in which the statistical ensembles evolving ac-
cording to the KIM dynamics have the form of grand
ensembles with effective time-dependent Ising Hamilto-
nians.

To comprise a maximally broad class of the Ising-type
models, we will consider the Hamiltonians having the
form of the most general functions of the Ising variables
(IV) o; = +I defined at some set (i) of N sites that do
not necessarily form a regular lattice:

Z=) Ko .

Here the notation of the cluster algebra [15] is used with
the variable o corresponding to a cluster n C (i) being
expressed through the IV as

(2)

The summation in Eq. (1) is over all possible subsets of
(i), including the empty one n = g with ore = 1. The
coefBcient Kg may be used to normalize the canonical
probability distribution p('R) = exp( —'R). (The factor
1/k13T is assumed to be included into the parameters of
'R. ) It is to be noted that because 'R is the most general
function of (o.;), any identity valid for 'R will be valid for
any particular function of the IV. So we will repeatedly
use 'R as a trial function to derive general formulas, while
the Ising Hamiltonians governing the dynamics of the
KIM will be marked by the superscript I.

In the quantum notation of Ref. [8] the ME governing
temporal evolution of the ensemble [t) of the microscopic
states of an IM has the form
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dt It) = TIt),
d

(3)
The results of Refs. [3,11,13] further suggest that T may
be expressed through a Hermitian positive semidefinite
Hamiltonian H as

where the transition matrix T must satisfy the condition
of the probability conservation and the detailed balance
condition

(IT = 0 and TI'Rl) = 0,

respectively. Here I) corresponds to the sum of all possi-
ble microscopic states of the IM taken with equal weights
and, by definition [8], IR) = exp( —W)l).

A second-quantization representation of the ME (3)
[9,10] is most easily introduced through the lattice gas
model to which the IM is equivalent. Introducing the
operators of creation (b,+) and annihilation (b, ) of the
lattice gas atoms we can map the IM configurations onto
the Fock space vectors by identifying the spins up (down)
with the occupied (empty) states of the state vector

In) = b+Ivac),
~ Iif'

(5)

where the vacuum state Ivac) corresponds to the empty
lattice (all spins down [15]) and vector Io.) corresponds
to the configuration with spins in the cluster o, pointing
up. It is easy to see that with the help of 6,+. the elemen-
tary processes in the KIM can be expressed through the
Hermitian operators

H,'" = —(b+ ~b, ) (6.)
for spin Hips and

H,'," = —(b+b, +b+b, ). (6b)

~ ys) sl + zs), (7a)

= &i + 2
=

2 (o'i + 1). (7b)

Below we will use both the boson and the spin operators,
whichever is more convenient. To avoid repeated change
of notation we will usually retain the original IV in all
formulas by assuming that in a particular representation
they have to be expressed through the appropriate opera-
tors according to Eq. (7b). In this formalism the state I)
corresponds to the coherent state of the hard-core bosons
[9,10]

for spin exchanges [10] (other notation will be explained
shortly). To make this picture fully consistent one has to
ensure that each site i be occupied by not more than one
atom, i.e. , to satisfy the exclusion principle. This can be
achieved by imposing upon b&+ the so-called hard-core bo-
son or Pauli-type (anti)commutation relations [10] that
can be realized through the algebra of spin-1/2 operators
si [ll—13,17,20—22]

T = —exp( —2R )H exp(2'R ).

Indeed, let us define auxiliary Hamiltonians through the
operators (6) as

Hin ) Hin

Here and below the index u and the term "w process"
correspond to the index i and the spin-Hip process 0., —+
—m, in the case of the Glauber dynamics, and to the
index ij and the spin-exchange process o, —o~ in the
case of the Kawasaki dynamics. Now it is the matter
of a straightforward calculation with the use of the state
vectors (5) to see that the matrix elements of the operator
T'" defined according to Eq. (9) with H = H'" have all
the properties of the purely oK-diagonal "scattering in"
term defined in Ref. [8]. In particular, nonzero matrix
elements of T'" correspond to the transition probabilities
of the form

W (o.
I
n ) = (nI T'"

I
o„)= exp (—b FI/2), (10)

where h 8 is the change of the energy (in units of k~T)
of a configuration o. of the Ising spins under the ~ process.
This choice of W is used relatively rarely [3,11,15]. More
usual ones can be obtained &om Eqs. (6) and (9) by
multiplying T'" with a function. TV of the IV, which is
invariant with respect to the ~ process: W ((cr;) )
W ((0;)) [3] as, e.g. , the function corresponding to the
original choice of Glauber [1,3]

H'"I-'R ) = H "'I-'8 ) (12)

Below we sketch the derivation in more complicated spin-
exchange case, the spin-Hip case being treated similarly.

We erst note that the diagonality of H " can be en-
sured by the property of the operators 6, to be equivalent
to diagonal operators when acting at the coherent state
(8)

W~((0;)) = &sech(2''R ) = &sech(E~. ),

where E; = tr,. (o' R)/2. For simplicity, in our general
derivation we will continue to use the choice (10) be-
cause the generalization is straightforward. To complete
the construction of the second-quantization representa-
tion of the ME we need to supplement the T'" term by
the "scattering out" diagonal term T ":T = T'" —T "
[8] in order to satisfy the requirements (4). From Eq. (9)
it follows that for H the two conditions unify to one [3]:
HI z'R ) = 0, which gives us the equation for recovering
Haut

I) = exp ) b, Ivac) = (1+ b.+)Ivac). (8)

It was shown [8,7] that the Markovian generators T corre-
spond. ing to the KIM are negative semide6nite operators.

So to And H " w e only need. to commute H'" with
exp( —'R /2) on the left-hand side (lhs) of Eq. (12). With
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the use of the identity

exp('R)b, . exp( —R) = exp(+2E;)b,+,

we find

b,+~A) = —,'(1 +;)~'R ~ 2E;). (14)

Now using this relation for all four operators entering
H,'" and the definition of ~'R) we can express the lhs of
Eq. (12) through the action of diagonal operators at
~'R). To simplify the resulting expression it is helpful
to use the algebra of the projection operators P,+ and

P, = 1 —P,+ = Q;. , where Q,~
= (cr; —a~)/2. The final

expression reads

reduce the statistics of quantum spins to the statistics of
closed self-avoiding random walks on a lattice executed
by an ensemble of identical particles.

In order to alleviate the difficulties involved in the
quantum formalism it is natural to use, whenever possi-
ble, Eqs. (13) and (14) to replace nondiagonal operators
b,+. by much simpler diagonal ones 0.;. The remarkable
fact is that in some important cases the quantum oper-
ators can be discarded altogether. For example, using
Eq. (14) it is easy to see that the state vector ~t) may
be represented in the form ~'Rq) with some effective tirne-
dependent Ising Hamiltonian 'Rq. Substituting this into
the ME (3) with T given by Eq. (9) and using Eq. (15)
(and its analog for H,'") we arrive at the following equa-
tion for 'Rq.

H,'"~'R) = [P;+ —exp( —b;~'R)]~'R), (15)
'Rq ——) [exp( —2b' 'R ) —exp(2b 'R —b 'Rq)]. (18)

which is antisymmetric under the u process

(b-)- = —b-.

Now unifying Eqs. (15), (12), (6b), and (7) we finally
obtain for the case of the Kawasaki dynamics

H = ) [
—2s; . s~ —

2 + exp( —z8;~'R )],
(ij)

(17a)

where the angular brackets denote the summation over
some set of pairs of sites. Similarly, in the case of the
Glauber dynaxnics the Hamiltonian has the form [11]

H = ) [
—2s,*+exp( —2b, 'R )]. (17b)

where use has been made of the general definition of the
operator This equation is the main result of the present paper.

With the use of the effective Ising-type Hamiltonian 'R&

the problem of temporal evolution of multispin correla-
tion functions is reduced to the conventional problem of
finding the equilibrium average

-() = ( - "') =(( -))
To establish contact with more conventional approaches
to the KIM, let us derive the evolution equation for p (t)
in the case of the Glauber model. To this end we first
introduce the factor (ll) under the summation sign on
the right-hand side (rhs) of Eq. (18). Then we multiply
both sides of the equation by rr exp( —'Rq) and take trace
over {o';). Next using the invariance of the trace under
the reversal of spins, we make the change oj ~ —oj in
the second term on the rhs with cu = j. This leads to the
cancellation between the two terms unless j C o.. The
remaining terms can be rearranged to give

Thus, we have reduced the KIM to the Hamiltonian
dynamics of quantum spin models (cf. Refs. [11—
13,17,18,20]). This allows one to use the wealth of tech-
niques developed in connection with these models to
study the dynamics of KIM. For example, in the limit
T m oo b 'RI = O(1/T) ~ 0 the Hamiltonians (17) re-
duce to the deposition-evaporation models considered in
Ref. [20]. The exact results obtained in these papers for
T = oo might be helpful in attacking the difficult prob-
lem [3] of developing a high-temperature expansion for
the Kawasaki dynamics.

Despite the remarkable results of Ref. [20], the quan-
tum spin models are, in general, very complicated ones
which are difficult to solve even numerically [23]. There-
fore, &om the point of view of actual calculations the
above formalism is not too advantageous. It is not even
excluded that it could be more helpful the other way,
i.e., in studying the spin models in the stochastic rep-
resentation. For example, from Eq. (17a) it is easy to
see that using the above T = oo limit one can express
the partition function of the isotropic Heisenberg spin-
1/2 model through the sum of diagonal matrix elements
of the evolution operator exp( —tH). In other words, to

j» (t) = —p, (t) —) ((cr, a. tanh(E, ))), ,

R, =) (b R, —b R'). (20)

To assess qualitative features of this approximation, let
us apply it to the problem of the nearest neighbor (NN)

which coincides with the equation obtainable directly
from the ME [see, e.g. , Eq. (3.42) in Ref. [3]]. Because
the cluster variables (2) constitute a complete set in the
phase space of the IM, this proves the equivalence of the
theory given by Eq. (18) to the conventional ME ap-
proach to the KIM in the case of the one-time averages.

To make the above formalism efficient it is necessary
to develop the methods of solving Eq. (18). As a first
step in this direction let us consider the practically im-
portant case of initial ensembles corresponding to the
quench &om T = oo. In this case a natural choice is the
high-temperature expansion because, as is easily verified,
it linearizes Eq. (18) to each order in 1/T. To the order
1/T
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spin-exchange kinetics of a model equiatomic binary alloy
on a d-dimensional hypercubic lattice with efFective pair
interaction V = 4k~TK

This form of the interaction is preserved by the linear
approximation (LA). The evolution equation (20) for the
effective pair interaction K with the use of Fourier
transform can be reduced to 0.5 1.0 2.0

K, (k) = —e„[K,(k) + K, —K'(k) —K'].

Here and. everywhere below k is the wave vector,

ek = 8 ) Slil (ki/2),

(21)
FIG. 1. Angle averaged structure factor S(k, t) vs k (in

units of inverse lattice spacing) at early stages of decompo-
sition of a model binary equiatomic square alloy, with NN
efFective pair interaction K = —0.5.

K, (k) = KI(k) [1 —exp( —egt)]. (23)

Kq(K ) is the NN component of the matrix K (KI ),
and the initial condition is Ko(k) = 0. Equation (21) is
easily solved by the use of Laplace transform. A leading
term of the solution that correctly reproduces its salient
features has the form

To assess numerical values of the quantities under dis-
cussion, let us consider a two-dimensional alloy with NN
interaction K = —0.5, which corresponds to quenching
into the two-phase region slightly below the critical point
K ——0.44:

Let us use this expression to discuss the applicabil-
ity of the LA to the extensively studied problems (see
Refs. [4,6,24], and references therein) of the kinetics of
the IM quenched below its phase transition point. From
Eq. (23) it follows that starting from Ko(k) = 0 at t = 0,
Kq(k) regains its asymptotic value KI(k) as t -+ oo.
Therefore, at some 6nite time t the system must at-
tain the point of phase instability. Thus, the LA can
be valid only for t ( t because it is based on the high-
temperature expansion which, as is known, fails at phase
transition points. From mean-field-type arguments it fol-
lows that the instability will take place as the minimum
of Kq(k ) at some k will reach a critical value K, . The
nature of the instability will depend on a particular form
of KI(k). For example, if the transition is of the order-
ing type, the instability points are at some high-k values
(k } . From Eqs. (23) and (22) it follows that at large
k Kz(k) recovers much more quickly than at low kones. -
So in the case of ordering the linear regime is restricted
to very short time t, which is shortening quickly as the
quenching temperature lowers. Besides, the breakdown
of the LA begins at large ~k~. These conclusions are in
complete qualitative agreement with recent Monte Carlo
simulations [25]. If the minima of KI(k) at high-k points
are only local ones with the global minimum being at
the origin, these local minima during a certain period of
the early stage of evolution became the global minima
of Kq(k). This conclusion is qualitatively confirmed by
the transient ordering observed in numerical simulations
[24].

K (k) = —(cos k + cos k„). (24)

From Eq. (23) it follows that Kq(0) = 0 for all t. So the
minimum of KI(k) (24) at k = 0 splits into several min-
ima of K~(k) at (k (t)}, which tend to zero as t —+ oo.
These minima define the maximums of the experimen-
tally observable structure factor S(k, t) = 4((0 goy))q.
The results of the calculation of this quantity exhibiting
characteristic coarse-graining behavior [4] are shown in
Fig. 1. Kq(k) was calculated by the numerical integration
of its Laplace transform; the statistical average has been
performed with the use of the properly normalized [26]
Krivoglaz-Clapp-Moss formula, which is very accurate at
the equiatomic composition in the disordered phase [27].
The largest t = 10 in Fig. 1 approximately corresponds
to t, estimated Rom the condition Kq(k ) = K, . In the
ordering case t would be almost two orders of magni-
tude smaller, which makes the linear regime practically
unobservable [25].

In conclusion a word of caution is to be said about the
above calculations in the two-phase region. As is known
[3,7), in this case t'he dynamics of the KIM becomes non-
ergodic. Therefore, the conclusions drawn on the basis
of the grand ensemble formalism used throughout the
present paper may turn out not to be directly applicable
to the interpretation of the data obtained, as is frequently
the case in experiments (actual or numerical), for a par-
ticular specimen of the system under consideration. This,
as well as other problems connected with nonergodic be-
havior of KIM require further investigation.
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